
Computer Structures: Readings and Examples

McGraw-Hill computer science series

RICHARD W. HAMMING
Bell Telephone Laboratories

EDWARD A. FElGENBAUM
Stanford University

Bell and Newel1
Cole Introduction to Computing
Gear Computer Organization and Programming
Givone Introduction to Switching Circuit Theory
Hellerman Digital Computer System Principles
Kohavi Switching and Finite Automata Theory
Liri Introduction to Combinatorial Mathematics
Ralston Introduction to Computer Science
Rosen Programming Systems and Languages
Salton
Watson Timesharing System Design Concepts
Wegner

Computer Structures: Readings and Examples

Automatic Information Organization and Retrieval

Programming Languages, Information Structures, and Machine
Organization

Computer Structures: Readings and Examples
C. Gordon Bell

Professor of Computer Science and Electrical Engineering
Carnegie-Mellon University

Allen Newell
University Professor

Carnegie-Mellon University

McGraw-Hill Book Company
New York St. Louis San Francisco Diisseldorf

London Mexico Panama Rio de Janeiro
Singapore Sydney Toronto

To Brigham, Laura,
Paul

Computer Structures: Readings and Examples
Copyright 0 1971 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher.

Library of Congress Catalog Card ‘Vurnber 75-109245

07-004357-4

1 2 3 4 5 6 7 8 9 0 HDBP 7 9 8 7 6 5 4 3 2 1 0

This book was set in News Gothic by Graphic Services, Inc., printed on
permanent paper by Halliday Lithograph Corporation, and bound by
The Book Press, Inc. The designer was Elliot Epstein; the drawings were
done by John Cordes, J. & R. Technical Services, Inc. The editors were
Richard Dojny and J. W. Maisel. William P. Weiss supervised production.

Preface

The structures that we call computer systems continue to grow in complexity, in
size, and in diversity. This book is linked firmly to the nature of this growth. The
book is about the upper levels of computer structure: about instruction sets, which
define a computer system at the programming level; and about organizations of
processors, memories, switches, input-output devices, controllers, and communica-
tion links, which provide the ultimate functioning system. These levels are just
emerging into well-defined systems levels-with developed symbolic techniques of
analysis and synthesis and accumulated engineering know-how, all expressed in a
crystallized representation. These aspects of computer systems have always existed,
of course, but only in rudimentary form. The classical four-box picture of a com-
puter (arithmetic unit, memory, input-output, and control) is certainly an effective
organization of components to process information. But multiple-processors hier-
archies of memories and remote communications force the top level of organization
into a distinct level, requiring analysis and rational design. Similarly, the 25 instruc-
tions of the IBM 701 computer (developed around 1953) is certainly an instruction
set-indeed one worthy of study. But processors with dozens of registers and
almost unlimited logical circuitry, again force the instruction set to become a topic
of rational analysis and design.

This book is tied to the emergence of these upper levels of organization: eight
years ago (a computer engineer’s half dozen) would have been too early to write
this book; eight years hence would be too late. Eight years ago the diversity and
complexity of computer structures was not sufficient to justify the attention this
book provides. This book would have been too thin. Eight years hence textbooks will
exist that treat these levels systematically. This book will then appear too descriptive.

But right now, as these aspects of computer structure are emerging, and with
systematic treatment still precluded, there is a need to make available material on
these levels for systematic reference and study. Our choice has been to present a
large set of examples, which illustrate the various design options and structural
possibilities, both in instruction sets and in overall configurations. These examples
are descriptions of actual computer systems, taken from the technical literature or
from technical reports and manuals. Descriptions of actual systems are to be much
preferred over idealized abstractions. The latter can reflect the real issues only after
successful systematization.

Not only are the chapters about actual computers, they present much detail. The
complexity of computers resides in part in their size and the multiplicity of their
parts-e.g., to their having 200 instructions rather than 20, or having to service
50 Teletypes rather than 2. It seems essential to describe computer systems in their
entirety, rather than via simplified vignettes. Again, this view stems from the existing
state of the art. Eight years hence, it will not necessarily hold.

We fall from grace on all the above principles, providing occasionally descrip-
tions of paper machines and partial descriptions of partial systems. But our feeling
that detail and reality is important remains. This is why this book is so large; and f i t
for study rather than for reading.

V

vi Preface

The book presents a large number of examples. Variation needs to be presented
along all the major dimensions that instruction sets and system configurations
currently exhibit. Thus, as a glance at the table of contents will show, the examples
in the book are hardly picked at random. The variation is empirical. It exists in the
population of computers that have actually been built. This characteristic of the
book stems, again, from our assessment that the upper levels of computer structure
are still in an essentially descriptive and empirical state of development. However,
as the book documents, ample variation occurs in existing computer systems. The
evidence presented here should finally lay to rest the remarks-once echoed almost
universally and still heard occasionally-that nothing has happened in computer
structure since the von Neumann machine.

Dimensions of variations imply a framework, for dimensions do not by them-
selves arise from a population of systems. They require the aid, witting or not, of a
conceptual framework. As the first three chapters of the book testify, we have most
wittingly created a framework, and have had no hesitation in imposing it throughout
the book. However, in keeping with our view already expressed, this framework is
primarily descriptive. It has come inductively from the common lore, from our own
experiences as designers, and from the effort of putting this book together. This
attempt at systematization has given rise to two notations: one for instruction sets
(ISP) and the other for configurations of major components (PMS). But, again, these
notations are primarily descriptive.

So much for what the book actually tries to provide. What are our goals for it?
The first is educational. There are three distinct populations of professionals whose
education is to be served by this book: the computer engineer, who will design
physical computer systems; the computer scientist, who is concerned primarily
with the programming level and with various abstract views of information processing;
and the electrical engineer, who sees computer systems simply as one part of a
larger tech no logy.

For all of these, we see no sense in talking of elementary versus advanced treat-
ments of computer structure. There is surely “less” versus “more,” but consistent
with our view of the current art, no vertical stratification of education is possible
in instruction sets and device configurations. It is sufficient, in the present day, for
these aspects of computer systems to become accepted as worthy of study in their
own right.

This book will hardly make easy fare for undergraduate students, who do not
have an instructor somewhat skilled in the art that is being taught. However, this
book is meant for study. A good instructor can, we feel, develop an excellent course
(or part thereof) in computer structures, taking this book as the basic material. In
addition to the three introductory chapters, Chapter 5 (on the DEC PDP-8), by
providing a complete example of a computer system with descriptions at all systems
levels, helps to tie the aspects of computer structure discussed in this book to the
view students will pick up from a traditional course in logical design.

It goes without saying that for the computer engineer and designer, the material
of this book should be fully assimilated. In designing a new computer system, or
subsystem thereof, he should be familiar with all that this book has to offer-the
design choices, the structural variations possible, the experiments of the past and

Preface vii

the design needs they attempted to satisfy. Given that systematic analysis does not
yet exist, there is no substitute for extensive, critical understanding of the existing
examples of designed systems. We assume the student of computer engineering
comes to this book with a working knowledge of logical design. He should find it
possible to realize many of the systems described in this book at the next lower
levels of logic structure.

For the computer scientist, the levels of computer structure discussed in this book
constitute a substantial part of what he should know about the physical devices that
underlie his science. As we pass downward from these levels to lower ones-to
register-transfer systems, sequential logic circuits, combinatory circuits, continuous
circuits and on down-the relevance of each level gradually fades. The levels of this
book, along with the register-transfer level constitute the main aspects of computer
structure that the computer scientist must understand. It does not matter that they
are, as yet, basically empirical and descriptive. The computer scientist undoubtedly
will not be able to carry through the design of the systems described in this book
in terms of the lower logic levels, but this is not necessary for an appropriate grasp
of these upper levels of computer structure. Indeed, this is what it means for distinct
systems levels to exist.

For the electrical engineer, this book undoubtedly presents more examples than
he cares to know (or needs to). But an appropriate sampling, plus the overview
presented in the first three chapters, is appropriate to give him some insight into
the elaborate growth that has occurred on top of the basic digital technology created
within electrical engineering.

The student of systems engineering may also find the material presented here
useful, as an example of a class of complex systems which has evolved several
distinct levels of representation. Again, the book undoubtedly presents too massive
a dose of detail for him, but the overview in the first chapters, plus a sampling
throughout the space of computer systems, should prove highly instructive.

We have goals for the book in addition to the educational ones. We think the book
can serve as a useful reference for the practicing computer engineer. The time is
past when every computer engineer knows about all computer systems because he
has lived through all of computer history. That position is now reserved for those of
us who are past forty (and still active). For the rest, a source book that provides the
cumulated design experience of the field is a useful substitute, especially so if it
contains enough detail so that a designer can reasonably evaluate the actual com-
puter systems that embody a particular design alternative.

Behind the goal of the book as a guide for the practicing computer designer
lies the feeling that the field of computer engineering needs to develop a sense of
history and of looking to the past for guidance. The fantastic advance in basic logic
technology-in speed, cost, and reliability- makes each day seem an absolutely
new one. But, of course, it is not. Many alternative designs have been tried out in
past systems, in ways relevant to current design. Thus, we have the goal of saving
some of the past in a form accessible to the future needs of computer design. This
goal is mixed with a certain archival feeling. Many of the systems in this book have
never been documented, other than in manuals and various elementary how-to
programming books.

viii Preface

A final goal comes from our feelings as computer scientists that the variety of
computer systems is a phenomena worthy of study in its own right. This book carries,
therefore, an invitation to taxonomy-to asking how to classify the diversity of
forms of computer systems that are coming into existence. Taxonomic endeavors
usually take place in a field of natural systems, particularly biological systems. It
may seem strange that a domain of artificial systems calls for taxonomic activity.
But the demand for empirical classification exists whenever there is a population of
significant size and rich structure. Rudimentary classification efforts have occurred
for many populations of artifacts-for ships, for aircraft, for houses. This book
should amply confirm that computer systems are complex and diverse enough-
and undergoing enough continual proliferation and evolution-to command sig-
nificant taxonomic endeavor.

Enough is said in the first two chapters about the new notations introduced in
the book, so that nothing substantive need be added here. We apologize for inflicting
new notation on the reader. We feel that good notations are really quite important
for the aspects of computer structure described in this book. Much would be gained
by the whole field of computers-by users, programmers, engineers, planners,
buyers, sellers, manufacturers, students, and scientists-if relatively uniform
notations came into common use. Although we have no illusions about the perfec-
tion of the notations we have introduced, we would be most happy if they cause a
rise in concern for standard notations and nomenclature.

A large number of distinct systems are described in substantial detail. We have
redescribed many of the systems in the common notation introduced in the book.
The accuracy of all these descriptions is a major problem. Even where the papers
are reproduced from the literature, this problem of accuracy remains-although
then it is not ours alone. Even though we have taken pains to obtain accurate in-
formation on the systems and to portray them faithfully in our various descriptions
and figures, there is no way we can be responsible for their ultimate accuracy. The
PMS and ISP figures, in particular, cannot be guaranteed to be accurate representa-
tions of the systems they purport to describe. Ultimately, one would like to have
simulation languages for such notations and to verify (up to the usual criteria of a
debugged program) that a system given by, say, an ISP description, simulates the
behavior of the target machine. But that day is still far off.

Our most fundamental acknowledgment is to the contributors to this volume,
not only for the articles they have written, but for the computers they have designed
and built, thereby creating a population of fascinating artifacts worthy of study. An
additional reason for reprinting their articles rather than simply describing their
computer systems is the importance of having available the views of the designers
themselves about the nature of their systems.

The research on the basic ideas underlying the notations was supported by
Advanced Research Projects Agency of the Office of the Secretary of Defense
(F 44620-67-C-0058) and is monitored by the Air Force Office of Scientific Research.

We would like to extend an acknowledgment to the organizations that have
produced all of these computers, oftentimes it would seem in defiance of the laws
of economics. Perhaps, as the old saw has it, a computer manufacturer is simply a
computer’s way of breeding another computer. This might account for the tenacity

Preface ix

shown by computer manufacturers in spawning the vast numbers of computer
systems that provide our field of study. Within this general acknowledgment, we
would like to extend a very specific one to all the people in these organizations who
heiped make information available to us-the manuals, photographs, dates, etc.,
that this book has demanded in such great quantity.

We are indebted to the students who have read and criticized the various PMS
and ISP figures: Richard Dove, Wayne Kohl, Michael Knudsen, Paul Mobus, and
Charles Pfferkorn. Ken Fitzgerald and Anita Jones of IBM were kind enough to
read the introduction to the IBM System/360.

Professor David L. Parnas initially reviewed the text and contents, thus providing
many helpful suggestions. Our other colleagues, especially Professors Angel Jordan,
Alan Perlis, Herbert Simon and Everard M. Williams deserve a special thanks for
their patience and encouragement.

Finally,wewould liketo thankthosewhowerea partof themachinethat assembled
the book: the editors of McGraw-Hill; Mrs. Mary Ross who assembled the bibliog-
raphy, figures, and contributor articles; Mrs. Mildred Sisko who typed the PMS and
ISP Appendix; and especially Mrs. Dorothy Josephson who not only typed nearly all
drafts of the book, but also the final PMS figures, and ISP Appendices.

C. Gordon Bell
Allen Newel1

Acknowledgments

R. H. AZlmarkandJ. R. Lucking: Design of an Arithmetic Unit Incorporating
a Nesting Store, Proceedings of the lnternational Federation of lnforma-
tion Processing Congress 1962, pp. 694-698, North Holland Publishing Co.,
Amsterdam, Holland, by permission from American Federation of Informa-
tion Processing Societies (AFIPS), Spartan Books, Washington, D.C.

R. L. Alonso, H. Blair-Smith, and A. L. Hopkins: Some Aspects of the Logical
Design of a Control Computer, A Case Study, Transactions on Electronic
Computers, vol. EC-12, no. 6, pp. 687-697, December, 1963, by permission
of the authors and the Institute of Electrical and Electronics Engineers
(IEEE).

James P. Anderson, Samuel A. Ho@n, Joseph Shifman, and Robert J.
Williams: D825-A Multiple Computer System for Command and Control,
Proceedings of the AFlPS Fall Joint Computer Conference, vol. 22, pp. 86-96,
1962, by permission from AFIPS, Spartan Books, Washington, D.C. The
authors acknowledge:

The authors wish to acknowledge the outstanding efforts of their many
colleagues at Burroughs Laboratories who have contributed so well
and in so many ways to all stages of D825 design, development, fabri-
cation, and programming. It would be impossible to cite all of these
efforts. The authors also wish to acknowledge the contributions of
Mr. William R. Slack and Mr. William W. Carver, also of Burroughs
Laboratories. Mr. Slack has been closely associated with the D825 from
its original conception to its implementation in hardware and software.
Mr. Carver made important contributions to the writing and editing
of this paper.

George H. Barnes, Richard M. Brown, Maso Kato, DaoidJ. Kuck, Daniel L.
Slotnick, and Richard A. Stokes: The ILLIAC IV Computer, Transactions
on Computers, vol. C-17, no. 8, pp. 746-757, August 1968, by permission of
the authors and the IEEE. The authors acknowledge:

This work was supported in part by the Department of Computer
Science, University of Illinois, Urbana, Illinois, and in part by the Ad-
vanced Research Projects Agency as administered by the Rome Air
Development Center, Griffiss Air Force Base, Rome, New York, under
Contract USAF 30 (602)4144.

The authors are pleased to acknowledge their indebtedness to the
group at the Westinghouse Electric Corporation that initiated the
parallel computer effort. The work of W. C. Borck, A. B. Carroll,

J. R. Hudson, W. H. Leonard, R. C. McReynolds, and G. Shapiro formed
the basis for the subseqiient efforts. Of particular importance is the
work of J. 6 . Gregory in tuning the conceptual design to the real
world of technology.

Theodore R. Bashkow, Azra Sasson, and Arnold Kronfeld: System Design
of a FORTRAN Machine, Transactions on Electronic Computers, vol. EC-16,
no. 4, pp. 485-499, August 1967, by permission of the authors and the IEEE.
The authors acknowledge:

This research is supported by the Air Force Office of Scientific Research
Contract AF19(628)-2798.

G. A. Blaauw and F. P. Brooks, Jr.: The Structure of System/360, Part I-
Outline of the Logical Structure, IBMSystems Journal, vol. 3, no. 2, pp. 119-
135, 1964, by permission from the 1BM Systems Journal.

Erich Bloch: The Engineering Design of the Stretch Computer, Proceedings
of the Eastern Joint Computer Con.ference, 1959, pp. 48-58, by permission
of the author and the Institute of Electrical and Electronics Engineers.
The author acknowledges:

The efforts and contributions of many people have gone into the
engineering design of the Stretch computer. To mention all would be
impossible. However, the following individuals and their groups were
responsible for the units indicated; Mr. R. T. Blosk for the Instruc-
tion Unit, Mr. J. F. Dirac for the Look-ahead Units, Messrs. J. A. Hipp
and 0. L. MacSorley for the Arithmetic Units, and Mr. L. 0. Ulfsparre
for the Memory Bus. The Systems Development was under the guidance
of Messrs. S. W. Dunwell and R. E. Merwin.

Arthur W . Burks, Hermun H. Gokfstine, and John oon Neumunn: Pre-
liminary Discussion of the Logical Design of an Electronic computing
Instrument, “Collected Works of John von Neumann,” vol. V, pp. 34-79,
General Editor: A. H. Taub, Macmillan Company, by permission from
Pergamon Press, New York, 1963. The authors acknowledge:

This report has been prepared in accordance with the terms of Con-
tract W-36-034-ORD-7481 between the Research and Development
Service, Ordnance Department, U.S. Army and the Institute for Ad-
vanced Study.

The authors wish to express their thanks to Dr. John Tukey, of Princeton
University, for many valuable discussions and suggestions.

John W . Carrlll: UNIVAC Scientific (1103A) Instruction Logic, pp. 77-83;
IBM 650 Instruction Logic, pp. 93-98; Instruction Logic of the Soviet

X

Acknowledgments xi

Strela (Arrow), pp. 111-115; Instruction Logic of the MIDAC, pp. 115-121,
chap. 2, Programming and Coding, “Handbook of Automation, Computa-
tion, and Control,” vol. 2, edited by Eugene M. Grabbe, Simon Ramo, and
Dean Wooldridge, Copyright 0 1959 John Wiley & Sons, Inc., New York,
reprinted by permission.

j . Presper Eckert, jr., James R. Weiner, H. Frazer Welsh, and Herbert F.
Mitchell: The UNIVAC System, American Institute of Electrical Engineers-
Institute of Radio Engineers Conference, pp. 6-16, December, 1951, by
permission of the authors and the IEEE. The authors acknowledge:

The UNIVAC System has been an over-all company project and
hundreds of people have participated. It is, therefore, difficult to
acknowledge the contributions of individuals. However, special men-
tion must be made of the contributions of Mr. H. Lukoff, Mr. E. I.
Blumenthal, MI. L. D. Wilson, and Mr. J. D. Chapline, Jr. To the
Census Bureau a great debt of gratitude is owed for their continuous
support of the project.

W. S. Elliott, C. E. Owen, C. H. Dmonald, and B. G. Maudsley: The Design
Philosophy of Pegasus, A Quantity-production Computer, Proceedings 0.f

the Institution of Electrical Engineers, London, Pt. B, vol. 103, Supple-
ment 2, pp. 188-196, 1956, by permission of the Institution of Electrical
Engineers. The authors acknowledge:

The authors would like to acknowledge the contributions that Mr.
C. Strachey and Dr. D. B. Gillies, of the National Research Development
Corporation, and Dr. J. M. Bennett and Mr. T. G. H. Braunholtz, of
Ferranti, Ltd., made to the logical design of Pegasus: particular thanks
are due to MI. C. Strachey for originating the order code.

They also thank Ferranti, Ltd., and the National Research Develop-
ment Corporation for permission to publish the paper.

R. R. Everett: The Whirlwind I Computer, Review of Electronic Digital
Computers, Joint Computers American Institute of Electrical Engineers-
Institute of Radio Engineers Conference, pp. 70-74, February, 1952, by
permission of the author and the IEEE.

Thomas W . Kampe: The Design of a General-purpose Microprogram-
controlled Computer with Elementary Structure, Institute of Radio
Engineers, Transactions on Electronic Computers, vol. EC-9, no. 2, pp. 208-
213, June, 1960, by permission of the author and the IEEE. The author
acknowledges:

The author wishes to thank his co-designers, R. Compton and T. Hayata,
for their assistance during the design of the SD-2 computer and for
their suggestions on this paper.

T. Kilburn, D. B. 6. Edwards, M. J. Lanigan, and F. H. Sumner: One-
level Storage System, Znstitute of Radio Engineers Transactions, vol. EC-11,

no. 2, pp. 223-235, April, 1962, by permission of the authors and the IEEE.
The authors acknowledge:

The authors gratefully acknowledge the contributions made to this
work by all members of the Atlas computer team at both Manchester
University and Ferranti Ltd.

B. W. Lampson, W. W . Lichtenberger, and M. W. Pirtk: A User Machine
in a Time-sharing System, Proceedings of the Institute of Electrical and
Electronics Engineers, vol. 54, no. 12, pp. 1766-1774, December, 1966,
by permission of the authors and the IEEE. The authors acknowledge:

The work for this paper was supported in part by the Advanced Re-
search Projects Agency, Department of Defense, Contract SD-185.

The software portion of the system was designed and written in part
by L. P. Deutsch, who is entitled to equal credit with the authors for
the ideas in this paper. L. Barnes also contributed significantly to the
final result.

M. Lehman: A Survey of Problems and Preliminary Results Concerning
Parallel Processing and Parallel Processors, Proceedings of the Institute of
Electrical and Electronics Engineers, vol. 54, no. 12, pp. 1889-1901,
December, 1%6, by permission of the author and the IEEE. The author
acknowledges:

This paper reports on a group activity in which each individual mem-
ber had his own specific assignments and in addition participated in
regular discussions on all aspects of the project. Credit is therefore
due to all members of the group which, during the period covered by
the contents of this paper, included G. C. Driscoll, J. M. Lee, A. P.
Mullery, J. L. Rosenfeld, H. P. Schlaeppi, and M. Weitzman. I should
also like to express my sincere thanks to Dr. H. A. Ernst for the con-
structive criticism, advice, and encouragement offered during prepara-
tion of this paper. My sincere thanks are also due to members of the
Graphics and Design Department at the Thomas J. Watson Research
Center, and in particular to G. Massi and Mrs. M. J. LaMarre for their
preparation of the charts and figures. Last, my thanks to Mrs. J. Galto
for her infinite patience in the repeated retyping of the manuscript.

A. L. Leiner, W. A. Notz, .I. L. Smith, and A. Weinberger: PILOT, The
NBS Multicomputer System, Proceedings of the Eastern Joint Computer
Conference, 1958, pp. 71-75, by permission of the authors and the IEEE.
The authors acknowledge:

The authors wish to acknowledge the valuable contributions of their
colleagues H. Loberman and W. Youden, who helped to develop the
logical design and programming procedures for this system.

William Lonergan and Paul King: Design of the B 5000 System, Datama-
tion, vol. 7, no. 5, pp. 28-32, May, 1961, by permission of, published and
Copyrighted 0 1961 by F. D. Thompson Publications, Inc., Greenwich,
Conn.

xii Acknowledgments

Richard E. Monnier, Thomas E. Osborne, and David S. Cochran: The
HP Model 9100A Computing Calculator. This chapter is a compilation of
three articles: A New Electronic Calculator with Computerlike Capabili-
ties, by Richard E. Monnier, pp. 3-9; Hardware Design of the Model
9100A Calculator, by Thomas E. Osbome, pp. 10-13; and Internal
Programming of the 9100A Calculator, by David S. Cochran, pp. 14-16,
which appeared in the Hewlett-Packard Journal, volume 20, no. 1, Septem-
ber, 1968, by permission of the Hewlett-Packard Journal.

R. E. Porter: The RW-400-A New Polymorphic Data System, Data-
mation, vol. 6, no. 1, pp. 8-14, January/February, 1960, by permission of,
published and Copyrighted 0 1960 by F. D. Thompson Publications, Inc.,
Greenwich. Conn.

J. C. Shaw, A. Newell, H. A. Simon, and T. 0. Ellis: A Command Struc-
ture for Complex Information Processing, Western Joint Computer Con-
ference 1958, by permission of the authors and the IEEE.

W. Y. Stevens: The Structure of System/360, Part 11-System Implementa-
tions, IBM Systems Journal, vol. 3, no. 2, pp. 136-143, 1964, by permission
from the IBM Systems Journal.

James E. Thornton: Parallel Operation in the Control Data 6600, Proceed-
ings of the AFIPS Fall Joint Computer Conference, Pt. 11, vol. 26, pp. 33-40,
1964, by permission from AFIPS, Spartan Books, Washington, D.C.

W. L. van der Poel: ZEBRA, A Simple Binary Computer, Proceedings of
an International Conference on Information Processing, Paris, UNESCO
House, June, 1959, pp. 361-365, by permission from AFIPS, Spartan Books,
Washington, D.C.

Helmut Weber: A Microprogrammed Implementation of EULER on IBM
System/360 Model 30, Communications of the Association for Computing
Machinery, vol. 10, no. 9, pp. 549-558, September, 1967, Copyright 0
1967 Association for Computing Machinery, Inc., by permission of the
author and the Association for Computing Machinery, Inc. The author
acknowledges:

I wish to thank Jack Carman, who wrote the 1 / 0 Control Program and
the Operating System linkage for the EULER system and Miss Sheila
Morrison who helped prepare the figures. I am also grateful for the
valuable criticism offered by the referee, W. C. McGee, as well as by
Professor N. Wirth and E. Satterthwaite.

J. H. Willcinson: The Pilot ACE, by permission from Automatic Digital
Computation, pp. 5-14, National Physical Laboratory, Teddington,
England, March 25-28, 1953.

M. V. Wilkes and J. B. Stringer: Micro-programming and the Design of
the Control Circuits in an Electronic Digital Computer, Proceedings of
the Cambridge Philosophical Society, Pt. 2, vol. 49, pp. 230-238, April,
1953, by permission of the authors and the Cambridge Philosophical Society,
Cambridge, England. The authors acknowledge:

The authors wish to express their thanks to Mr. A. L. Freedman and
Mr. W. Renwick for assisting them in clarifying a number of points,
and to Professor D. R. Hartree, F.R.S., for his generous help with the
preparation of the paper.

Jnseph E. Wirsching: NOVA: A List-oriented Computer, Datamation,
vol. 12, no. 12, pp. 41-43, December, 1966, by permission of, published
and Copyrighted 0 1966 by F. D. Thompson Publications, Inc., Green-
wich, Conn. The author acknowledges:

This work was performed under the auspices of the U.S. Atomic
Energy Commission.

Several organizations have contributed to the writing and production of
this book by giving us permission to use material from their publications.
In many cases they have also supplied us with original copies. We have
credited their text, tables, pictures, and diagrams when they are used.
This cooperation has been invaluable. The specific organizations are:

Adams’s Associates: Computcr Characteristics Quarterly. (Adams, 1966-1968)

Computers and Automation magazine

Control Data Corporation, 8100 34th Avenue South, Minneapolis,
Minnesota

Datamation magazine

Digital Equipment Corporation, 146 Main Street, Maynard, Massachusetts

Hewlett-Packard Company, 1501 Page Mill Road, Palo, California

International Business Machines Corporation, White Plains and Pough-
keepsie, New York

Massachusetts Institute of Technology, Cambridge, Massachusetts

National Science Foundation

Olivetti Underwood Corporation, 1 Park Avenue, New York, New York

Scientific Data Systems, 1649 Seventeenth Street, Santa Monica, California

Contributors

R. H. Allmark
R. L. Alonso
James P. Anderson
Theodore R. Bashkow
George H. Barnes
G. A. Blaauw
H. Blair-Smith
Erich Bloch
F. P. Brooks, Jr.
Richard M. Brown
Arthur W. Burks
John W. Carr Ill
David S. Cochran
C. H. Devonald
D. B. G. Edwards
J. Presper Eckert, Jr.

W. S. Elliott
T. 0. Ellis
R. R. Everett
Herman H. Goldstine
Samuel A. Hoffman
A. L. Hopkins
Thomas W. Kampe
Maso Kat0
T. Kilburn
Paul King
David J. Kuck
Arnold Kronfeld
B. W. Lampson
M. J. Lanigan
A. L. Leiner
M. Lehman

W. W. Lichtenberger
William Lonergan
J. R. Lucking
B. G. Maudsley
Herbert F. Mitchell
Richard E. Monnier
W. A. Notz
Thomas E. Osborne
C. E. Owen
M. W. Pirtle
R. E. Porter
Azra Sasson
J. C. Shaw
Joseph Shifman
H. A. Simon
Daniel L. Slotnick

J. L. Smith
W. Y. Stevens
Richard A. Stokes
J. B. Stringer
F. H. Sumner
James E. Thornton
W. L. van der Poel
John von Neumann
Helmut Weber
A. Weinberger
James R. Weiner
H. Frazer Welsh
M. V. Wilkes
J. H. Wilkinson
Robert J. Williams
Joseph E. Wirsching

xiii

Contents1

Preface
Contributor.$

2) Acknowledgments
X i i i

X

Part 1 The Structure of Computers

Chapter 1 Introduction 3 Chapter 3 The Computer Space
Chapter 2 The PMS and ISP Descriptive

Systems 15

37

Part 2 The Instruction-set Processor: Main-line computers

Section 1 Processors with One Address per Instruction 89

Chapter 4

Chapter 5
Chapter 6

Chapter 33
Chapter 7

Chapter 42

Preliminary Discussion of the Logi-
cal Design of an Electronic Com-
puting Instrument-Arthur W.
Burks, Herman H. Goldstine, and
John von Neumann
The DEC PDP-8
The Whirlwind I Computer-
R. K. Everett
The IBM 1800
Some Aspects of the Logical Design
of a Control Computer: A Case
Study-K. L. Alonso, H. Blair-Smith,
and A. L. Hopkins
The SDS 910-9300 Series

Chapter 16
Chapter 17

Chapter 41
92 Chapter 8

120

137
Chapter 23

Chapter 34
146

The LGP-30 and LGP-21
IBM 650 Instruction Logic-John W.
Carr I l I
The IBM 7094 I, II
The UNIVAC System-J. Presper
Eckert, Jr., James B. Weiner,
H. Frazer Welsh, and Herbert F .
Mitchell 157
One-level Storage System-T.
Kilburn, D. B. G . Edwards, M . J .
Lanigan, and F. H . Summer
The Engineering Design of the
Stretch Computer-Erich Bloch

Section 2 Processors with a General-register State

Chapter 9 The Design Philosophy of Pegasus,
A Quantity-production Computer- Brooks, 1r.
W. S. Elliott, C. E. Owen, C. H. Chapter 10 An 8-bit-character Computer 184
Devonald, and B. G. Maudsley 171 Chapter 39 Parallel Operation in the Control

Part I-Outline of the Logical

Structure-G. A. Blaauw and F. P .

Chapter 43 The Structure of System/360, Data 6600-James E . Thornton

‘This is a “virtual” contents, which means that because many of the computers are relevant to more than one part and section, we have used italic
type to indicate a nonsequential mapping for computers placed out of “physical” order. The reader might read (reference) the book according to the
virtual order.

XV

xvi Contents

Part 3 The Instruction-set Processor Level: Variations in the Processor

Section 1 Processors with Greater than One Address per Instruction 191

Chapter 11 The Pilot ACE-J. H. Wilkinson 193 Chapter 14
Chapter 12 ZEBRA, A Simple Binary Computer

-W. L. van der Poel 200 Chapter 15
Chapter 13 UNIVAC Scientific (1103A) Instruc-

tion Logic-John W. Carr 111
Chapter 38 The RW-400: A New Polymorphic

Data System-R. E. Porter

205

Instruction Logic of the MIDAC-
John W. Carr I11 209
Instruction Logic of the Soviet
Strela (Arrow)-John W. Carr I11 213

Section 2 Processors Constrained by a Cyclic, Primary Memory 216

Chapter 19

Chapter 12

Chapter 16
Chapter 11
Chapter 8

The OLIVETTI Programma 101 Desk Chapter 9
Calculator
ZEBRA, A Simple Binary Computer
-W. L. van der Poel
The LGP-30 and LGP-21 217 Chapter 17
The Pilot ACE-J. H. Wilkinson
The UNIVAC System-J. Presper Chapter 26
Eckert, Jr., James R. Weiner,
H. Frazer Welsh, and Herbert F.
Mitchell

The Design Philosophy of Pegasus, A
Quantity-production Computer-
W. S. Elliott, C. E. Owen, C. H.
Devonald, and B. G. Maudsley
IBM 650 Instruction Logic-

NOVA: A List-oriented Computer-
Joseph E. Wirsching

John W. Carr 111 220

Section 3 Processors for Variable-length-string Data 224

Chapter 18 The IBM 1401 225 Chapter 10 An 8-bit-character Computer

Section 4 Desk Calculator Computers: Keyboard Programmable Processors with Small Memories 235

Chapter 19 The OLIVETTI Programma 101
Desk Calculator 237

Chapter 20 The HP Model 9100A Computing

Calculator-Richard E. Monnier,
Thomas E. Osborne, and David S.
Cochran 243

Section 5 Processors with Stack Memories (Zero Addresses per Instruction)

Chapter 21 Design of an Arithmetic Unit In-
corporating a Nesting Store-R. H.
Allmark and J. R. Lucking 262 Chapter 30

Chapter 22 Design of the B 5000 System-
William Lonergan and Paul King

Chapter 36 D825-A Multiple-computer System Chapter 32
for Command and Control-James P.
Anderson, Samuel A. Hoffman,

267

257

Joseph Shifman, and Robert J.
Wi 1 liams
A Command Structure for Complex
lnfomnation Processing-J. C. Shaw,
A. Newell, H . A. Simon, T. 0. Ellis
Micro programmed Implementation of
EULER on IBM System/360 Model
30-Helmut Weber

Contents xvii

Section 6 Processors with Multiprogramming Ability 274

Chapter 23 One-level Storage System-T. Kil- William Lonergan and Paul King
bum, D. B. G. Edwards, M. J. Chapter 24 A User Machine in a Time-sharing
Lanigan, and F. H. Sumner System-B. W. Lampson, W. W. 2 76

Chapter 21 Design of the B 5000 System- Lichtenberger, and M. W. Pirtle 291

Part 4 The Instruction-set Processor Level: Special-function Processors

Section 1 Processors to Control Terminals and Secondary Memories (Input-output Processors) 303

Chapter 41 The IBM 7094 1, I1
Chapter 43 The Structure of System/360,

Part I-Outline of the Logical
Structure/G. A. Blaauw and F. P.
Brooks, JT.

Chapter 33 The IBM 1800
Chapter 25 The DEC 338 Display Processor 305

Section 2 Processors for Array Data 315

Chapter 26 NOVA: A List-oriented Computer-
Joseph E. Winching 316

Chapter 27 The ILLIAC IV Computer-
George H. Barnes, Richard M.

Brown, Maso Kato, David J. Kuck,
Daniel L. Slotnick, and Richard E.
Stokes 320

Section 3 Processors Defined by a Microprogram 334

Chapter 28 Microprogramming and the Design
of the Control Circuits in an Elec-
tronic Computer-M. V. Wilkes and
J. B. Stringer
The Design of a General-purpose
Microprogram-controlled Computer
with Elementary Structure-
Thomas W. Kampe

Chapter 29

Chapter 20 The H P Model 91OOA Computing
Calculator-Richard E. Monnier,
Thomas E. Osborne, and David S.

Chapter 32 A Microprogrammed Implementation
0.f EULER on IBM System/360
Model 30-Helmut Weber

335 Cochran

341

Section 4 Processors Based on a Programming Language 348

Chapter 30 A Command Structure for Complex Azra Sasson, and Arnold Kronfeld 363
Information Processing-J. C. Shaw, Chapter 32 A Microprogrammed Implementa-
A. Newell, H. A. Simon, andT. 0. Ellis tion of EULER on IBM System/360

Machine-Theodore R. Bashkow,

349
Chapter 31 System Design of a FORTRAN Model 30-Helmut Weber 382

xviii Contents

Part 5 The PMS Level

Section 1 Computers with One Central Processor 395

Chapter 6 The Whirlwind I Computer-R. A.
Everett

Chapter 42 The SDS 910-9300 Series

Section 2 Computers with One Central Processor and Multiple Input/Output Processors 396

Chapter 5 The DEC PDP-8 Chapter 34 The Engineering Design of the
Chapter 33 The IBM 1800 399 Stretch Computer-Erich Bloch 421
Chapter 41 The IBM 7094 I, I1 Chapter 35 PILOT, The NBS Multicomputer
Chapter 43 The Structure of System/360, System-A. L. Leiner, W. A. Notz,

Part I-Outline of the Logical J. L. Smith, and A. Weinberger 440
Structure-G. A. Blaauw and F. P.
Brooks, Jr.

Section 3 Computers for Multiprocessing and Parallel Processing 446

Chapter 36 D825-A Multiple-computer System William Lonergan and Paul King
for Command and Control- Chapter 37 A Survey of Problems and Prelimi-
James P. Anderson, Samuel A. nary Results Concerning Parallel
Hoffman, Joseph Shifman, and Processing and Parallel Processors-
Robert J. Williams 44 7 M. Lehman

Chapter 22 Design of the B 5000 System-
456

Section 4 Network Computers and Computer Networks 470

Chapter 38 The RW-400: A New Polymorphic Data 6600-James E. Thornton 489
Data System-R. E. Porter 4 77 Chapter 40 Computer Network Examples 504

Chapter 39 Parallel Operation in the Control

Part 6 Computer Families

Section 1

Chapter 41 The IBM 7094 I, I1 517

Section 2 The SDS 910-9300 Series, a Planned Family 542

The IBM 701-7094 II Sequence, a Family by Evolution 515

Chapter 42 The SDS 910-9300 Series 543

Section 3 The IBM System/360-A Series of Planned Machines Which Span a Wide Performance Range 561

Chapter 43 The Structure of Systeml360, Chapter 44 The Structure of System/360,
Part I-Outline of the Logical Part 11-System Implementations
Structure-G. A. Blaauw and F. P. -W. Y. Stevens 602
Brooks, Jr. 588

Contents xix

Appendix PMS and ISP Notations 607

General Conventions 607

1 Basic Semantics

2 Metanotation

3 Basic Syntax

4 Commands: Assignments, Abbrevia-
tion, Variables, Forms

5 Indefinite Expressions

6 Lists and Sets
7 Definite Expressions

608

608

609

609

610

611

611

8 Attributes 612

9 Null Symbol and Optional Ex-
pression 613

10 Names 613

11 Numbers 614

12 Quantities, Dimensions, and Units 615

13 Boolean and Relations 615

PMS Conventions 615

1 Dimensions

2 General Units
3 Information Units

4 Component
5 Link (L)
6 Memory (M)

616

616

616

617

619

620

7 Switch (S)
8 Control (K)
9 Transducer (T)

10 Data-operations (D)

11 Processor (P)
12 Computer (C)

623

624

625

626

626

628

ISP Conventions 628

1 Data-types 629 3 Operations 632

2 Instruction 631 4 Processors 635

Bibliograph y 638

Name Index 653

Machine and Orgunizution Index

Subject Index

656

661

Part 1

The structure of computers

Chapter 1

This book presents many examples of computer systems. It presents
them in enough detail so that meaningful engineering study and
analysis are possible. Most of these examples are presented by
using the original descriptions of them in the technical literature.
Others have been redescribed by us, especially where the original
descriptions existed only in technical manuals. In both cases there
are considerable discussion and analysis of the computer struc-
tures: what problems they were intended to solve, what solutions
were adopted, and how these solutions have fared. Yet the em-
phasis has remained on detailed descriptions precise enough so
that the systems themselves are available for independent study.

Why should one want to produce such a book? Collections of
reprintings from the technical literature are common in many
science and engineering fields, e.g., “Programming Systems and
Languages” [Rosen, 19671. We have departed from this tradi-
tional exercise in two ways, both of which seem important to us.
First, we have presented substantial amounts of detail: in effect,
block diagrams of computer structures and the equivalents of
programming manuals. These constitute neither good reading nor
a way of communicating the “essential ideas” in the field. Second, ?

we have introduced a system of notation and have used it not only
in the parts we ourselves have written but also to provide addi-
tional (sometimes redundant) descriptions of computer systems in
the reprinted articles. Why should there be a book like this? The
reasons are several and require some background discussion.

opment of this science and technology of computers (one of us
also likes to build computers). To understand why this particular
book seems to us to be the right way to push this development
at this particular time requires characterizing the current state
of computer-systems technology.

A computer system is complex in several ways. Figure 1 shows
the most important. There are at least four levels of system descrip-
tion, possibly five, that can be used for a computer. These are not
alternative descriptions in the sense that anything said one way
can be said another. On the contrary, each level arises from ab-
straction of the levels below it. Each does a job that the lower
levels could not perform became of the unnecessary detail they
would be forced to carry around.

A system (at any level) is characterized by a set of components,
of which certain properties are posited, and a set of ways of com-
bining components to produce systems. When formalized appro-
priately, the behavior of the systems is determined by the behavior
of its components and the specific modes of combination used.

I - -, i I ‘ L ‘ 1

I , . f . L Y - , A , i ’ . Computer systems / I I r ,

Computer systems are one example of man’s more complex arti-
ficial systems.l They have existed as successful engineering prod-
ucts long enough to undergo radical evolution and to give rise
to a number of basic, unique technologies. They are sufficiently
complex that they have given rise to a science, that is, to a con-
tinuing, institutionalized endeavor to understand what sort of beast
has been brought forth.2 Our fundamental interest is in the devel-

&
IWe need not argue that they are his most complex system. That view
is myopic. Setting aside quasi-natural systems, such as cities and economies,
it is still the case that a modern aircraft carrier is more complex than a
modern computer by any reasonable measure.
2Here uniqueness can be claimed, perhaps, since few other artifactual
systems (again, excluding the quasi-natural ones) provide new phenomena
that require sustained scientific investigation to understand them. There

Structures. Network/#, computer/C

B Components. Processors/P. memories/M,
switches/S. controls/K, transducers / T;
data operators / D , links / L

,
Circuits: Arithmetic unit ,

Components: Registers, transfers,
controls, data operators (+, -, etc.)

1: , T . , :

Circuits: Counters, controls, sequential
transducer, function generator, .
register arrays I
Components: Flip- flops -, reset-set /
US, JKs delay/ D, toggle/ 7; Iotch,
deloy, one shot . - / ,

Circuits: Encoders, decoders, transfer
arrays, dot0 ops, selectors,
distribu ors, iterative networks

Compoynts 8ND. OR. NOT, NAND, NOR

t f

State
system
level lh
Componen
states. in
outputs

Circuits: Amplifiers, delays, ottenuators,
multivibrators, clocks, gates, differentiator

transistors
Passive components: Resistor/ U, capacitor/
C, inducter/L, diode, deloy lines

1 Active components: Relays, vacuum tubes, 1
B

,,
certainly is no science of aircraft carriers. But there is a computer science. Fig. 1. Hierarchy of levels: computer structure.

4 Part 1 1 The structure of computers

Elementary circuit theory is an almost prototypic example. The
components are R’s, L’s, C’s, and voltage sources. The mode of
combination is to run wires between the terminals of components,
which corresponds to an identification of current and voltage at
these terminals. The algebraic and differential equations of circuit
theory provide the means whereby the behavior of a circuit can
be computed from the properties of its components and the way
the circuit is constructed.

There is a recursive feature to most system descriptions. A
system, composed of components structured in a given way, may
be considered a component in the construction of yet other sys-
tems. There are, of course, some primitive components whose
properties are not explicable as the resultant of a system of the
same type. For example, a resistor is not to be explained by a
subcircuit but is taken as a primitive. Sometimes there are no
absolute primitives, it being a matter of convention what basis
is taken. For example, one can build logical design systems from
many different primitive sets of logical operations (AND and NOT,
NAND, OR and NOT, etc.).

A system level, as we have used the term in Fig. 1, is charac-
terized by a distinct language for representing the system (that
is, the components, modes of combination, and laws of behavior).
These distinct languages reflect special properties of the types of
components and of the way they combine. Otherwise, there would
be no point in adopting a special representation. Nevertheless,
these levels exist in the system analyst’s way of describing the same

Structure Behavior

- 3.0VOltS

”
a c

- 3

e w
270 uuf

t ’= 0

ic + /; - i. = 0
ic = a ie where 1 >> 1

At f ’ = 0: e, = 0 and
O= +15- i R-c: 6‘; d i ’

ec=eo=Oat t ’ = O

AI t’= o t e, = o for
3-volt step, input

where e, h- 3.0 volts)

.u

5 in

0 1 - a (e , (t ’) = -15(1-e-”RCs) -
9

Fig. 2. Electronic-circuit level: inverter circuit.

physically existing system. The fact that the languages are highly
distinct makes it possible to be confident about the existence of
different system levels. Where we are fuzzy, as in the existence
of an additional intermediate level, it is because new representa-
tions have not yet congealed into distinct formal languages. As
we noted, within each level there exists a whole hierarchy of
systems and subsystems. However, as long as these are all described
in the same language, e.g., a subroutine hierarchy, all given in
machine-assembly language, they do not constitute separate sys-
tem levels.

With this general view, let us work through the levels of com-
puter systems, starting at the bottom. Each level in Fig. 1 actually
has two languages or representations associated with it: an alge-
braic one and a graphical one. These are isomorphic to each other,
the same entities, properties, and relations being given in both.

The lowest level in Fig. 1 is the circuit level. Here the com-
ponents are R’s, L’s, C’s, voltage sources, and nonlinear devices.
The behavior of the system is measured in terms of voltage, current,
and magnetic flux. These are continuously varying quantities asso-
ciated with various components, and so there is continuous be-
havior through time. The components have a discrete number of
terminals, whereby they can be connected to other components.
Figure 2 shows both an algebraic and graphical description of
an inverter circuit, as well as an algebraic and graphical descrip-
tion of its behavior. We note that its structure is specified first
as a circuit (a directed graph), with symbols for the arcs and nodes.
The particular circuit still is an abstraction because the transistor
Q1, the resistor R, and the stray capacitors C , are given only token
values. The structure can be described symbolically by first writing
the relationship describing each of the components (i.e., Ohm’s
law, Faraday’s law, etc.) and then the equation which describes
the interconnection of the components (i.e., Kirchhoffs laws). We
observe the behavior of the circuit (probably using an oscilloscope)
by applying an input ei(t) and observing an output e,(t). Alterna-
tively, if we solve the equations which specify the structure, we
obtain expressions which describe the behavior explicitly.

The circuit level is not in fact the lowest level that might be
used in describing a computer system. The devices themselves
require a different language, either that of electromagnetic theory
or of quantum mechanics (for the solid-state devices). It is usually
an exercise in a course on Maxwell’s equations to show that circuit
theory can be derived as a specialization under appropriately
restricted boundary conditions. Actually, even at its level of ab-
straction, circuit theory is not quite adequate to describe computer
technology since there are a number of mechanical devices which
must be represented. Magnetic tapes and drums are most likely

Chapter 1 5

to come to mind first, but card readers, card punches, and Teletype
terminals are other examples. These devices obey laws of motion
and are analyzed in units of mass, length, and time.

The next level is the logic level. It is unique to digital technol-
ogy, whereas the circuit level (and below) is what digital technol-
ogy shares with the rest of electrical engineering. The behavior
of a system is now described by discrete variables which take on
only two values, called 0 and 1 (or + and - , true and false, high
and low). The components perform logical functions: AND, OR,
NOT, NAND, etc. Systems are constructed in the same way as
at the circuit level, by connecting the terminals of components,
which thereby identify their behavioral values. The laws of bool-
ean algebra are used to compute the behavior of a system from
the behavior and properties of its components.

‘The previous paragraph described combinatorial circuits whose
outputs are directly related to the inputs at any instant of time.
If the circuit has the ability to hold values over time (store infor-
mation), we get sequential circuits. The problem that the com-
binatorial-level analysis solves is the production of a set of outputs
at time t as a function of a number of inputs at the same time t.
As described in textbooks, the analysis abstracts from any trans-
port delays between input and output; however, in engineering
practice the analysis of delays is usually considered to be still part
of the combinatorial level. In Fig. 3 we show a combinatorial
network formed from combinatorial elements which realize three
boolean output expressions, O,, O,, and O,, as a function of the input
boolean variables A and B. Note that in the symbolic representa-
tion of the structure we can write an expression that reflects the
structure of the combinatorial network, but, on reduction, the
boolean equations no longer reflect the actual structure of the
combinatorial circuit but become a model to predict its behavior.

The representation of a sequential switching circuit is basically
.\the same as that of a combinatorial switching circuit, although
-. one needs to add memory components, such as a delay element

(which produces as output at time t the input at time t - T). Thus
the equations that specify structure must be difference equations
involving time. Again, there is a distinction (even in representa-
tion) between synchronous circuits and asynchronous circuits,
namely, whether behavior can be represented by a sequence of
values at integral time points (t = 1, 2, 3, . . .) or must deal in
continuous time. But this is a minor variation. Figure 4 gives a
sequential logic circuit in both an algebraic and a graphical form
and shows also the representation of the behavior of the system.

Now it is clear that logic circuits are simply a subspecies of
general circuits. Indeed, to design the logic components one con-
structs circuit-level descriptions of them. For instance, Fig. 5

.,

I , c .

shows a circuit for a NAND (or NOR) gate plus a table of its
behavior. It is evident that its behavior corresponds to that of the
NAND gate only if certain restrictions hold; namely, that one does
not look at the voltage (which is identified as the behavior variable
in the logic circuit) during certain periods when it is transient
(“settling down,” to use the common phrase). Thus the logic level
is an instance of the circuit level only in the same sense that the
circuit level is an instance of Maxwell’s equations-as a limiting
case in which certain features are deliberately ignored.

One buys a great deal from the specialization to logic circuits,
since one can compute the behavior of circuits at the logic level
that are extremely complex at the circuit level. The techniques
for doing so use an entirely different mathematical apparatus. In
general, we cross into another level when the representation at
the previous level provides information that is no longer relevant.
A lower level is concerned with explaining the behavior of a
certain structure, whereas the next highest level takes the lower
level as given (a primitive). The higher level is concerned not about
internal behavior but only how primitives are combined.

A glance at Fig. 1 shows that we have described only the lower
part of the logic level. There is another part, called the register-
transfer level (or RT level). This is still an uncertain level, a matter

-.

I! Time, t

or. alternatively,

Fig. 3. Combinatorial-switching-circuit sublevel of the logic level: realiza-
tion of three logic expressions.

6 Part 1 I The structure of computers

Structure Behavior

”
r .-

a
Y mi

Sum n 0 0 0 I Ill I I 0
Time, f

Sinput xr

Rinput = 7 XI A 7 X

: 7 (X r V X)

pmj
0 l,o 0,o

l,o 0,o 0,1

Sum (output) table

Fig. 4. Sequential-switching-circuit sublevel of the logic level: computa-
tion of x + 1 from serial input string x.

we will discuss after we have finished describing it. The com-
ponents of an RT system are registers and functional transfers
between registers. A register is a device that holds a set of bits.’
The behavior of the system is given by the time course of values
of these registers, i.e., their bit sets.

The system undergoes discrete operations, whereby the values
of various registers are combined according to some rule and then
are stored in another register (thus “transferred’)). The law of
combination may be almost anything, from the simple unmodified
transfer (A t B) to logical combination (A t B A C) to arithmetic
(A t B + C). Thus a specification of the behavior, equivalent to
the boolean equations of sequential circuits or the differential
equations of the circuit level, is a set of expressions (often called
productions) which give the conditions under which such transfers
will be made. In Fig. 6 we give a picture of an RT system to
compute the sum of integers. The figure includes the specification

‘This assumes that the elementary state variable of the system holds a bit
(i.e., one of two values, such as 0 or 1). This need not be; sometimes the
elementary variable holds a decimal digit (one of 10 values) or a character
(one of, say, 48 values). For present purposes we can talk in terms of
bits, without losing anything thereby.

of its behavior and a table that shows the resulting behavior over
time. Here the graphical structure of the system includes registers
(N, I, S), transfers (S c S + l), data operators (S + 1, I > N, etc.).
The flowchart shows the behavior of the control with time.

The register-transfer level is still uncertain because there is
substantial agreement neither on the exact language to be used
for the level nor on the techniques of analysis and synthesis that
go with it. As we will note below, for both the circuit level and
the logic-circuit level there exist well-defined representations,
guaranteed, so to speak, by standard textbooks and college courses
that teach these levels. Standard texts on digital computers make
only informal vse of the RT $vel.

We have indeed a systems level in emergence here. If one
restricts the transfer operations to boolean operations and thinks
of a register as simply a set of 1-bit memories, one can write a
set of logic equations for any register-transfer system. Furthermore,
if one considers the role of logic design in digital computers, this
has encompassed both sequential circuits and the register-transfer

e e Table 4 o f NAND
Table of NOR Inputs

behavior
Inputs

behavior

1 1 1 0 0 0

NOR logic element 1 1 0 0 NAND logic element O O ’
0 (Structure) 0

(Structure) 1 0 0 1 1 1
O

1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0 0 0 0

Circuit
level -15voltS

output

-15 volts

Inputs

+ 1 0 J O l t S

A
Node

Multiple input inverter Circuit
(Structure)

Table of circuit
behavior

0 - 3 0
0 -3 -3 -3

-3
-3 0 -3
-3 -3 0
-3 -3 -3 0

(Behavior)

Fig. 5. Change of representation at the circuit level combinatorial-
switching sublevel boundary.

Chapter 1 7

I
LJ

Present
state

N
C

level. The practicing logic designer (by now an institutionalized
position, on a par with that of circuit designer) has sequential and
combinatorial circuits as his basic analytic tools, and he attempts
to design systems on the register-transfer level (e.g., central proc-
essors) with these as tools. The register-transfer level has emerged
from the informal attempts to create a notation closer to the job
to be done.

Recently there have been a number of efforts to construct
formalized register-transfers systems. Most of them are built
around the construction of a programming system or language that
permits computer simulation of systems on the RT level. Although
there is agreement on the basic components and types of opera-
tions, there is much less agreement on the representation of the
laws of the system (corresponding to tKe production system in Fig.

XrJ w t S

00 01]I*
N N I C
N C I C

u

Y
0 t A s t a r t A -run-(S-O; I-0, star t -0 ; run-I),

t A r u n - ((I 5 N) - (I - I t 1; S-S + 1) ;
t, (I > N) - (r u n - 0)); m

1 s I S abbreviation for start
2 r 1s abbreviation for run
3 combinational network
4 clock event time, t
5 A : 4 X (N + I)

Fig. 6. Register-transfer sublevel of the logic level: computation of the
sum of integers.

I \ "

, I

Structure Behavior

Y -
3 Output table (sum1

' conventions (condit ion) + (output)

Fig. 7. State-system representation of the logic level: computation of
x + 1 from serial input string x.

6) or on the way to represent the dynamic behavior (correspond-
ipg to the behavior table in the figure).

There is another representation used at the logic level, the
state-system representation, but it has been put at one side in Fig.
1. The state system is the most general representation of a discrete
system avai1able.l A system is represented as capable of being in
one of N abstract states at any instant of time. (For digital systems,
N is finite or enumerable.) Its behavior is specified by a transition
function that takes as arguments the current state and the current
input and determines the next state (and the concomitant output).
A digital computer is, in principle, representable as a state system,
but the number of states is far too large to make it useful to do
so. Instead, the state system becomes a useful representation in
dealing with various subparts of the total machine, such as the
sequential circuit that controls a magnetic tape. Here the number
of states is small enough to be tractable. Thus, we have placed
state systems at one side as an auxiliary to the logic level. In Fig.
7 we give the common representations of the state system. Co-

lThere have been energetic attempts to apply the state-system approach
to control systems of a more general nature [Zadeh and Desoer, 19831,
although they do not concern us here.

8 Part 1 1 The structure of computers

incidently, we use the representations of Fig. 7 for the sequential
switching circuit of Fig. 4. That is, Fig. 7 may be viewed as an
abstraction of the physical system in Fig. 4. To the logic designer
the state system is a useful abstraction of a logic design. A design
usually passes through the following problem representations:

1

2

The problem exists in a natural language.

The problem is converted to a state diagram (output as
a function of state, and input).

The state diagram is represented as a state table and
output table.

States are assigned (physical memory elements are used).

The excitation table and output tables are formed.

The excitation and output logic equations are written
(constrained by the actual logic elements).

The sequential circuit is drawn.

3

4

5

6:

7

Let us go to the next higher level, the program leoel. This
not only is a unique level of description for digital technology (as
was the logic level) but is uniquely associated with computers,
namely, with those digital devices that have a central component
that interprets a programming language. There are many uses of
digital technology, especially in instrumentation and digital con-
trols, which do not require such an interpretation device and
hence have a logic level but no program level.

The components of the program level are a set of memories
and a set of operations. The memories hold data structures which
represent things both inside and outside the memory, e.g., num-
bers, payrolls, molecules, other data structures, etc. The operations
take various data structures as inputs and produce new data struc-
tures, which again reside in memories. Thus the behavior of the
system is the time pattern of data structures held in its memories.
The unique feature of the program level is the representation it
provides for combining components, that is, for specifying what
operations are to be executed on what data structures. This is the
program, which consists of a sequence of instructions. Each in-
struction specifies that a given operation (or operations) be exe-
cuted on specified data structures. Superimposed on this is a control
structure that specifies which instruction is to be interpreted next.
Normally this is done in the order in which the instructions are
given, with jumps out of sequence specified by branch instructions.
Again, Fig. 8 shows a simple program, the data structures, and
the behavior.

Two things separate the logic level from the program level.
First, computer systems at the logic level are parallel devices, with

all components active simultaneously. At the program level, com-
puters are represented essentially as serial devices. Second, the
program level, but not the logic level, is essentially linguistic in
nature. At the program level things can be named, abbreviations
can be used, decisions can be made, instructions are interpreted
- all concepts that are strikingly absent from physical systems.
Of course, they are not “really” absent since one can give a full
description of the operation of a program at the logic level. But
one does so by carrying in mind the set of physical behaviors
discovered for computers that make them show the appropriate
linguistic behavior at the program level. Thus, one does not “go
to ALPHA if accumulator is negative’; one has a logic circuit that
transfers the contents of the address field of the instruction register
to the program counter, ANDing that transfer with the sign of
the accumulator, so that it does not take place if the accumulator
is not negative. Such a translation reveals how distinct is the
system boundary between the register-transfer level and the pro-
gram level. The size of the gap is also revealed in the ability of
people to become expert programmers without knowing anything
about any representations below the programming level.

The program level constitutes an entire technology in its own
right, and one that carries within it most of the emergent charac-
teristics of computer systems that make them worthy of a science.
Among the programming languages alone, there are levels of lan-
guage which are so distinct from each other as to constitute system
levels fully as important as the ones exhibited in Fig. 1. Never-
theless, from the viewpoint of someone basically concerned with
hardware systems, these can all be accounted a single level, at
least for the present. The one aspect of programming systems that
should be of most concern, that of operating systems, is still in
such a fragmented state that it does not even begin to be a distinct
system level.

One peculiarity of the program level is that there exists no
universal representation for it, as there does for the circuit or
logic-circuit level (and, it is to be hoped, soon for the register-
transfer level). Each machine has its own machine language (and
its own assemblers and command languages built on those ma-
chine languages). Each of these languages forms a complete sys-
tem at the program level, applicable only to the machine in
question. There is no universal machine language, although there
is much in common at a conceptual level between all existing
machine languages. There has existed a long-standing attempt
within the programming field to develop an UNCOL (for Uni-
versal Computer Oriented Language) [Steel, 19611 that would
play this role, but it has never been successful. The reasons are
not far to seek. The role of the machine language is to be inter-

Chapter 1 9

E ,
0
0

preted by the machine in order to produce behavior. It is not free
to have arbitrarily desirable properties from our human viewpoint,
since its details affect the efficient operation of the computer too
much - how much space is devoted to the program, how much
time is saved by a special order oriented to matrix multiply, etc.
UNCOL was also attempting to fill the same role as machine
languages, being one from which to compile a machine code for
an arbitrary machine. Another reason why there has been no
universal programming representation is that each particular
machine language is a language, and so a universal description
would seem to be a description of a class of languages. This is
by no means impossible, as the wide use of notations such as
Backus Normal Form (BNF) sh0w.l Nevertheless, it has contrib-
uted to the lack of any universal notation.

We now move to the fourth and last level. In Fig. 1 it is called

I-I+l,

the P ~ ~ - & x w a y - % ~ S h e 4 for-4kert. The
name is not recognized, nor is any other, since the level exists
only informally. Nevertheless, its existence is hardly in doubt. It
is the view one takes of a computer system when one considers
only its most aggregate behavior. It then consists of central proc-
essors, core memories, tapes, disks, input/output processors, com-
munication lines, printers, tape controllers, busses, Teletypes,
scopes, etc. The system is viewed as processing a medium, infor-
mation, which can be measured in bits (or digits, characters, words,
etc.). Thus the components have capacities and flow rates as their
operating characteristics. All details of the program are sup-
pressed, although many gross distinctions of encoding and infor-

'We will propose a notation later. See also the work by F. Haney in his
Generalized Instruction System (GIS) [Haney, 19681.

Structure
S t a r t

POP-8 symbolic machine language program

LOC Oper.
Star t clo

dca S
dca I

Loop t a d S
t a d I

- dca S
n t a d N
+ cia
72 t a d I

D

0

0 smo cla
S top h l t

n IS2 I
5 imp loop m

s -
I -
N N

Action Comments

S - 0 ;
1-0;

clear AC
deposlt AC in M,clear AC

twos complement add

I - N ; negate AClin twos complement)

ha i t
I-Itl; index(byI),skip i f 0

lump

I = N ? r s + I ; skipit-AC,clear AC

sum =O,OtI, 0+1+ ...+ N
integers 0,1, N
volue of N,,where:
OCS'2

ALGOL program
Start S- 0;

Stop !
f ~ r I - O ; ~ p l N @S-S+I;

Behavior <-
I

Time, f

Time11 5 p s

0
1
3
5
7
9
1 1
13
1 4
16
1 7
19
ZG

15X(N+1 It I
1 5 x (N + l) t Z
15X(Nt1)+3

Program AC I S
counter
s to r t 0 0 0
s t a r t + l 0 Q Q
s t a r t t 2 0 0 0
loop G 0 0
loop+l 0 0 0
loop + 2 0 0 0
loop+3 0 0 0
l o o p + 4 N 0 0

l o o p + 6 -N 0 0
lOOP+8 0 0 0
lOOP+9 0 1 0
loop 0 1 0

b p + 5 -N 0 0

.
loop + 6 - N t N N 1+2+ ...+ N
stop 0 N 1+2+ ... +N
stop + 1 0 N 1+2+ ...+ N

(halted)

Fig. 8. Programming level: computation of the sum of integers.

10 Part 1 I The structure of computers

mation type remain, depending on the analysis. Thus one may
distinguish program from data, or file space from resident monitor.
One may remain concerned with the fact that input data are in
alphameric and must be converted into binary, or are bit-serial
and must be converted to bit-parallel.

We might characterize this level as the “chemical engineering
view of a digital computer,” which likens it more to a continuous-
process petroleum-distilling plant than to a place where complex
FORTRAN programs are applied to matrices of data. Indeed, this
system level is more nearly an abstraction from the logic level
than from the program level, since it returns to a simultaneously
operating flow system.

One might question whether there is a distinct systems level
here. In the early days of computers almost all computer systems
could be represented as in the diagram in M.I.T.’s Whirlwind
computer programming manual in Fig. 9: with classic boxes of
memory (storage), control, arithmetic, and input/output. Actually,
this view of the computer in 1953 was considerably advanced;
few texts on the logic design of computers in the 1960s have such
a detailed model. This model has secondary memory (magnetic
tape and drums in the Whirlwind’s case). The most interesting
aspect of the model, which text writers omit, is any kind of switch-
ing (the bus of Fig. 9). The bus provides a communication path
to link the other components. Certainly the pushbuttons (actually
the console) is novel for such a model. Compare this with the
diagram of a modern computer system in Fig. 10, which shows
a two-processor UNIVAC 1108, the level of abstraction being
the same as in Fig. 9. The arithmetic element of Fig. 9 has disap-

Di f fe rence

L A u u

Fig. 9. Automatic digital computation. (From the Whirlwind Computer
Manual, M.I.T. By permission of the publishers.)

peared and is replaced by a processor (a combined control and
arithmetic element) in Fig. 10. The central control of Fig. 9 is now
distributed throughout the remaining components. The control in
Fig. 10 is a combined unit for transforming a serial character-
information stream into words. It also manages the transmission
of a word vector between the primary memory and a terminal
or a secondary memory. The Resource Allocation Diagram is in-
troduced in Fig. 10 to describe the allocation (use), hence be-
havior, of the PMS components as a function of time. Chapter 2
describes these figures more fully.

Another indication of the emergence of the PMS level lies in
the models used in most operations-research types of studies on
computer systems. Again, in the early 1960s these were practi-
cally nonexistent. Now, with the advent of multiprogramming,
multiprocessing, and time sharing, and the imminent arrival of
computer networks, there are substantial numbers of such studies.
The level of abstraction is always one that considers only flows
and stocks of information, measured in bits (or an equivalent),
perhaps divided into several subtypes. The concerns are bottle-
necks, capacities, total flow rates, queuing problems, buffer sizes,
and the like. All this indicates a system level above both the logic
level and the program level.

There is no uniform language for representation at this level
and even, as we noted, no standard name. We have used the term
PMS in analogy to the use of RT for the register-transfer level.
Processors, memories, and switches are the main kinds of com-
ponents out of which systems at this level are built. If one names
a number of components at the PMS level, as we did previously,
one finds few switches in the list. “Busses” in our list would be
one, although many would think first of their data transfer charac-
teristics. But, as this book amply shows, what makes the PMS level
both interesting and complex is the existence of switches which
govern the pattern of information flow through the system. One
reason why they seem buried is their association with other com-
ponents as addressing systems. There are other components besides
processors, memories, and switches, namely, links, transducers, and
controls. But the first three, P, M, and S, seem appropriate to
characterize the level.

It is not known whether there will be yet other systems levels,
say one above the PMS level, as networks come into existence.
The simplicity of the top level argues against it, but that may only
show our narrow vision. It is important to realize that these levels
are not sacrosanct. They depend strongly on physical technology.
Thus, as we move toward integrated circuitry, there may emerge
representations other than register-transfer diagrams, and the lat-
ter may never develop into a clear systems level. One could even

-.

Chapter 1 11

imagine something happening to the circuit level, as continuous
distributions became more important (although the use of equiva-
lent circuits is well embedded in the engineering culture). We are
not concerned with predicting any particular changes. We wish
only to emphasize that the system-levels diagram of Fig. 1 is a
reflection both of current technology and of our ways of analyzing
given physical systems. As such, these levels have a certain im-
permanency about them.

What is the problem?

The systems levels we have just described correspond to the tech-
nologies that are available for the analysis and synthesis of com-
puter systems. Each of these levels exists, in fact, precisely to the
extent that a technology has become well developed. Thus both
the circuit level and the lower half of the logic level (combinato-
rial and sequential circuits) are highly polished technologies. They
are what one learns today, if one wants to become a computer en-
gineer. Textbooks exist, courses are taught, and there is a flourish-
ing, cumulative technical literature. As we progress up the systems
levels, matters become progressively worse. The register-transfer
level is not yet well established, although there is considerable

current activity in the area, and the next few years may see its
universal establishment. Although programming is certainly well
defined, each machine is a king in his own court, with no common
technology of the program level that is relevant to the design of
computer systems. The latter phrase must be added since we are
taking a very specialized viewpoint here. We do not consider the
world of programming research at all, it being entirely divorced
from computer-systems design.l Finally, at the top, there is practi-
cally no consensus on the nature of the systems level.

There is nothing very surprising about this state of affairs. It
reflects accurately the fundamental fact that only in the past few
years have computer systems become complex enough for the
higher levels to emerge as distinct systems levels. When most
computers could be described in the diagram of Fig. 9-and such
a diagram was reprinted innumerable times in the first decade-
there was no need to haire a technology at the PMS level. When
registers were so expensive that one could count the registers of
a processor on the fingers of one hand (no thumbs allowed), one
did not need a register-transfer language in order to describe the

'This is not entirely true. Each level must provide coupling with adjacent
levels. A major issue in computer-design is the trade-off between hardware
and software.

M$- S -

Y

2
+
0

+
m

where:

Graphic

-Pic -T .conso le -

-Pc-T.console - i I
K i o (# I : 16)

- K i o (# l :16)
- K i o (# l : 1 6)

S K - T . ca rds -

0
>
0 r
m m

SK-S-T(Telephone)

Mprpr imary memory; Ms/secondary memory;

PC/cen t ra l P rocesso r ; T / t e r m i n a l : and L / l i n k

U s w i t c h : K / c o n t r o l : K i o / c o n t r o l for i o equipment;

IMp(#0 :7 ; core; 32760 word)

Resource allocation diagram Time,

Fig. 10. PMS level: UNIVAC 1108.

12 Part 1 1 The structure of computers

flows. In both cases, an informal block diagram conveyed all the
information adequately.

The question of the programming level is somewhat different,
since this level has existed as a formal language from the very start.
Here the key aspect, it seems to us, is that, since well-defined
languages existed, there was little pressure to find a better one.
The fact that such languages were completely idiosyncratic to the
machine, since they emerged as a product of the design itself,
simply did not worry anyone overly much. Each language provided
a design framework one could work into, and this seemed to suffice.
It led, it is true, to the game of “We have another bit left in the
mode field of the instruction-got another mode you’d like?”
But this has only made computer designers feel that creating an
order code was something of an art.

Thus we feel that the increased complexity of computer systems
is making these higher system levels of increasing importance.
Since this is only the second decade of the serious development
of computer systems, these upper levels are not in very good shape.
For instance, textbooks devote very little attention to the area.
Textbooks (especially good ones) tend to be technique-oriented,
giving most attention to what is known. (When we were students
we always used to wonder why there were no mathematics texts
which told you about the problems that were not solvable in closed
form.) Thus the present need for some material at these higher
levels constitutes a major motivation for this book.

There is a second feature of the current scene that enters into
our motivation for this book. Around 1,000 different computer
systems have been built. This represents a substantial amount of
pragmatic experimentation. This is especially true at the program-
ming level and PMS level, and also to some extent a t the register-
transfer level. Many things have been tried, many found worth-
while, and many found wanting. A good deal of reinvention goes
on. Thus we are concerned that this history of experimentation
not be lost. I t is true that, if the underlying technology changes
enough, the experience may become largely irrelevant, but this
does not appear to us to be an imminent development.

We will admit also to a third concern, which does not stem
from our role as computer engineers concerned with design, but
from our role as computer scientists, fascinated with the phenom-
ena of computers. The variety of about 1,000 computers represents
the beginning of a proliferation of a species. It is not under biologi-
cal control but rather under economic and intellectual control.
Nevertheless, it is in every sense of the word an evolutionary
population. We find ourselves feeling a little like naturalists must
have felt when confronted with the proliferation of the organic
world. We were at one time tempted to call this book “Computer

Botany” and at another “Computer Taxonomy.” We feel that the
attempt to gather, document, and classify these existing computers
is a worthy endeavor in its own right. One might think that all
this material is easily available. But the record fades rapidly,
especially when much of it exists only as manufacturers’ manuals
and papers in assorted proceedings.

The main reasons for producing this book and for its particular
character are by now evident. There is a need for material on the
upper levels of computer systems, both for teaching new students
of computer science and engineering and for making the past
record available for professional designers. Since the technologies
are not well developed for the upper levels, it is not possible to
write a textbook, making use only of well-accepted techniques,
nJtations, and results. Instead, one settles for making available a
collection of examples of systems, so that they can be studied and
analyzed directly.

Notations

It remains to say a word about two notations we have introduced,
both about our motivations for doing so and about their character.
Some, but not all, of this is already implicit in the foregoing ac-
count.

We started simply to produce a set of readings in computer
systems, motivated by the lack of detailed examples we could use
in a course one of us (GB) was giving on computer design. As noted,
we felt the need to expose the students to real examples of complex
computer structures. As we gathered material we became im-
pressed (depressed is actually a better term) with the diversity of
ways of describing these higher levels. Even more, the amount
of clumsy description-downright verbosity-even in purely
technical manuals acted as a further depressant. The thought of
putting such a congeries of descriptions between hard covers for
one person to peruse and study was almost too much to contem-
plate. Gradually, we began to rewrite and condense many of the
descriptions. As we did so, a set of common notations developed.
Becoming aware of what was happening, we devoted a substantial
amount of attention and effort to creating notational systems that
have some consistency and, we hope, some chance of doing the
job required. These are the PMS descriptive system for the PMS
level (sic) and the ISP (Instruction-set processor) descriptive sys-
tem for the program level. Each of these requires some comment
on its nature and the role we think it should play.

The PMS descriptive‘system is meant to provide a notation
for the top level of computer systems. Figure 10 is given in this
notation. On the surface it is largely self-explanatory, given the

Chapter 1 13

mnemonics of P for processor, M for memory, S for switch, T for
transducer (hence also terminal), and K for control (since C is for
computer). There is also L for link, but in most computer struc-
tures it is unnecessary to distinguish a separate link component,
except to show connectivity. (It does become appropriate if com-
munication delays exist.)

There is an issue about whether this small set of components
is an appropriate set of primitives, but the issue is not of major
proportions. The real issues in the development of the notation
come from the stress of two opposite forces. On the one hand, one
wants extremely compact notations for expressing computer sys-
tems. The systems are large in any event, and if there is much
extra notational freight in the way of fixed formats, forced writing
of what is already known and assumed, etc., then the notation will
be neither useful nor used. On the other hand, there is a tremen-
dous variety and quantity of information that potentially must be
capable of being written into a description: word size, capacity,
flow, operation rate, data-types, variations of operation rate for
different classes of instructions, parity checking, technology, and
on and on. Thus one needs a notation that responds to both these
demands-and without being hopelessly complex and difficult to
learn. Our attempt at a solution involves a basically simple lan-
guage with comprehensive (and we think natural) ways of sys-
tematic abbreviation and abstraction.

The ISP descriptive system is meant to provide a uniform way
of describing instruction sets, that is, of giving the information
contained in a programming manual. It must provide the instruc-
tion format, the registers referenced by the instructions, the rules
of interpretation of the instruction, and the semantics of each
instruction in the processor's repertoire. It must be able to do this
for any existing computer, plus the expected extensions into the
future. Its homeliest virtue is to make it possible to read the
descriptions of the forty-odd computer systems described in this
book, without having to fight a new notation for each system, and
still to know in detail what the instructions really do.

Our attempt at a solution turns out not to be a generalized
sort of instruction. Rather, it is very similar in flavor to a register-
transfer scheme. The differences lie in being able to suppress all
timing information and all detail that is not essential to under-
standing the instructions. ISP is not a variety of UNCOL, in which
one can program; rather it is a language in which one can describe
what any particular instruction set does. We thus avoid many of
the pitfalls of the UNCOL-like efforts.

There is a price to be paid for introducing new notations, for
they must be learned. We feel that the two systems we have
introduced here are natural enough to require almost no learning

for superficial use (e.g., looking at Fig. 10) and only modest
amounts for full exploitation. They seem to us vastly preferable
to the array of ad hoc notations that we were faced with initially
(and with which we almost faced the reader). Still we are aware
of the price.

A word should be said about antecedents. The PMS descriptive
system is close to the way computer scientists talk informally about
the top level of computer systems; no one effort in the environment
stands out as a predecessor. Some notations, such as CPU (for
central processing units), have become widespread. We clearly
have assimilated them. Our modifications, such as Pc instead of
CPU, are dictated entirely by the attempt to build a consistent
notation over the whole range of computer systems. With respect
to ISP, we have been heavily influenced by the work on register-
transfer languages.' The one that we used most as a kernel from
which to grow ISP was the work of Darringer and Parnas [Dar-
ringer, 19691. In particular, their decision to work within the
framework of ALGOL suited our own sensibilities, even though
the final version of ISP departs from a sequential algorithmic
language in a number of respects.

Finally, a word should be said about innocence and aspirations.
We are putting PMS and ISP forward as two notations. They are
that. But they also imply a particular view of digital processing.
Thus they are not entirely innocent. It would be appropriate to
explore fully this view and to justify the particular decompositions
and definitions used. This is not to say that these views are pecu-
liarly ours. They are implicit in the informal use of similar descrip-
tive systems. However, the attempt to formalize a notation makes
them more accessible. We accept the obligation to perform such
an exploration. But this volume is not the place to do so, for that
would turn it into something between a treatise and a textbook.
For this book, it is appropriate to take these notations at face
value. We have a companion volume in preparation that attempts
the other job. This is an aspiration.

We have other aspirations as well. Notations in the computer
world should turn into working tools. There are many tasks, such
as the communicative one of this book, where the notation by itself
is useful. Others are easy to imagine: writing specifications for new
machines; being sure what the computer salesmen are selling;
standardization of programming manuals, so that learning about
a new machine is easier; etc. But there are other tasks where the

'We have not been influenced in a direct way by the work of Iverson
[Falkoff, Iverson, and Sussenguth, 19641 in the sense of patterning our
notation after his. Nevertheless, his creation of a full description of the
IBM System/30 in APL stands as an important milestone in moving
toward formal descriptions of machines.

14 Part 1 I The structure of computers

notations must become formal programming languages, so that
analysis and synthesis procedures can be carried on automatically
in their terms. As we have noted, the development of ISP and PMS
germinated from purely notational issues. We have not let our
aspirations to turn them into simulation languages delay our use
of them for purely descriptive purposes. Thus we accept the obli-
gation also to develop them as operational tools. That is also an
aspiration and cannot be dealt with anywhere within this book.

Plan of the book

We now have enough background to explain the structure of the
book. Two other chapters complete the introductory part. Chapter
2 provides an exposition of the PMS and ISP descriptive systems.
As we have just noted, this does not attempt to explore seriously
the view of digital processing implicit in these notations, although
it does provide a small amount of motivation. A summary of the
language conventions and parameter values is given at the end
of the book in the appendix.

Chapter 3 provides a description of the space of computer
systems. One can view all computer systems as occupying a space
whose dimensions are the various important systems features.
Many features of the actual systems are relatively locked together.
For example, word size and number of instructions in the reper-
toire covary; no 12-bit machine has 200 instructions but several
with over 32 bits do. Thus the number of significant dimensions
of variation is much less than the total number of features of
computer systems. Such a space provides a basic frame in which
to choose representative computer systems for inclusion in the
book. We hope Chap. 3 will also justify our feeling that there is
a diversity and proliferation of computer systems that is worthy
of serious study.

The remainder of the book is divided into five parts (2 to 6,
with the introduction constituting Part l), and each part into
sections. Each chapter gives a description of a computer system

that is an instance of the part and section. Usually a chapter
describes only one computer or computer system, although there
are a few exceptions in Part 6 on computer families.

A word needs to be said about the “Virtual” Table of Contents.
Many of the example computers are relevant to more than one
part and section. Physically, they have to be located at one place.
But we have permited multiple entries in the Contents, so that,
for instance, Chap. 33 on the IBM 1800 appears in Sec. 1 of
Part 2 as an example of a one-address ISP, in Sec. 1 of Part 4 as
a terminal control, and finally in Sec. 2 of Part 5 as an example
of a PMS with one central processor and multiple input/output
processors (1 Pc, multi-Pio); physically it is located in the latter
section. By using different type faces we hope the reader will not
become confused between virtual and actual.

There is little point in outlining the content of the various parts
and sections here. This is better done at the end of Chap. 3 after
the computer space has been laid out.

References

Brackets are used to enclose author(s) and year of publication, e.g., [Dar-
ringer, 19691 or [Falkoff, Iverson, and Sussenguth, 19641. A list of all the
references in a chapter is given in code at the end of the chapter. The
code refers to the bibliography at the end of the book. This 7- or R-char-
acter code is as follows:

Characters 1:4

Character 5
Characters 6:7
Character 8

First four characters of the last name of author (or
first author)
First initial of author (or first author)
Year of publication- 1900
(Optional) a, h, c, . . . , used to denote multiple refer-
enced publications of author in a year.

References

DarrJ69; FaIkA64; HaneF68; RoseS67; SteeT61; ZadeL63.

The PMS and ISP descriptive systems

The task of this chapter is to provide an introduction to the PMS
descriptive system for the top computer-system level and to the
ISP descriptive system for the program level. We take the view
that informal notations exist and are in use. PMS and ISP are an
attempt to tidy up these notations-to make them consistent and
more powerful. Thus we depend on the reader already to under-
stand implicitly much of the notation and how it is to be used.
In consequence, there is no attempt in this chapter to provide
a formal treatment of the whole system. The appendix 1, at the
end of the book contains a complete summary of the notation
rules, including the component attributes and values, and their
abbreviations (i.e., the main technical vocabulary). We will pro-
vide a brief discussion of the conceptual view underlying the two
systems, since it is an appropriate way to make the notation
understandable. But this is informal and heuristic.

The two descriptive systems are not independent. There is a
common set of notational conventions for abbreviating, for giving
parameter values, and so on. (The Appendix separates them.)
Likewise, there exists, in effect, an ISP description for every PMS
component, or, conversely, ISP statements imply particular PMS
component structures. A natural way is to present PMS first, which
will also serve to introduce the main notational devices. Then we
will give ISP. Finally, we will add more comments on the rela-
tionship between PMS and ISP.

PMS level of description

Digital systems can be characterized most generally as systems
that at any time exist in one of a discrete set of states and that
undergo discrete changes of state with time. This is a highly ab-
stract view. Nothing is said about what physical state corresponds
to a system state; nothing is said about what laws of physics trans-
form the system from one state to another. The states are given
abstract labels: S,, S,, The transitions are provided by a
state-transition table with many entries of the form: If the system
is in state Si and the input is Ij, then the system is transformed
to state S, and evokes output 0,. (Alternatively, a state diagram
has the same information.) The virtue of this "state-system"
view is that it truly seems to capture what we mean by a dis-
crete (or digital) system. Its disadvantage lies in this same com-
prehensiveness, which makes it impossible to deal with large

systems because of their immense number of states (of the order
of 10'O ' O states for a big computer).'

Existing digital computers can be viewed as discrete state
systems that are specialized in three ways. These three speciali-
zations make possible a much more compact and useful description
of these systems, the one that we call the PMS description.

First, the state is realized by a medium, called information,
which is stored in memories. Thus, a core store of N words each
of 32 bits is a digital device that can exist in one of 232N states. Sim-
ilarly, all the states of a processor are made explicit in a set
of registers: an accumulator, an address register, an instruction
register, status register, etc. Each holds a specified number of bits.
No permanent information is kept in digital devices except as
encoded in bits in a memory. There are two qualifications to this
blanket statement. First, the basic unit of information need not
be the bit; it could be any base: One can have ternary machines,
decimal machines, etc. Second, the sequential logic circuits that
carry out operations in the system have intermediate states. But
this is a strictly temporary affair while the operation is occurring,
for example, the intermediate, inaccessible, partial results during
a multiply operation. At the end-when the smoke has cleared,
so to speak-all information carried over to the next operation
has been encoded into bits in memories somewhere. At the PMS
level we care only about the end result of such operations.

The second specialization of the general state-system view is
that current digital computer systems consist of a small number
of discrete subsystems linked together by flows of information.
There is a distinct component called the memory, another called
the central processor, another called the ,card reader, etc. This
is analogous to the lumped-parameter specialization at the circuit
level. Thus the natural representation of a digital computer system
is as a graph which has component systems at the nodes and
information flows as branches. Now, in fact, the discrete character
of digital encoding in bits prevents there being any truly continu-
ous digital devices (in analogy to the continuously distributed
parameter circuits). But one can have distributed networks with
very small components. Such iterated arrays are a topic of much

'As we noted in Fig. 1 of Chap. 1, we actually describe some parts of
the control mechanisms of computers by state-system diagrams; however,
these are exceedingly small pieces. An example may be seen in Fig. 7 on
page 7.

15

16 Part 1 I The structure of computers

current investigation, as the possibility of manufacturing them by
integrated-circuit techniques has emerged. These distributed net-
works look very different from the computer systems of today,
although they are still digital systems. Thus, the representation
as a flow network with functionally specialized nodes is a real
specialization.

The third specialization of the general state-system viewpoint
is that associated with each component in a digital system is a
small number of discrete operations for changing its own state or
the state of neighboring components. All transitions must occur
through the application of these few operations, which are evoked
as a function of the current state of the component. The total
behavior of the system is built up from the repeated execution
of the operations as the conditions for their execution become
realized by the results of prior operations. The general state-system
view is more general. The state-transition table for a system may
exhibit an arbitrary pattern of immediate state transitions, without
regard to how such transition would be physically realized.

To summarize, within this specialized view one wants a way
of describing a system of an interconnected set of components,
which are individual devices that have associated with them a set
of operations that work on a medium of infomation, measured
in bits (or some other base).

The major complication in this picture is the amount of detail
involved in describing actual computers. It takes a whole manual,
for instance, to describe the operations of a major computer, such
as the IBM 7090. Thus the descriptive system must permit very
compressed descriptions. It must also permit description of only
those aspects of the components that are of interest, ignoring the
rest. And what is of interest at the PMS level? Besides a description
of the gross structure of a computer system, it is primarily the
analysis of the amounts of information held in various components,
the flows of information between components, and the distribution
of the control that accomplishes these flows.

Thus a PMS-level description is analogous to the chemical
engineer’s diagram of a refinery in which he is interested in various
kinds of liquid and gas flow. He has to account for matter and
energy loss with the system at various stages involving the trans-
duction of materials from one form to another. A specific chemical
plant’s external performance is measured in terms of its production
flow rate for a given cost. With computers, external performance
is concerned with the economical accomplishment of discrete
tasks, but at the PMS level this translates into operation rates and
cost of operations.

For the PMS level we ignore all the fine structure of informa-
tion processing and consider a system consisting of components

that work on a homogeneous medium called information. Infor-
mation comes in packets, called i-units (for information units), and
is measured in bits (or equivalent units, such as characters). I-units
have the sort of hierarchical structure indicated by the phrase: A
record consists of 300 words; a word consists of 4 bytes; a byte
consists of 8 bits. A record, then, contains 300 X 4 X 8 =
9,600 bits. Each of these numbers-300, 4, 8-is called a length,
since one often thinks of an i-unit as a spatial sequence of
the next lower i-units of which it is composed. For example,
one speaks of “word length” and of a record being “300 words
long.”

Other than being decomposable into a hierarchy of factors,
i-units have no other structure at the PMS level. They do have
a referent, that is, a meaning. Thus it is possible to say of an
i-unit that it refers to an employer’s payroll, to the pressure of
a boiler, or to a prime number satisfying certain conditions. To
do so, of course, the i-units encode the information necessary to
make the reference. At the PMS level we are not concerned with
what is referred to, but only with the fact that certain components
transform i-units but do not modify their meaning. In fact, these
meaning-preserving operations are the most basic information-
processing operations of all, and they provide the basic classi-
fication of computer components.

PMS primitives

In PMS there are seven basic component types, each distinguished
by the kinds of operations it performs:

Memory, M . A component that holds or stores information
(i.e., i-units) over time. Its operations are reading i-units out
of the memory and writing i-units into the memory. Each
memory that holds more than a single i-unit has associated with
it an addressing system by means of which particular i-units
can be designated or selected. A memory can also be consid-
ered as a switch to a number of submemories. The i-units are
not changed in any way by being stored in a memory.

Link, L . A component that transfers information (i.e., i-units)
from one place to another in a computer system. It has fixed
ports. The operation is that of transmitting an i-unit (or a
sequence of them) from the component at one port to the
component at the other. Again, except for the change in spatial
position, there is no change of any sort in the i-units.

Control, K . A component that evokes the operations of other
components in the system. All other components are taken to
consist of a set of discrete operations, each of which, when
evoked, accomplishes some discrete transformation of state.

Chapter 2 I The PMS and ISP descriptive systems 17

With the exception of a processor, P, all other components are
essentially passive and require some other active agent (a K)
to set them into small episodes of activity.

Switch, S. A component that constructs a link between other
components. Each switch has associated with it a set of possible
links, and its operations consist of setting some of these links
and breaking others.

Transducer, T. A component that changes the i-unit used to
encode a given meaning (i.e., a given referent). The change may
involve the medium used to encode the basic bits (e.g., voltage
levels to magnetic flux, or voltage levels to holes in a paper
card), or it may involve the structure of the i-unit (e.g., bit-serial
to bit-parallel). Note that T’s are meaning-preserving but not
necessarily information-preserving (in number of bits), since the
encoding of the (invariant) meaning need not be equally opti-
mal.

Data-operation, D. A component that produces i-units with
new meanings. It is this component that accomplishes all the
data-operations, e.g., arithmetic, logic, shifting, etc.

Processor, P. A component that is capable of interpreting a
program in order to execute a sequence of operations. It consists
of a set of operations of the types already mentioned-M, L,
K, S, T, and D-plus the control necessary to obtain instruc-
tions from a memory and interpret them as operations to be
carried out.

Throughout PMS (and ISP, too) an operation is taken to mean
a transformation of bits from one specific memory to another. For
instance, it is an operation to transmit a word of information from
memory M to memory M’; it is a different operation to transmit
a word from memory M’ to M”. Similarly, it is an operation to
add the contents of memory M to that of M’ and a different
operation to add the contents of M’ to M”.

The reason for emphasizing this point is that one often talks
as if addition were an operation, ignoring the specific locus of the
operands. In a discussion of computer systems, an operation must
include specification of the locus of its operands. The reason is
that the physical devices that realize operations are always local-
ized in space. If, for instance, we wish to have a physical device
that corresponds to addition on operands anywhere in some mem-
ory, we must couple the physical device that adds with other
devices that either transmit information to and from the memory
to the adder or (more exotic) that modify the adder to have differ-
ent cells of memory as its terminals. Thus the symbol + is to be
taken as an incomplete specification of an operation.

Computer model (in PMS)

Components of the seven types can be connected to make stored-
program digital computers, abbreviated by C. For instance, the
classical configuration for a computer is

C : = Mp-Pc-T-X

Here Pc indicates a central processor and Mp a primary memory,
namely, one which is directly accessible from a P and holds the
program for it. T is a transducer connected to the external environ-
ment, represented by X. (The colon-equals (: =) indicates that C
is the name of what follows to the right.) Thus a computer is
a central processor connected to its primary memory on the one
hand and to a transducer on the other, which is what an input/
output device is.

Actually the classic diagram had four components, since it
decomposed the Pc into a control (K) and an arithmetic unit or
data-operation (D):

b~p- K - T ~ M S ~ - X o r M ~ - D - - T / M S - X

D I ‘.\I;
where the solid information-carrying lines are for instructions and
their data, and the dotted lines signify control.

Often logic operations were lumped with control, instead of
with data operations, but this no longer seems to be the appro-
priate way to decompose the system functionally.

If we associate local control of each component with the ap-
propriate component, we get

L J

where the solid lines carry the information in which we are inter-
ested, and the dotted lines carry information about when to evoke
operations on the respective components. The solid information-

‘The ‘ ‘ I ” expresses mutually exclusive alternatives. Here, a T or Ms exists
at the periphery.

18 Part 1 I The structure of computers

carrying lines between K and Mp are instructions. Now, suppress-
ing the K’s, then lumping the processor state memory, the data
operators, and the control of the data-operations, and processor
state memory to form a central processor, we again get

Mp-Pc-T-X

Computer systems can be described in PMS at varying levels
of detail. For instance, in the diagrams above we did not write
in the links (L’s) as separate components. These would be of inter-
est only if the delays in transmission were significant to the dis-
cussion at hand or if the i-units transmitted by the L were different
from those available at its terminals. Since this is not usually the
case in current computers, one indicates simply that two com-
ponents (e.g., an Mp and a Pc) are connected together. Similarly,
often the encoding of information into i-units is unimportant; then
there is no reason to show the T’s. The same statement holds for
K’s. Sometimes one wants to show the locus of control, say when
there is one control for many components, as in a tape controller,
but often this is not of interest. Then there is no reason to show
K’s in a PMS diagram.

As a somewhat different case, D’s never occur in PMS diagrams
of computers, since in the present design technology D’s occur
only as subcomponents of P’s. If we were to make PMS-type
diagrams of analog computers, D’s would show extensively as
multipliers, summers, integrators, etc. There would be few mem-
ories and variable switches. The rather large patchboard would
be represented as a very elaborate manually fixed switch.

Components are often decomposable into arrangements of
other components. Thus, most memories are composed of a
switch-the addressing switch-and a number of submemories.
Thus a memory is recursively defined. The decomposition stops
with the unit memory, which is one that stores only a single i-unit
and hence requires no addressing. Likewise, a switch is often
composed of a cascade of one-way to n-way switches. For example,
the switch that addresses a word on a multiple-headed disk might
look like

- S (random)-S (random)-S (I i near)-S (cyclic)-M (word)
\ \ \ \

The first S(random) selects a specific Ms.disk,drive,unit; the sec-
ond S (random) is a switch with random addressing that selects the
head (hence the platter and side); S(1inear) is a switch with linear
accessing that selects the track; and S(cyc1ic) is a switch with
cyclic addressing that finally selects the M(word) along the circular

track. Note that the switches are realized by differing technologies.
The first two S(random)’s are generally electronic (AND-OR gates)
with selection times of 10 - 100 microseconds or perhaps electro-
mechanical (relay). The S(1inear) is the electromechanical action
of a stepping motor or a pneumatic-driven, servomechanism-
controlled arm which holds the read-write heads; the selection
time for a new track is 50 - 500 milliseconds. Finally, the S(cyclic)
is determined by the rotation time of the disk and requires from
16 - 60 milliseconds, depending on the speed (3,600 - 1,000

We can write such decompositions of a component into sub-
components either when we actually know the structure of the
component or even when we know only the behavior. For example,
we could write a memory as random access (M.random) even if
it was, in fact, cyclic, as long as its behavior as far as the larger
system was concerned took no account of its cyclic character,
accepting the average access time as the random-access time.

When people speak of the control element of a computer, they
often refer mainly to the processors-not to the control of a disk
or magnetic tape, which, however, can often be more complex.
When we suppress detail, the control often disappears from a PMS
diagram. Similarly, when we agglomerate primitive components
(as we did above when combining Mp and K(Mp) to be just Mp)
into the physically distinct subparts of a computer system, a sepa-
rate control, K, often occurs. The functionally and physically
separate controll has evolved in the past decade. These controls,
often as big as a Pc, can be computers with stored control pro-
grams. When we decompose a compound control, we find data-
operations (D) for calculating addresses or for error detection and
error correction data; transducers (T) for changing logic signal
levels and information flow widths; memory (M) as it is used in
D, T, K, and for buffering; and finally a large control (K) which
coordinates the activities of all the other primitives.

It should be clear from the above discussion that components
are named according to the function they perform and that they
can be composed of many different types of components. Thus,
a control (K) may have memory (M) as a subcomponent, and a
memory M may have a transducer (T) as well as a switch (S) as
subcomponents. All these sibcomponents exist to accomplish the
total function of the component and do not make the component
also some other type. For instance, the M that does a transduction
(T) from voltages on its input wires to magnetism in its cores and
a second transduction from magnetism to voltages on its output
wires does not thereby become a transducer as far as the total
‘A variety of names for K s are used: controller, adapter, channel, buffer,
interface, etc.

r’pm).

Chapter 2 I The PMS and ISP descriptive systems 19

system functioning is concerned. To the rest of the system all the
M can do is to remember i-units, accepting and delivering them
in the same form (voltages). In the Appendix at the end of this
book we define for each type both a simple component and a
compound component, reflecting in part this fact that complex
subsystems can be put together to perform a single function from
the viewpoint of the total system. For example, a typewriter may
have 4-6 simple information transduction channels.

PMS notation

In the above discussions we used various notations to designate
additional specifications for a component, for example, Mp for a
functional classification, and S(cyclic) for a type of access function.
There are many other additional specifications one wants to give-
so many that it makes no sense to enumerate them all in advance.
A fixed position notation, such as standard function notation,
F(x,y,z), where the first, second, and third argument places have
fixed interpretation, is not suitable. Instead we agree on a single
general way of providing additional specifications. If X is a com-
ponent, we can write

X(a,:v,;a,:v,; . . .)
to indicate that X is further specified by attribute a, having value
vl, attribute a2 having value v2, etc. Each parameter (as we call
the pair a:v) is well defined independently of whatever other
parameters are given; hence there is no significance to the order
in which they are written or the number which have to be written.

According to this notation we should have written M(function:
primary) or S(access-function:random) rather than Mp or S(ran-
dom). This shows immediately the price paid for the general
convention: It requires an excessive amount of writing (which
would be even more apparent if a large number of parameters
were given), and the extra information seems to be redundant in
some cases. We compensate for these disadvantages by several
conventions for abbreviating and abstracting parameters. All these
conventions are listed in the Appendix. Let us illustrate them by
showing some alternative ways of writing Mp:

M(functi0n:primary) Complete specification.

M(primary)

M.primary

Drop the attribute “function,” since
it can be inferred from the value.

Use the value outside the parentheses,
concatenated with a dot.

Use an explicitly given abbreviation,
namely, primary/p (only if it is not
ambiguous).

Drop the concatenation marker (the
dot), if it is not needed to recover the
two parts (all components are given
by a single capital letter-here M).

Each of these rules corresponds to a natural tendency to abbreviate
when redundant information is given; each has as its condition
that recovery must be possible.

In the full description in the appendix each component is
defined and given a large number of parameters, Le., attributes
with their domain of values. Throughout, we use the slash (/) to
introduce abbreviations or aliases as we go.’ Thus p is introduced
as an abbreviation for “primary” by writing primary/p when
“primary” is given as one of the values of the attribute “function”
of a memory with respect to processors (see page 607). The list
of parameters in the Appendix does not exhaust those aspects of
a component that one might want to talk about. For instance, there
are many distinct dimensions for any component in addition to
the information dimension: packaging, physical size, physical lo-
cation, energy use, cost, weight, style and color, reliability, main-
tainability, etc. Furthermore, each of these dimensions includes
an entire set of parameters, just as the information dimension
breaks out into the set of parameters we have given in the Appen-
dix. Thus the descriptive system is an open one, and new param-
eters are definable at any occasion.

The very large number of parameters provides one of the major
challenges to creating a viable scheme to describe computer sys-
tems. We have responded to this in part by providing automatic
ways in which one can compress the descriptions by appropriate
abbreviation while still avoiding a highly cryptic encoding of each
separate aspect. Abstraction is another major area in which some
conventions can help to handle the large numbers of parameters.
It often happens that one has only imperfect information about
an attribute, or one wishes to give its value only approximately
or partially. For instance, one attribute of a processor is the time
taken by its operations. This attribute can be defined with a com-
plex value:

Pc(operation-times: add:4 ps, store:4 p, load:4 ps,

multiply:16 ps, . . .)

That is, the value is a list of times for each separate operation.
However, one might wish to give only the range of these numbers;

‘There is no difficulty in distinguishing this use from the use of the slash
as a division sign; the latter takes priority, since it is the more specific
use of the slash.

20 Part 1 1 The structure of computers

this is done without introducing a new attribute (i.e., operation-
time-range) simply by indicating that the value is a range:

Pc(operation-time: 4 -16 ps)

Similarly, one could have given typical times or average times
(under some assumed frequency mix of instructions):

Pc(operation-time: 4 ps)
Pc(operation-time: average: 8.1 ps)

The primary advantage of this notational convention, which per-
mits descriptions of values to be used in place of actual values
whenever desired, is that it keeps the number of attributes that
have to be defined much smaller than otherwise.

A PMS example using the DEC PDP-8

Let us now describe the PMS structure of an actual, though
small, general-purpose computer, the DEC LINC-8, which is a
PDP-8 with a LINC processor. Figure 1 gives the detailed PMS
diagram. In explaining it, we will concentrate on making the
notation clear rather than on discussing substantive features of the
system (which are described in Chap. 5). A simplified PMS diagram
of the system shows its essential structure:

P.disp1ay-T-

PC (‘L I NC) MS-

L

This shows the basic Mp-Pc-T-X structure of a C with the addition
of a secondary memory (Ms) and two processors, one of which,
Pc(’LINC), has its own Ms. Two switches are used: the 1/0 Bus
which permits access to all the devices, and the Data Break to
Mp via Pc for high-data-rate devices. There are many other
switches in the actual system, as one can see from Fig. 1; for
example, Mp is really one to eight separate modules connected
by a switch S to Pc. Also there are many T’s connected to the
input/output switch, Sio, which we collapsed as a single T, and
similarly for S(’ Data Break).

Consider the Mp module. The specifications assert that it is
made with core technology, that its word size is 13 bits (12 data
bits plus one other with a different function); that its size is 4,096

words; and that its operation time is 1.5 ps. We could have written
the same information as

M(functi0n:primary; techno1ogy:core; operation-time: 1.5 p s ;
size: 4096 w; word: (12 + 1) b)

In Fig. 1 we wrote only the values, suppressing the attributes, since
moderate familiarity with memories permits an immediate infer-
ence about what attributes are involved. For example, it is com-
mon knowledge that computer memories store information in
words; therefore 4096 w must be the number of words in the
memory. As another example, we did not specify the function of
the additional bit in the word when we wrote (12 + 1) b. An
informed reader will assume this to be a parity bit, since this is
the common reason for having an extra bit in a word. If the extra
bit had some unusual function, we would have needed to define
it. That is, in the absence of additional information, the most
common interpretation is to be assumed.

In fact, we could have been even more cryptic and still com-
municated with most readers:

M.core(1.S ps/w; 4 kw; 12 b)

This corresponds to the phrase “A 12-bit, 1.5-ps, 4k core store,”
which is intelligible to any computer engineer. The 4 kw stands
for 4 x 1,024 = 4,096, which again is known to computer
engineers; however, if someone less informed took it to be 4 X
1,000 = 4,000, no real harm would be done.

Consider the magnetic tapes for Pc. Since there are eight
possible tapes that make use of the same controller, K, through
a switch S, we label them #0 through #7. Actually, # is an
abbreviation for index, which is an attribute like any other, whose
values are integers. Since the attribute is a unique character, we
do not have to write #:3 (although we could). The additional
parameters give information about the physical attributes of the
encoding. These are alternative values, and any tape has only one
of them. We use a vertical bar (I) to indicate this (as in BNF
notation for grammars). Thus, 75 1 112 in/s says that one can have
a tape with a speed of 75 inches per second or one with 112 inches
per second, but not a tape which can be switched dynamically
to run at either speed.

For many of the components no further information is given.
Thus, knowing that M.magnetic,tape is connected to a control
and from there to the Pc tells generally what that K does. It
is a “tape controller” which evokes all the actions of the tape,
such as read, write, rewind; therefore these actions do not have
to be done by Pc. The fact that there is only one K for many Ms’s
implies that only one tape can be accessed at a time. Other infor-

Chapter 2 I The PMS and ISP descriptive systems 21

Multiplexor;

radial:
from: 7 P , K ;

I T. consol e -
Mp @0;7) !.-S2-Sdc?.-S4- -

- K5- TCTeletype; IO char/s; 8 b/char; 64 char)-

paper tape; (reader; 300 char/s)I (punch: -
100 char/s): 8 b/char 3

1 K--,[

"164 char/col 3
"I 30 us/point; .01 1.005 in/point 3

K-T incremental point plot; 300 point/s; .01 4 c i n/poi nt
K-T(card; reader: 2001800 card/min) +

K-T(card; punch; 100 card/min) +

line; printer; 300 line/min; 120 col/line: -
CRT: display: area: IO x IO in215 x 5 in2; +

K- T(liqht; pen)8

K- T(Dataphone; 1.2 - 4 . 8 k b / s) -

K(#l : IO)-L(analog; output; 0 - -10 volts)+
K-S-L(#0:63; analog: input; 0 - -10 volts)-

-K- S- K(#0:63; Teletype; 110, 180 b/s)-

f12,l parity) b/w
2 P(disp1ay; '338) T(#0:3; CRT: display: area: IO x IO in)-,

T(#0:3; light: pen)>
T(#0:3: push buttons: console)+
T.console

T(#0:15; knobs, analog; input)+

T(CRT: display: 5 x 5 in2)+
T(digita1; input. output)-

T('Data Terminal Panel: digital; input, output)-

'Mp(core; 1.5 p/w; 4096 w: (12 + I)b)

"S('Memory Bus)

3Pc(l - 2 w/instruction: data: w, i,bv; 12 b/w: M.proc~ssor statei2; - 3 1) w: technolooy: transistors;

4S(tl/0 Bus; from: Pc; to; 64 K)

'K(I .- 4 instructions; M.buffer(l char-2 w))

antecedents: PDP-5; descpndants; PDP-85, PDP-81 , PDF-L)

Fig. 1. DEC LINC-8-PDP-8 PMS diagram.

22 Part 1 I The structure of computers

mation could be given, although that just provided is all that is
usual in specifying a controller in an overall description of a sys-
tem. (The next level of detail goes to the structure of the actual
operations and instructions and belongs to the ISP level, not the
PMS level.)

We have used several different ways of saying the same thing
in Fig. 1 in order to show the range of descriptive notations. Thus
the 64 Teletypes are shown by describing a single connection
through a switch and putting the number of links in the switch
above the connecting line.

Consider, finally, the Pc in Fig. 1. We have given a few param-
eters: the data-types, the processor state, the descendants, etc.
These few parameters hardly define a processor. Several other
important parameters are easily inferred from the Mp. The basic
operation time in a processor is a small multiple of the read time
of its Mp. Thus it is predictable that Pc stores and reads informa-
tion in 2 x 1.5 p s (one for instruction fetch, one for data fetch).
Again, where this is not the case (as in the CDC 6600) it is neces-
sary to say so. Similarly, the word size in the Pc is the same as
the word size of the Mp: 12 data bits. More generally, the Pc must
have instructions that take care of evoking all the components of
the PMS structure. These instructions do not see the switches and
controls as distinct entities; rather, they speak directly to the oper-
ation of the M’s and T’s connected via these switches and controls.

Other summary parameters could have been given for the Pc.
None of them would come close to specifying its behavior
uniquely, although to those knowledgeable in computers still more
can be inferred from the parameters given. For instance, knowing
both the data-types available in a Pc and the number of instruc-
tions, one can come very close to predicting exactly what the
instructions are. Nevertheless, the way to describe a Pc in full
detail is not to add larger and larger numbers of summary param-
eters. It is more direct and more revealing to develop a description
at the level of instructions, which is the ISP description.

Let us end this introduction to the PMS descriptive system by
returning to a critical item in its design philosophy. A descriptive
scheme for systems as complex and detailed as digital computers
must have the ability to range from extremely complete to highly
simplified descriptions. It must permit highly compressed descrip-
tions as well as extensive ones and must permit the selective
suppression or amplification of whatever aspects of the computer
system are of interest to the user. PMS attempts to fulfill these
criteria by providing simple conventions for detailed description
with additional conventions that permit abbreviation and abstrac-
tions, almost without limit. The result is a notation that may seem
somewhat fluid, especially on first contact in such a brief intro-

duction as this. But once assimilated, PMS seems to allow some
of the flexibility of natural language within enough notational
controls to enhance communication considerably.

ISP level of description

The behavior of a processor is completely determined by the
nature and sequence of its operations. This sequence is completely
determined by a set of bits in Mp, called the program, and a set
of interpretation rules that specify how particular bit configura-
tions evoke the operations. Thus, if we specify the nature of the
operations and the rules of interpretation, the actual behavior of
the processor depends solely on the particular program in Mp (and
also on the initial state of data). This is the level at which the
programmer wants the processor described-and which the pro-
gramming manual provides-since he himself wishes to determine
the program. Thus the ISP (Instruction-set processor) description
must provide a scheme for specifying any set of operations and
any rules of interpretation.

Actually, the ISP descriptive scheme need only be general
enough to cover some broad range of possibilities adequate for
past and current generations of machines along with their likely
descendants. As we saw earlier when discussing the PMS level,
there are certain restrictions that can be placed on the nature of
a computer system, specializing it from the more general concept
of a discrete state system. It processes a medium, called informa-
tion; it is a system of discrete components linked together by
information transfers; and each component is characterized by a
small set of operations. These assumptions are built into the PMS
descriptive scheme in an integral way. Similarly, for the ISP level
we can add two more such restrictions, which will in turn provide
the shape of its descriptive scheme.

The first specialization is that a program can be conceived as
a distinct set of instructions. Operationally, this means that some
set of bits is read from the program in Mp to a memory within
P, called the instruction register, M.instrnction/M.i. This set of
bits then determines the immediately following sequence of oper-
ations. Only a single operation may be determined, as in setting
a bit in the internal state of the P; or a substantial number of
operations may be determined, as in a “repeat” instruction that
evokes a search through Mp. In a typical one- or two-address
machine the number of operations per instruction ranges from two
to five. In any event, after this sequence of operations has occurred,
the next instruction to be fetched from Mp is determined and
obtained. Then the entire cycle repeats itself.

Chapter 2 I The PMS and ISP descriptive systems 23

The cycle of activity we have just described is called the inter-
pretation cycle, and the part of the P that performs it is called
the interpreter. The effect of each instruction can be expressed
entirely in terms of the information held in memories at the end
of the cycle (plus any changes made to the outside world). During
execution, operations may have internal states of their own as
sequential circuits which are not represented as bits in memories.
But by the end of the interpretation cycle, whatever effect is to
be carried on to a later time has been staticized in bits in some
mem0ry.l

The second additional specialization is on the data-operations.
A processor’s total set of operations can be divided into two parts.
One part contains those necessary to operate other components
given in the PMS diagram: links, switches, memories, transducers,
etc. The operations associated with these components and the
extent to which they can be indirectly controlled from P are highly
restrained by the basic nature of the components and their con-
trols. The second part contains those operators associated with a
processor’s D component. So far we have said nothing at all about
them, except to exclude them completely from all PMS com-
ponents except P. These are the operations that produce bit pat-
terns with new meaning-that do all the “real” processing or
changing of informatiom2 If it were not for data-operations, the
system would merely transmit information. As we noted in our
original definitions (page 17) a 1’ (including a D) is the only com-
ponent capable of directly changing information. A P can create,
modify, and destroy information in a single operation. As we noted
earlier, D’s are like the primitive components in an analog com-
puter. Later, when we express instruction sets as simple arithmetic
expressions, the D’s are the primitive operators, for example,

‘This description holds true for a P with a single active control (the inter-
preter). Some P s (e.p., the CDC %OO) have several active controls and
get involved in “overlapping” several instructions and in reordering opera-
tions according to the data and devices available. With these, a more
complex statement is required to express the same general restriction we
have been stating for simple P’s: that the program can be decomposed into
a sequence of bit sets (the instructions), each of which has local control
over the behavior of the P for a limited period of time, with all interinstruc-
tion effects being staticized as bits in M’s.
21n principle, this view that only 11 components do “real” processing is
false. It can be shown that a universal Turing machine can be built from
M, S, L, and K components. The key operation is the write operation into
M, which suffices to construct arbitrary bit patterns under suitably con-
trolled switches. Hence arbitrary data Operations can be built up, The stated
view is correct in practice in that the data-operations provided in a P are
highly efficient for their bit transformations. Only the foolish add integers
in a modern computer by table look-up.

+, -, X , /, x 2”, A, V, @, concatenation, etc., which are evoked
by the instruction-set-interpreter part of a processor.

The specialization is that all the data-operations can be char-
acterized as working on various datu-types. For example, there
is a data-type called the signed integer, and there are data-opera-
tions that add two signed integers, subtract them, multiply them,
take their absolute value, test for which of the two is greater, etc.
A data-type is a compound of two things: the referent of the bit
pattern (e.g., that this set of bits refers to an integer in a certain
range) and the representation in the bit pattern (e.g., that bit 31
is the sign, and bits 30 to 0 are the coefficients of successive
powers of 2 in the binary representation of the integer). Thus
a processor may have several data-types for representing numbers:
unsigned integers, signed integers, single precision floating point,
double precision floating point, etc. Each of these is a distinct
data-type, because it requires distinct operations to process it. On
occasion, operations for several data-types may all be encoded into
a single instruction with a data-type subfield that selects whether
the data are fixed or floating point. The operations are still sepa-
rate, no matter how packaged, and so their data-types remain
distinct.

With these two additional specializations-instructions and
data-types-we can define an ISP description of a processor. A
processor is completely described at the ISP level by giving its
instruction set and its interpreter in terms of its operations, data-
types, and memories.

Let us concentrate first on the instruction set, leaving the
interpreter until later. The effect of each instruction is described
by an instruction-expression, which has the form

condition + action-sequence

The condition describes when the instruction will he evoked, and
the action-sequence describes what transformations of data take
place between what memories. The right arrow (+) is the control
action (of a K) of evoking an operation.

Recall that all operations in a computer system result in modi-
fications of hits in memories. Thus each action in a sequence
ultimately has the form

memory-expression t data-expression

The left arrow (t) is the transmit operation of a link and corre-
sponds to the ALGOL assign operation. The left side must describe
the memory location that is affected; the right side must describe
the information pattern that is to be placed in that memory loca-
tion. The details of data expressions and memory expressions are
patterned on standard mathematical notation and are communi-

24 Part 1 I The structure of computers

cated most easily by examples. The same is true of the condition,
which is a standard expression involving boolean values and rela-
tions among memory contents.

Before we get to the examples, let us note two features of the
action sequence. The first is that each action in the sequence may
itself be conditional, Le., of the form, “condition + action-se-
quence.” The second is that some actions are sequentially de-
pendent on each other, because the result of one is used as an
input to the other; on other occasions a set of actions are inde-
pendent and can occur in parallel. The normal situation is the
parallel one. Thus, in the action sequence

Y, t x , ; Y, t x,; Y, t x,; Y, t x ,
all the transfers of information may be considered simultaneous.
In particular, all the X’s have their values defined by the situation
before the transfer. For example, if A and B are two registers, then

(A t B ; B t A)

exchanges the contents of A and B. When sequence is required,
the term “next” is used: thus

(A t B; next B t A)

transfers the contents of B to A and then transfers it back to B,
leaving both A and B holding the original contents of B (and so
this contrived example is essentially just A t B).

An ZSP example using the DEC PDP-8

The memories, operations, instructions, and data-types all need
to be declared for a processor. Again these are most easily ex-
plained by example, although full definitions are given in the
Appendix at the end of the book. Consequently, let us examine
the ISP description of the Pc of the PDP-8, given in Fig. 2 (the
PDP-8 is explained fully in Chap. 5). Throughout the book the
ISP descriptions of computers follow a more highly structured
format than the ISP notation requires, in order to help the reader
see the similarities among the computers.

Processor state. We first need to specify the memories of the Pc
in detail, providing names for the various bits. Thus,

AC(0:ll) the accumulator

is a memory called AC, with 12 bits, labeled at 0 and 11 from
the left. Comments are given in italics’-in this case that AC is

‘There are a few features of the notation, such as the use of italics, which
are not easily carried over into current computer character sets. Thus, the
ISP of Fig. 2 is a publication language.

called the accumulator (by the designers of the PDP-8). AC corre-
sponds to an actual register in the Pc. However, the ISP does not
imply any particular implementation, and names may be assigned
to various sets of bits purely for descriptive convenience. The colon
is used to denote a range or list of values. Alternatively, we could
have listed each bit, separating the bit names by commas, as

AC(0,1,2,3,4,5,6,7,8,9,10,11)

Having defined a second memory, L (which has only a single bit),
one could define a combined register, LAC, in terms of L and
AC as

LAC(L,0:11): = LOAC

The colon-equal (:=) is used for definition, and the middle square
box (0) denotes concatenation. Note that the bit named L of
register LAC merely happens to correspond to the 1-bit L register.

Primary memory state. In dealing with addressed memory, either
Mp or various forms of working memory within the processor, we
need to indicate multidimensional arrays. Thus

Mp[0:7777,] (0: 11)

gives primary memory as consisting of 10000, (Le., base 8) words
of 12 bits each, being addressed as indicated. Such an address does
not necessarily reflect the switching structure through which the
address occurs, though it often will. (Needless to say, it reflects
only addressing space, and not how much actual M is available
in a PMS structure.) In general, only memory within the processor
will occur as operands of the processor’s operators. The one ex-
ception is primary memory (Mp), which was defined as a memory
external to a P but directly accessible from it.

In writing memories it is natural to use base 10 for all numbers
and to consider the basic i-unit of the memory to be a bit. This
is always assumed unless otherwise indicated. Since we used base
8 numbers above for specifying the addressing range, we indicated
the change of number base by a subscript, in standard fashion.
If a unit of information other than the bit were to be used, we
would subscript the angle brackets. Thus

Mp[0:7777,](0: 1)64

reflects the same memory. The choice carries with it, of course,
some presumption of organization in terms of base 64 characters,
but this would show up in the specification of the operators (and
is not true, in fact, of the PDP-8). We can also have multi-
dimensional memories (Le., arrays), though no examples occur in

Chapter 2 I The PMS and ISP descriptive systems 25

OP
I I

Fig. 2. These add the extra dimensions with an extra pair of brack-
ets, for example,

i p p a g e d d d r e s s
1 1 1 l l 1

M[a:b][c:d]. . . [g:h](x:y)

The PDP-8 memory might better be described as:

Mp[0:7][0:31][0: 127](0: 11)

representing 8 memory fields with 32 pages per field, 128 words
per page, and 12 bits per word.

Instruction f o m a t . It is possible to have several names for the
same set of bits; e.g., having defined instruction(0:ll) we define
the format of the instruction as follows:

op(0:2) : = instruction(0:2)
indirect,bit/ib : = instruction(3)
page,O,bit/p: = instruction(4)
page,address(0:6) : = instruction(5:ll)

The colon-equal (: =) is used to allow us to assign names to various
parts of the instruction. In effect, we are making a definition which
is equivalent to the conventional diagram for the instruction:

Notice that in page-address the names of all the bits have been
shifted, e.g., page-address(4) : = instruction(9).

The Appendix gives the permissible alphabet of symbols for
ISP. In general, a “name” can be any combination of uppercase
and lowercase letters and numerals, not including names which
would be considered numbers (integers, mixed numbers, fractions,
etc.). A compound name can be sequences of names separated by
spaces (). In order to make certain compound names more reada-
ble, a space symbol (-) may optionally be used to signify the
non-printing character. Periods (.) and hyphens (-) are also used.

The instruction set. With all the registers defined, we can give
the instructions. These are shown on the second page of Fig. 2
(there are some unexplained parts left on the bottom of the first
page, to which we will return). The second page is actually a single
expression, named Instruction-execution, which consists of a list
of instructions. They are listed vertically down the page for ease
of reading. Each instruction consists of a condition and an action

sequence, separated by the condition arrow (+). In this case the
condition is an expression of the form (op = octal digit). Recall
that op is instruction(0:2), and so this expresses the condition that
the operation code of the machine have a particular value. Each
condition has been given a name in passing; e.g., “and” is the name
of (op = 0). This provides the correspondence between the opera-
tion code and the mnemonic name of the operation code. If this
correspondence had been established elsewhere, or if we did not
care what numerical operation code the “and” instruction is, we
could have written

and + (AC t AC A M[z])

We would not have known what condition the name “and” stood
for but could have surmised (with little difficulty) that it was
simply an equality test on the operation code. We will do this
on a number of the ISP descriptions later in the book. Most gener-
ally the form of an instruction is written as

two’s complement add/tad(: = op = 1) +
(LOAC t L O A C + M[z])

Here, we simultaneously define the action of the tad instruction,
its name, an abbreviation for the name, and the conditions for tad’s
execution. The parentheses are, in effect, a remark to allow an
inline definition. For example, the above single ISP statement is
equivalent to

two’s complement add/tad+ (LOAC +- LOAC + M[z])

followed by

tad := (op = 1)

All the instructions in the list constitute the total instruction
repertoire of the Pc. Since all the conditions are disjoint, one and
only one condition will be satisfied when a given instruction is
interpreted; hence one and only one action sequence will occur.
Actually, all operation codes might not be present, and so there
would be some illegal op codes that would evoke no action se-
quence. The act of selection is usually called operation decoding.
Again, ISP implies no particular mechanism by which this is car-
ried out. Normally a logic circuit works directly on the op part
of the instruction register, and the way op codes are assigned is
significant for the complexity of this decoding circuit. Thus, some-
times one exhibits the instructions in a two-dimensional decoding
diagram that makes it evident what these bit patterns are (see Fig.
2 in Chap. 5) , rather than in a linear list.

It might be wondered why we do not in general introduce some

26 Part 1 I The structure of computers

Pc S ta t e
A C 4 : I I >

L

P C 4 : 1 I >

Run

I n t e r r u p t ,s t a t e

IO$ulse,l; I 0 4 u l s e J ; I0 ,pu lseA

Mp S ta te
&tended memory i s not included.

M [O : 7 7 7 7 8] 4 : l I >

Page,O[O:177 I 4 : l I > := M [O : 1 7 7] & : I I >

A u t o , i n d e x [O : 7] 4 : l l > := P a g e g [l O : I 7] 4 : l l > 8 8

8 8

Accumulator

Link bit/AC extension for overf low and carry

Program Counter

1 when Pc i s i n t e rpre t ing in s t ruc t ions or "running"

1 when Pc can be interrupted; under programmed control

I O pulses to IO devices

special array o f d i r e c t l y addressed memory reg i s t e r s

special array when addressed i n d i r e c t l y , i s incremented by 1

1'c Console S ta t e
Keys f o r s t a r t , s top, continue, examine (load from memory), and deposi t (s to re i n memory) are not included.

Oata s w i t c h e s a : l l >

Ins t ruc t ion Format

i n s t r u c t i o n / i d l : l l >

o p c o : 2>

P a g e J Q i t / p

i n d i r e c t , b i t / i b

p a g e , a d d r e s s 4 : 6>
this,page<0:4>

PC'<O: I I >

I 0,se 1 e c t<O : 5>
i o,pl ,b i t

i o,p2,b i t

i o d 4 , b i t

s ma

s z a

s n l

:= i 4 : 2 >

:= i<3>
:= i<4>
:= i<5:11>

:= PC'<O:4>

:= (PC<O:I I> - 1)

:= i<3:8>
:= i

:= i < I O >

:= id>

:= i<5>
:= i<6>
:= i<D

data entered v i a console

op code
0, d i rec t ; 1 i n d i r e c t memory r e f e r e m e

0 seZects page 0; 1 s e l e c t s t h i s page

s e l e c t s a T or Ms device

these 3 b i t s control the s e l e c t i v e generation o f -3 v o l t s ,
0 . 4 ks pulses t o 1/0 devices

p b i t f o r s k ip on minus AC, operate 2 gy.oup

u. b i t f o r s k ip on zero AC

+ b i t f o r s k ip on non zero Link

E f f ec t i ve Address Calculation Process

r<0:11> := (

-,i b + 2";

i b A (IO < z" < 17) --f (M[z"] + M [z "] + 1 ; n e x t) ;

i b 3 M[z"])
8 - 8

z'<O:11> := (7 i b + z " ; i b + M [z "])

z"<O: I I > := (page,O,bi t 4 this,pageopage,address;

-,page,O,b i t + Oopage,address)

LI microcoded i n s t r u c t i o n or i n s t r u c t i o n b i t l s) w i th in an i n s t r u c t i o n

e f f e c t i v e

auto indexing

d i rec t address

Fig. 2. DEC PDP-8 ISP description.

Chapter 2 1 The PMS and ISP descriptive systems 27

I n s t r u c t i o n I n t e r p r e t a t i o n Process
Run A (In ter rupt , request h I n t e r r u p t - s t a t e) --f (

i n s t r u c t i o n c M [P C I ; PC cPC + I ; nex t

i n s t r u c t i o n - e x e c u t i o n) ;

Run A I n t e r r u p t - r e q u e s t A I n t e r r u p t - s t a t e + (

M[O] t PC; I n t e r r u p t - s t a t e t 0 ; PC t 1)

I n s t r u c t i o n S e t and I n s t r u c t i o n Execution Process

I n s t r u c t i o n - e x e c u t i o n := (

and (:= op = 0) --f (AC t A C A M [z l) ;

t a d (:= op = I) + (LOAC c LOAC + M[z l) ;

i s z (: = op = 2) + (M[z ' l + M [z l + 1 ; n e x t

(M [z ' l = 01 + @ C e P C t 111;
dca (:= op = 3) --f (ME21 t AC; AC t 0);

jms (:= op = 4) --f (M[zl c.PC; nex t PC c z + 1) ;

jmp (:= op = 5) + (PC + z);
i o t (:= op = 6) + (

i o - p l - b i t --f IO-pulse-1 c I ; n e x t

io,p2,bit + I0,pulse-2 c I ; nex t

io,ph,bit i IO,pulse,lt c I) ;

o p r (:= op = 7) +Operate,execution

)

no i n t e r r u p t i n t e r p r e t e r

f e t c h
execute

i n t e r r u p t i n t e r p r e t e r

l o g i c a l and

two 's complement add

index and s k i p if zero

depos i t and c l e a r AC

jwnp t o subroutine

jWI0
p i n ou t t r a n s f e r , microurogrammed t o generate up t o 3 pu lses

t o an i o device addressed by I0,select

t h e operate i n s t r u c t i o n i s de f ined below
end I n s t r u c t i o n execut ion

Operate I n s t r u c t i o n S e t
The microprogramed operate i n s t r u c t i o n s : operate group 1, operate group 2, and extended a r i t h m e t i c are d e f i n e d as a separate

i n s t r u c t i o n s e t .

Operate-execut ion := (

c l a (: = i<4> = 1) + (AC c 0) ;

op r - l (: = io> = 0) + (operate group 3

c11 (:= i<5 = 1) + (L 0) ; n e x t p c l e a r l i n k

cma (:= id> = 1) + (AC C - AC); u. complement AC

cml (: = i<;r> = I) + (L +7 L) ; nex t IL complement L

i a c (:= i = 1) --f (L m c C L ~ C + 1) ; n e x t u. increment AC
r a l (:= i d : I O > = 2) + (LWC + L m C x 2 { r o t a t e)) ; p r o t a t e l e f t
r t ~ (:= i<8:10> = 3) + (LOAC ~ L O A C x 2' (r o t a t e 3) ;

r a r (:= i<8:10> = 4) + (LOAC CLOAC / 2 (r o t a t e)) ;

r t r (:= i<8:10> = 5) + (LOAC cLOAC / Z 2 (r o t a t e l)) ;

c l e a r AC. Connnon t o a l l o.oerate i n s t r u c t i o n s .

u, r o t a t e twice l e f t

u r o t a t e r i g h t
p r o t a t e twice r i g h t

o p r 3 (:= i<3 ,1 I> = 10) i (operate group 2

s k i p c o n d i t i o n 62 (id> = 1) --f (PC +PC + I) ; nex t

s k i p c o n d i t i o n := ((m a A (AC < 0)) v (sza A (AC = 0)) v (s n l A L))
u AC,L s k i p t e s t

n s r (:= i - ' 9 = 1) + (AC < - AC v Data s w i t c h e s) ;

h l t (: = i < 1 0 3 = 1) - (Run t o)) ;
w "or" switches
)I h a l t or s top
opt ional FA1 d e s c r i p t i o n EAE (:= i 4 , 1 1 > = 1 1) -tEAF,instruction~xecution)

28 Part 1 I The structure of computers

additional conventions into the language, e.g., list the instructions
in a table with their mnemonic names in a special column, rather
than write the whole affair as an expression. (In fact, if you ex-
amine the first page of Fig. 2, you will note that the entire descrip-
tion of the PDP-8 Pc is a single expression.) The reason is that
although many processors fit such a format very well, not all do
so, e.g., microprogrammed machines. By making the ISP descrip-
tion a general expression for evoking action-sequences, we obtain
the generality we need to cover all the variations. We will have
two examples with the PDP-8 itself: the microprogrammed feature
and the fact that the interpretive cycle simply becomes part of
the total expression for the behavior of the processor.

Let us now consider the action-sequence. We use standard
mathematical infix notation. Thus we write

AC t AC A M[z]

This indicates that the word in Mp at address z is ANDed with
the accumulator and the result left in the accumulator. It is as-
sumed that the operation designated hy A is well understood. (The
c, of course, is the transmit operation.) Each processor will have
a basic set of operations that work on data-types of the machine.
Here the data-type is simply the 12-hit word viewed as an array
of hits.

Operators need not involve memories actually within the Pc
(the processor state). Thus,

expresses a change in a word in Mp directly. That this must be
mechanized in the PDP-8 by means of some register in Pc is
irrelevant to the ISP description.

We also use functional notation; for example,

AC t abs(AC)

replaces the contents of the AC with its absolute value. When
an action has an unspecified function or operation we generally
write

A+f(A,B, . . .) or A t u B or A t B b C

for function, unary operation, and binary operation, respectively.

Efective-address calculation process. In the examples just given
we used z as the address in Mp. This is the effective address and

is defined as a conditional expression (in the manner of ALGOL
or LISP):

z (0 : l l) := (-, ib + z”;
ib A (10, Q z” < 17,) + (M[z”] t M[z”] + 1); next
ib + M[z”])

The right arrow (+) is analogous to the conditional sign used in
the main instruction, equivalent to the “ i f . . . then . . .” of
ALGOL. The parentheses are used to indicate grouping in the
usual fashion. However, we arrange expressions on the page to
make reading easier.

As the expression for z shows, we permit conditionals within
conditionals and also the nesting of definitions (z is defined in terms
of z”). Again, we should emphasize that the structure of such
definitions may reflect the underlying hardware organization, hut
it need not. When describing existing processors, as in this book,
the ISP description often reflects the hardware. But if one were
designing a processor, the ISP expressions would he stated as
design objectives for the RT structure, and the latter might differ
considerably.

Special note should he taken of the opr instruction (op = 7)
in Fig. 2, since it provides a microprogramming feature. There
are two separate options depending on instruction(3) being 0 or
1. But common to both is the operation of clearing the AC (or
not), associated with instruction(4). Then, within one option
(instruction(3) = 0) there are a series of independently executable
actions (following the clearing of L); within the other (instruc-
tion(3) = l), there are three independently settable control ac-
tions. The nested conditionals and the use of “next” to force se-
quential behavior make it easy to see exactly what is going on
(in fact a good deal easier than describing it in natural language,
as we have been doing).

The instruction interpreter. We now have all the instructions
defined for the PDP-8, including the effective-address computation
(z). It remains to define the interpreter. From a hardware point
of view, an interpreter consists of the mechanisms for fetching a
new instruction, for decoding that instruction and executing the
operations so designated, and for determining the next instruction.
A substantial amount of this total job has already been taken care
of in the part of the ISP that we have just explained. Each instruc-
tion carries with it a condition that amounts to one fragment of
the decoding operation. Likewise, any further decoding of the
instruction that might he done in common by the interpreter

Chapter 2 I The PMS and ISP descriptive systems 29

(rather than by the individual operation circuits) is implied in the
expressions for each instruction, and by the expression for the
effective address. The only thing that is left is to fetch the next
instruction and to execute it.

In a standard machine, there is a basic principle that defines
operationally what is meant by the “next instruction.” Normally
the current instruction address is incremented by 1, but other
principles are used (e.g., on a processor with a cyclic Mp). In
addition, several specific operations exist in the repertoire that can
affect what program is in control. The basic principle acts like
a default condition: If nothing specific happens to determine
program control, the normal “next” instruction is taken. Thus, in
the PDP-8 we get an interpretation process that is essentially the
classic fetch-execute cycle (ignoring interrupts):

Run + (instruction t M[PC]; PC c PC + 1; next fetch
Instruction-execution) execute

The sequence is evoked so long as Run is true (i.e., its bit value
is 1). The processor will simply cycle through the sequence, fetch-
ing and then executing the instruction. In the PDP-8 there exists
a halt operation that sets Run to be 0, and the console keys can,
of course, stop the computer. It should be noted that the ISP
descriptions in this book do not, generally, include console behavior.

A state diagram (Fig. 3) is useful to represent the behavior of
the instruction-interpretation process. As an instruction is inter-
preted, the system moves from state to state. Any of the states
can be null, in which case a simple transition is to be made to
the successor of the null state. The K(instruction interpreter) con-

f e t c h
(read)

Determines the

instruct ion q

operotion
calculation decoding

i“
\

Request
operond
f rom Mp

/

?rand

Multiple
operands

-L PCZ PC2

operotion
specif ied

calculotion
(0v.r)

operand
store
(write)

i i
Restore

results

operond
address

calculation
(ov. w:

Return for s t r i n g
Instruction complete or vector da ta fetch next instructioh

’Mp control led s t a t e
‘Pc control led s t a t e

Note: Any s t a t e may be null

S t a t e name
soq/oq
saq/oq
so. o/a.o
sav.r/ov.r
sav.r/av r
so/o
sov.w/ov.w
sav.w/ov w

Time in a s t o t e
toq
t a q
ta.0
tov. r
tav. r
t o
tav. w
tav. w

Meaning
Operation t o determine the inst ruct ion q
Access (t o Mp) fo r t h e i n s t r u c t i o n q
Operat ion t o decode t h e operotion o f q
Operation t o determine t h e variable address v
Access (t o Mp) read t h e variable v
Operat ion specif ied in q
Operation t o determine t h e variable address v
Access (t o Mp) t o w r i t e voriable v

Fig. 3. ISP interpretation state diagram.

30 Part 1 I The structure of computers

trols these movements according to the information in the instruc-
tion. Which states are null and which of multiple alternative
transitions occur depend on the instruction being interpreted.

Within each state, various operations are carried out, under
the control of subordinate K’s. Note that the upper states in Fig.
3 are controlled by the Mp whereas the lower ones are controlled
by the Pc. We have tried to use a simple mnemonic scheme to
label these states: o for operation, q for instruction, a for access,
r for read, and w for write. Similarly, we prefix the state with t
to indicate the time duration of the state, and we may prefix the
state by s.

Figure 3 is somewhat more detailed than is usual. We will use
it in Chap. 3 to describe a number of different processors. However,
the figure simplifies the familiar fetch-execute cycle:

Fetch: {oq, aq}
t.fetch = toq + taq

Execute: (00, ov.r, av.r, 0, ov.w, av.w}
t.execute = too + t0v.r + tav.r + . . . + t0v.r

+ tav.r + . . . + to + t0v.w + tav.w

Consider, by way of example, the tad instruction of the PDP-8,
using the general state diagram of Fig. 3. From the ISP, the net
effect is

Run + (instruction t M[PC]; PC t PC + 1; next
tad (: = op = 1) + (LU AC +LO AC + M[z]))

where

z(0: 11) : = (specijies the effective-address calculation process)

The state diagram has more detail to explain the computer’s
behavior with respect to timing and its temporary registers. (Note
a complete state diagram for the physical PDP-8 is given in Fig.
11 of Chap. 5.) The actual state table appears on page 31.

Notice again that the ISP description does not determine the
way the processor is to be organized to achieve this sequencing
or to take advantage of the fact that many instructions lead to
similar sequences. All it does is specify unambiguously what oper-
ations must be carried out for a program in Mp. The 1SP descrip-
tion does specify the actual format of the instruction and how it
enters into the total operation, although sometimes indirectly. For
example, in the case of the and instruction (op = 0), the definition
of AC shows that the AC does not depend on the instruction, and
the definition of z shows that z depends on other fields of the

instruction (indirect-bit, page,O,bit, page-address). Likewise, the
form of the ISP expression shows that AC and PC both enter into
the instruction implicitly. That is, in the ISP description all de-
pendence on memory is exp1icit.l

Data-types and data-operations

This completes the description of the ISP for the PDP-8. For more
complex machines the number of data-types and the operations
on them are much more extensive. Then the data-types may be
declared independently of the instruction set, in the same manner
as we declared memory.

In fact, the one major piece of organization in the structure
of processors at the ISP le,vel that has not appeared in our example
involves the data-types. Each data-type has a set of operations
that are proper to it. Add, subtract, multiply, and divide are all
proper to any numerical data-type, as well as absolute value and
negation. Not all of these need exist in a computer just because
it has the data-type, since there are several alternative bases, as
well as some levels of completeness. For instance, notice that the
PDP-8 first of all does not have multiply and divide (unless one
has its special option), thus having a relatively minimal level of
arithmetic operations, and second, it does not have a subtract
operation, using a two’s complement add, which permits negation
(- AC) to be accomplished by complementation (TAC) followed
by add 1. Still, the options are rather few, provided one has de-
cided to include a given data-type in the repertoire. In the Ap-
pendix at the end of the book are given with each of the data-types
(or classes thereof) the sets of operations that are proper to that
data-type.

The PDP-8, for example, does not have several data representa-
tions for what is, externally considered, the same entity. An oper-
ator that does a floating add and one that does an integer add
are not the same. However, we will denote both by the same
symbol (in this case, +), indicating the difference parenthetically
after the expression. Alternatively, the specification of the data
type can be attached to the data. Thus, in the IBM 7094 we have
the instructions

‘This is not correct, actually. In physically realizing an ISP description,
additional memories may be utilized (they may even be necessary). It can
be said that in the ISP description these memories are implicit. However,
a consistent and complete description of an ISP can be made without use
of these additional memories whereas with, say, a single-address machine
it does not seem possible to describe each instruction without some refer-
ence to the implicit memories-as we see in the effective-address calcula-
tion procedures where definitions look much like registers.

Chapter 2 I The PMS and ISP descriptive systems 31

Stutes Time

soq [toq

I S P effect Operational description

MA t PC; Calculate the address of the instruction, q, and calculate the address of the next
instruction, q + 1. The address is stored in the address register, MA, used
to control the access.

PC c PC + 1

Sfetch 1 1 taq 1 ME tM[MA] saq

s0v.r I
Sexecute

sav.r

so
Y

Fetch the data from memory location, M[MA] (i.e., essentially M[PC]), and place
the result in a buffer (temporary) register.

t0v.r MA t f (M B , I R) Calculate the address of the data.

~~

tav.r M B t M[MA] Fetch the data from Mp.

to L 0 A C t L 0 AC + M E Do the operation specified by the instruction.

so0 7] too] IR tMB(O:2) 1 Calculate and decode the instruction

Add -+ (AC t AC + M[e]);
Add and carry logical word/ACL + (

AC t AC + M[e] {unsignedinteger});
Floating add/FAD -+ (AC c AC + M[e] {sf});
Unnormalized floating add/UFA -+ (AC c AC + M[e] {suf});
Double-precision floating add/DFAD + (

ACMQ t ACMQ + M[e]OM[e + 11 {df});
Double-precision unnormalized floating add/DUFA + (

ACMQ t ACMQ + M[e] 0 M[e + 11 {duf})

The first one, without a special indicator of data-type, is taken
to be integer addition; the next, unsigned integer; the next, single
precision floating point; the next, unnormalized single precision
floating point; the next, double precision floating point; and the
last, unnormalized double precision floating point. Although there
are often clues that could be used to infer which form of addition
is being defined (e.g., double precision takes two words) we label
all but the integer operation.

We use braces { } to differentiate which operation is being
performed in the above examples. Thus, above, the data-type is
enclosed in braces and refers to all the memory elements (oper-
ands) of the expression. Alternatively, we use braces as a modifier
on any memory to signify the information meaning. For example,
a fixed point to floating point data-conversion operation would be
given as

AC{floating} t AC{fixed}

We also use braces as a modifier for the operation-type. For exam-
ple, shifting (left or right) can be a multiplication or division by
a base, but it is not always an arithmetic operation. In the PDP-8,
for instance, we have

L 0 AC t L 0 AC x 2 {rotate}

where the end bits L and AC(l1) are connected when a shift
occurs (the operator is also referred to as a circular shift).

In general, the nature of the operations used in processors are
sufficiently familiar to the computer professional that no definitions
are required, and they can all be taken as primitive. It is necessary
only to have agreed upon conventions for the different data repre-
sentations used. The Appendix provides the basic abbreviations.
In essence, a data-type is made up recursively of a concatenation
of subparts, which themselves are data-types. This concatenation
may be an iteration of a data-type to form an array. Fig. 4 shows
the structure of various data-types and how each is built from more
primitive data-types.

If required, an operation can be defined in terms of other
(presumably more primitive) operations. It is necessary first to
define the data format explicitly (including perhaps some addi-
tional memory). Variables for the operands are permitted in the
natural way. For example, binary single-precision floating-point
multiplication on a 36-bit machine could be defined in terms of
the data fields as follows:

32 Part 1 I The structure of computers

t'

Stacks Linked Vec to r n e l e m e n t s (l i n e o r l is t .

M a t r i x - n x m e lemen ts (Zd imen .

d, x d e x x d n e lemen ts

Simple m u l t i p l e t y p e s t r u c t u r e s un-normal f l a o t i n g / u f

\ /
I/

Double f l o o t i n g Complex

Double complex

' ? o r e normally considered
non -decomposable
primitives

Fig. 4. Common data-types recognized by processor hardware.

sf mantissa/mantissa : = (0:27)

sf exponent/exponent : = (28:35)
sf exponent-sign : = (28)

sf sign/sign : = (0)

x l : = x2 x x3{sf}:= (
x l mantissa : = x2 mantissa x x3 mantissa;
x l exponent : = x2 exponent + x 3 exponent;
next x l : = normalize (xl) {sf})

where normalize is

x l : = normalize(x2) {sf} := (
(x l mantissa = 0) -+ (xl exponent : = 0);
((xi? mantissa # 0) A (x2(0) = x2(1))) + (

x l mantissa := xi? mantissa x 2;
x l exponent : = x2 exponent - 1; next
x l : = normalize(x2) {sf}))

Three additional aspects need to be noted with respect to data-
types: two substantive and one notational. First, not everything
one does with an item of data makes use of all the properties of
its data-type. For example, numbers have to be moved from place
to place. This operation is not a numerical operation and does
not depend on the item being a number. In fact, for the purpose
of data transmission, the item is only a word (assuming it fits into
a single word) and can be treated as such. Second, one can often
embed one kind of operation in another, so as to coalesce data-
types. We saw this to a small extent in the example above of the
PDPS arithmetic operations. A more pervasive example is encod-
ing the Mp addresses into the same integer data-type as is used
for regular arithmetic. Then there need be no separate data-type
for addresses.' The upshot of both these aspects can be seen
below where we present an outline structure of data-types that
shows how one data-type can be embedded in another for various
purposes.

Data-types embedded in other data-types for common operations
word

integer
fraction
mixed
unsigned integer
address integer

boolean (single bit)
integer sign (divide or multiply by two operations)
field

single precision unnormalized floating

boolean vector

single precision floating

double word
double precision integer

fraction
mixed

double precision unnormalized floating point
double precision floating point

character string
digit string

'However logical such a course may seem, it is not always done this way.
For example, the IBM 7090 (and other members of that family) have a
15-bit address data-type and a 36-bit integer data-type, with separate
operations for each.

Chapter 2 1 The PMS and ISP descriptive systems 33

The notational aspect is our use in ISP of a mnemonic abbre-
viation scheme for data-types. We have already used sf for single
precision floating point. More generally, as Table 1 shows, an
abbreviation is made up of a letter giving the precision, a letter
giving the name, and a letter giving the length. A full treatment
can be found in the Appendix.

The simple naming convention does not take into account all
that is known about a data-type. The information carrier for the
data is only partially included in the length characteristic. Thus
the carrier should also include the data base and the sign conven-
tion for representing negative numbers. The common sign con-
ventions are sign magnitude, true complement (i.e., two’s comple-
ment for base 2) , and radix-1 complement (i.e., one’s complement
for base 2) .

For each of the data-types the processor must have the implied
operators. In fact, being able to represent a particular entity is
useful only if particular transformations can be carried out on the
entity. The most primitive operation is data movement (i.e., trans-
mission). Data movement can be thought of as a complex operation
consisting of accessing (locating), reading, and writing. Data-types
which represent numbers require the ability to perform the arith-
metic operations +, -, X, /, abs (), sqrt, max, min, etc. The
address integer is a special case of an arithmetic quantity, and
often only additive arithmetic operations (+ and -) are available
for it. Boolean scalars (or vectors) require some subset of the 16
logical operations (sufficient subsets are l, A or l, V). When
character strings are represented, the concatenation, deletion, and
transmission operations are required. Alternatively, we can look
to string processing languages like SNOBOL or COMIT to see the
operations they require. If the strings also represent numeric quan-
tities, then the arithmetic operations are necessary. Almost all
arithmetic and symbolic data require relational operations be-
tween two quantities, yielding a boolean result (true or false).
These relational operators are = and #, but for arithmetic quanti-
ties includes >, >, <, <. The more complex structured data-
types (e.g., vectors and arrays) also have a range of certain primi-
tive operations such as scalar accessing and transmission. Typical
operations of vectors are search and element-by-element compare
operations.

Relationship between PMS and ZSP

In the introduction to this chapter we discussed briefly the rela-
tionship between PMS and ISP. With the two described, we can
now be more precise. There are really two questions here. First,
where do these two descriptive systems fit in with respect to the
general hierarchical view of computer structures discussed in

Table 1 Abbreviations used to name data-types

Precision Data-type-name Length-type

fractional/f boolean/b * sca I a r
quarter/q
half/h

“single/s
double/d
triple/t

sign vector/v
decimal digit/digit/d matrix
octal digit/octal/o array
character/char/ch/c string/st
byte/by

quad r u ple/q syllable
word/w multiple/m

+integer (eq. 10) signed integer/i
unsigned integer/ui
fraction/fr
fixed / m ixed / mx
floating/real/f
unnormalized-floating/uf
complex real/complex/cx

Examples:
w word
bv boolean vector
i integer
sfr single precision fraction
mx mixed
di double integer
10d 10 decimal digit (scalar)
3.ch 3 character (scalar)
chst character string
sf single precision floating
suf single precision unnormalized floating
df double precision floating
duf double precision unnormalized floating

*May be optionally omitted from name

Chap. 1. Second, what is the relationship between a PMS diagram
of a processor and the ISP of that same processor. The questions
are related, but each is best answered separately.

With respect to the first question, the PMS system describes
the topmost system level (recall Fig. 1 of Chap. l), above the
programming, logic, and circuit levels. It lacks a characteristic that
all these other levels share, namely, that of providing a complete
description of the computer’s performance. The programming
manual (with timing) tells everything that is significant about the
performance of the computer (if it runs error-free). The same is
true of the full description at the register-transfer level, the logic-
circuit level, and on down to the electrical circuit level. But the
PMS level is only an approximate description, from which only
certain aspects of the system’s performance can be calculated.

34 Part 1 I The structure of computers

The ISP does not constitute a distinct system level. Rather, it
describes the interface between two levels, the register-transfer
level and the programming level. It is used to define the compo-
nents of the programming level-instructions, operations, and
seqnences of instructions-in terms of the next lower level. In
principle, and usually in fact, the language of the lower level is
used to describe the components and modes of connections, one
level up. In many ways ISP is a register-transfer language (in
symbolic rather than graphical form-but as we noted in Chap.
1, there appear always to be two such isomorphic notations at
each system level). However, ISP has been extended by allowing
the instruction-expression to be a general linguistic expression for
a computation, just as if ISP were FORTRAN or ALGOL. This
is what permits us to talk of ISP as not necessarily determining
the exact set of physical registers and transfer paths. The instruc-
tion-expressions describe the functions to be performed without
entirely committing to the RT structure.

If the ISP is the interface language between the RT and pro-
gramming levels, what is its relationship to PMS, which is one
level above? Every PMS component has associated with it a set
of operations and a control structure for getting those operations
executed in connection with the arrival of various external signals.
As we noted earlier in the chapter, there is an ISP description
for each operation in its context of control. That is, ISP is the
interface language for describing all PMS components in terms
of the register-transfer level, not just P. It happens that only one
of these PMS components, the processor, carries with it an entire
new systems level-the programming level. All the other compo-
nents have no analog of the programming level and interface
directly to the register-transfer level (or even in simple cases to
the logic-circuit level). Precisely because of the simplicity, we have
not bothered to develop ISP descriptions of other components of
components other than processors.

The second question, namely, the relation between the ISP and
PMS descriptions of the same processor, arises from the ability
to represent PMS components recursively as PMS structures made
up from more elementary PMS components. Thus, Mp(32 kw, 16 b)
can be considered as compounded of 32k memories, M(l w, 16 b),
with an addressing switch, %random. Indeed, if one carries this
to the limit, where the M’s are single bit memories (flip-flops),
the S’s are one bit gates, a couple of specific K’s are defined for
AND and OR, etc., then it is possible to draw a PMS diagram
isomorphic to any logic circuit. Thus, a processor (P) can be rep-
resented as a PMS involving M’s, K’s, D’s, s’s, etc., and at varying
levels of detail. Since we also have a description of this same P
in ISP, it is appropriate to consider the correspondence.

First of all, every memory in the ISP description corresponds
to a memory in the PMS description. The data operations in ISP
imply corresponding D’s in PMS and every occurrence of transmit
(c) implies a corresponding link between the M’s and D’s on the
right hand side and the M on the left, being written into. That
the instructions of the ISP are evoked only under certain condi-
tions implies that a control (Koperation-decode) exist in the PMS
structure. Similarly, the simple, two-state stored-program model
(instruction-fetch, instruction-execute) for the interpreter implies
an interpreter control (Kinterpreter). The action-sequence of each
instruction, if it contains any semi-colons or next’s, requires addi-
tional K and possibly additional M (if the structure involves em-
bedded operations such as (A + B) x (C + D)). Thus for every
ISP component there is an implied component in the PMS struc-
ture of the processor.

The PMS diagram model for a computer shown initially on page
17 has the “natural units” implied by the ISP description (with
the exception of the instruction format part) as suggested on page
24. The data-operations D are therefore implied each time an
operation is written. Each process implies a control which we
lump into the single K of the figure. The model also shows both
the arrival of instructions and the flow of data between the proc-
essor (P) and memory (Mp).

There are several memories within Pc which are not explicitly
shown on page 17. These include temporary memory within D
and the K for carrying out complex arithmetic operations. The
interpreter control has temporary memory, of course. Finally,
other kinds of memories have been omitted to simplify the model.
In multiprogrammed computers a mapping control and memory
would be used, and in pipeline or highly parallel processors there
would be temporary memory for various buffering (e.g., instruc-
tions and data). The Appendix lists the various memories of the
processor.

K(P), the control for the processor above, controls data move-
ment among the Mp and M.processor,state and evokes the data-
operations of D. Functionally, K(P) can be broken into several
parts, each of which is responsible for a part of the overall instruc-
tion interpretation and execution process, and each corresponds
to a part of the ISP description. This decomposition is allowed
in PMS, and if we did so, each component would contain an
independent control for its own domain, e.g., a K(D), K(Mp),
K(1nstruction-set interpreter). More elaborate processor structures
imply having controls for functions like multiprogram mapping.
The K(1nstruction-set interpreter) is the supervisory component
which causes other processor K’s to be utilized in a complex
processor. In an ISP description of a C, the interpreter usually

Chapter 2 I The PMS and ISP descriptive systems 35

selects only the next instruction and then after decoding (or exam-
ining it) proceeds to have the instruction executed by K(instruction
execution).
Resource Allocution. At the PMS level the concept of resources,
their uses and allocation, becomes a major focus of analysis. This
is obvious by now in multiprogramming and multiprocessing sys-
tems where many programs share the same Mp and hence must
be allocated space. But this holds equally well at all levels of
detail.

By giving a resource allocation diagram along with the state
diagram (Fig. 5) we show the relationship of resources, their func-
tion, and time for the instruction-interpretation process. In Fig.
5 the add instruction for a simple 1 accumulator computer con-
sisting of 1Pc-2Mp is given. The interpretation for Fig. 5 in ISP
is as follows:

Calculates the address of instruction q in state soq.
t, - to = toq.
PC + PC + 1; next aduunce the program counter

The instruction is fetched (accessed) from Mp in state saq.
t, - t, = taq.
M.instruction t Mp[PC]; next

The operation o to be performed and the address part, v,
for the data in M.instruction to be added to A are obtained
in state so0 + s0v.r. t, - t, = too + t0v.r
M.address t Minstruction (v); next

The data Mp[v] are fetched in state sav.r. t, - t, = tav.r
M.temporary t Mp[M.address]; next

The operation part o of the instruction is carried out on
A; that is, the actual addition is performed on the data
previously accessed in the state so. t, - t, = to.
A t M.temporary + A; next

In the state diagram, each state represents the time spent for
a given activity. The two states at the top of the state diagram
(Fig. 5) are waiting for primary memory accesses, and the three
lower states represent processor activity waits. If we were to
specialize the state diagram for the conventional 1 address/
instruction computer, we would need one additional state, repre-
senting operand storage, sav.w, and this would occur after state,
so. Note that we have ignored the operation decoding state, s0.0.
Of course, conditional state transformation paths have to be added
to describe all instructions (e.g., a complement-the-accumulator
instruction has only states soq, saq, and so). Similarly, we could

Instruction Data operand
fetch from fetch from

Mpt l 1 Mp # 0

\ ~ I
Instruction Data Instruction

address address execution
calculation calculation (operation on

1 J’ t - time spent in a state

processor state)

I t.cycle

data fetch

The instruction being
interpreted IS

Mp # 1 tad - (A - A t M [z l) ;

to t l f2

Instruction execution

30

Instruction Data address
address colculotion colculotion

Fig. 5. State and resource allocation diagram for a 1Pc-2Mp add instruc-
tion-interpretation process.

make a more general state diagram to handle the different proc-
essors (e.g., multiple addresses/instruction, stack, and general reg-
isters), as shown in Fig. 4. At the PMS level, a derivative of the
state diagram, the resource allocation diagram is more useful be-
cause it relates to the physical structure.

A resource allocation diagram expresses the above instruction
activity in terms of the time each unit is occupied with a particular
activity. In this diagram a slightly more complex computer struc-
ture with two primary memories has been assumed. In the case
of the add instruction, the long memory-cycle time suggests that
two memories can be used so that an operand be fetched while
the instruction memory restoration occurs. These diagrams show
the time various resources are utilized; thus performance and
utilization can be measured.

Resource allocation diagrams can express other time scales.
Interest in operating-system software analysis is often in the ac-
tivities on a longer time scale of the resources utilization as a

36 Part 1 I The structure of computers

function of various programs and subprograms. They may show
Mp memory occupancy in a multiprogrammed environment. Some
other time scales of particular interest are the instruction(s), short
instruction sequences or subprograms, and the program times. The
first two time scales are influenced predominantly by the hardware,
and the latter time scale is influenced by software and the ex-
ternal environment.

The resource allocation diagrams also can describe the utiliza-
tion of the C’s resources over time (e.g., throughout the instruc-
tion-interpretation process) and provide a basis for more detailed
analysis and design.

The design problem at the PMS-ISP interface is mainly one
of resources scheduling.

1 A fixed set of operations have to be performed on the jobs
(here, a job is an instruction).

Each instruction may create a few other small but definitive
subjobs.

There can be a fixed set of operators which handle various
parts of the operations.

Jobs (or instructions) enter P sequentially.

2

3

4

We may ask:

1

2

How many operators of each type do we have?

What is the scheduling policy for assigning instructions to
the operators?

How many instructions can be in P at one time, and in what
order must the processing be performed? How are the jobs
interlocked?

3

We do not attempt to answer the above questions but intend
only to show the relationship of the various parts which define
the problem. ISP implies a certain structure (conversely, PMS
behavior is specified in terms of the ISP language). A particular
ISP structure and a program denote a certain path through a state
space as specified by a state diagram. Finally, the physical re-
sources (in PMS) are constrained to operate according to the state
diagram as expressed by using a resources allocation diagram. The

resource allocation diagram can then be used to evaluate the
structure’s performance (in PMS) at a higher level (e.g., the number
of instructions/second it executes).

I
S t a t e diaaram \ ,,,(behayj

ISP (descr ip t ion
and progrom)

- .
RT(description \ behavior)

RT level

Summary

The ISP descriptions of computers are usually given as an appendix
to a chapter. We organize the description into the following units:

I’ State

P Console State

Memory
Declaration

Instruction Format
Data-type Formats and Special Data

Effective-address Calculation Process
Operation Definitions

Process

Interpreter and Instruction Interpretation Process

Formats and
Operators

the Instruction- Instruction-set and Instruction Execution
set Execution [

The above description format conveys a rather narrow-minded
view of the ISP structure of computer systems. However, almost
all present computers fit easily into such a format. We do not
presume to say whether it will suffice for future ISPs.

With the introduction given here and with the definitions and
example in the Appendix at the end of the book, it should be
possible to understand all the PMS diagrams and ISP descriptions
used throughout the book.

Chapter 3

The computer space

Introduction

The preceding two chapters have provided a view of a computer
system as an organized hierarchy of many levels: physical devices,
electronic circuits, logic circuits, register-transfer systems, pro-
grams, and PMS systems. We must remember that these are levels
of description for what, after all, remains the same physical system.
Each higher level describes more of the total system, but with
a loss of detail. As this is an engineered system, great care is taken
that each level represent adequately all the behavior necessary
to determine the performance of the system. In natural systems
too there are often many levels of description (e.g., in biological
systems, from the molecule to the organelle to the cell to the
tissue to the organ to the organism).

However, in natural systems we usually depend on statistics
to eliminate the details of lower levels and permit aggregation,
and they always do so imperfectly. In computer systems, on the
other hand, the aggregation is intended to be perfect. It fails, of
course, and so both error detection and error correction exist as
fundamental activities in computer systems. But these imperfec-
tions are ascribed to the system itself and not to our description
of it, which is just the opposite from how we treat natural systems.
Only the PMS level of description is natural, in the sense of not
being the intended result of the design. This is because perform-
ance is defined ultimately at the programming level. The aggrega-
tions and simplifications that go into a PMS description (e.g.,
measuring power by bits per second) are approximations, just as
they are for any natural system (e.g., measuring the productivity
of the economy by gross national product).

We have provided descriptive systems for the top levels of the
hierarchy: the PMS level and the ISP level, the latter defining the
basic components of the programming level in terms of the RT
level just below. These are the two descriptions that are of most
concern in the overall design of a computer system. We did not
define the lower levels, because they go beyond the focus of this
book. Neither did we define the program level, partly because
there exists no uniform description (no common programming
language) and partly because the computer designer works mostly
at the interface, defining the instruction set. This latter is what
the ISP pr0vides.l

'An increasingly popular view is that the program and RT levels (with
ISP in between) are one, thus erasing the difference between hardware

PMS and ISP permit the description of an indefinite number
of computer systems-indeed, all that come within the scope of
the current design art. (They might even be taken as a definition
of what that current art is.) Some lo4 - lo5 individual computer
systems have in fact come into existence, each of which can be
described in PMS and ISP. They are not all radically individual.
There are about lo3 types of computer systems represented, if
we define two systems with the same Pc to be of the same type.
(By exercising various options, a single computer type could take
on lo5 different forms.)

Of these thousand-odd types, we present in this book just 40.2
What sort of total population do we have here? What does our
miniscule sample look like when compared with the whole? More
fundamentally, what are the significant aspects of the computer
systems that should be used in a comparison or classification? These
are the questions we will try to deal with in this chapter. We can
be neither comprehensive nor elegant. There has simply not yet
been done the necessary study on which to base an adequate
taxonomy of computer systems. Hut we can present a rough picture
based on the common lore of the field, filled in with our own
predilections.

For any system, either an entire computer, C, or a component,
such as P, M, or S, it is convenient to distinguish its function, its
performance, and its structure. The system is designed to operate
in some task environment; to accomplish such tasks is its function.
How well it does these tasks is its performance. Evaluation of
performance is normally restricted to these tasks. Although it is
always noteworthy when a system can perform adequately outside
its specified domain (e.g., when a business computer is also a good
control computer), it is rarely worth noting when a system cannot
perform those tasks it was not built to perform. Thus, function
denotes scope, and performance denotes an evaluation within that
scope.

Structure denotes those aspects of the system that allow it to
perform. This includes descriptions of its subcomponents and how
they are organized. Performance of subcomponents often may be
considered structure as far as the whole system is concerned,
especially if the performance can be taken as given. For example,
early digital transmission-oriented telephone lines came in two
capacities, -200 bits/sec and -2,000 bits/sec. From the view-
point of the telephone system, these are performance measures;

and software. The boundary appears to us not quite so invisible. We take
the important task to be drawing the boundary in the right place for any
specific design.
2Counting each of the families in Part 6 as one computer. The IBM Sys-
tem/360 is actually a series.

37

38 Part 1 I The structure of computers

from the viewpoint of a computer system with remote terminals,
these are structural parameters.

Typically, design proceeds in a context in which the function
of the to-be-developed system is taken as given and certain struc-
tures are available; the problem is to construct a structure that
achieves adequate performance.

These terms apply to any designed system. For example, con-
sider automotive vehicles. Function is a classification by use: cars
to carry people, trucks to carry goods, racers to win competitions,
antiques to satisfy nostalgia and collectors’ pride. Performance is
those aspects of behavior relevant to function: maximum speed,
power-to-weight ratio, cargo capacity, run versus not run for an
antique, and so on. Structure is such things as number of wheels,
shape of the vehicle, stroke volume, and gear ratios. Structure
determines performance, although from the standpoint of design,
of course, causality runs the other way: from function to perform-
ance to structure.

There are, then, three main ways to classify or describe a
computer system: according to its function, its performance, or
its structure. Each consists in turn of a number of dimensions. It
is useful to think of all these dimensions as making up a large space
in which any computer system can be located as a point. In such
a space all the thousand computer types built to date constitute
a sparse scatter, clustering (it is to be hoped) in various regions
that make sense functionally and economically. The 40 computer
types in this book sample this larger scatter in some way, to give
a picture both of the entire space and of the part already explored.

How many dimensions are there in this computer space? In-
definitely many, if one wants to locate a computer with ultimate
precision. In fact, if one wants to go all the way, one might as
well give the PMS and ISP descriptions (and down through the
RT, logic, circuit, and device levels). The virtue of thinking of
such a space is to abstract to a small number of dimensions, and
to select those that are most relevant. Of the functions, one wants
those that most influence the design; of the performance, one
wants those that make the largest difference; of structure those
that not only affect performance but represent possible design
choices by the computer engineer. In addition, one wants dimen-
sions along which there is significant variation. Those aspects of
computer systems which are common to all, such as the use of
binary devices, though of supreme interest are not part of the
computer space.

What are the dimensions of the computer space? As we re-
marked earlier, there is no sufficiently comprehensive theory of
computer systems to tell us. Considerable lore has grown LIP from
experience to date in designing machines. But at some point one
must simply propose a set of dimensions and let them justify

themselves after the fact. Table 1 gives our set for function and
structure. Table 3 (page 52) gives our set for performance.
Table 1 gives only a single dimension for computer system func-
tion and 19 for computer structure; Table 3 gives 8 for per-
formance. However, the dimensions are not all independent. Many
of the structure dimensions are highly (though not perfectly)
correlated. Thus, in Table 1 we have put the structure dimen-
sions in seven horizontal groups, with the one at the left-hand
side being the most relevant. (In the first structure group, we
have also added two temporal dimensions, since a strong correla-
tion with time exists.) For performance, the dimensions form a
tree structure, where the higher dimensions are essentially aggre-
gate summaries of the lower ones. Finally, there is a general
correlation between overall performance and the various structure
dimensions, in Table 1, with increasing performance as one moves
down the dimensions. We have left off two important dimensions
because we do not have values; these are reliability (mean time
between failures per operation) and physical size density (e.g.,
bits/ft3), both of which increase with generation.

With each dimension we have indicated the range of possible
values. For some (Pcspeed, for example) this is a numerical quan-
tity. However, for most, the range is a discrete set of design
choices, which may or may not have a simple ordering. Clearly,
these discrete values are selections from a meaningful subspace
of design choices, but mostly we do not know how to construct
that subspace. The values given are those that have arisen in
practice, and they serve to classify the computers in the book.
Obtaining a more rational subspace is a task for future research.

The body of the chapter will be taken up with a discussion
of each of these dimensions, where we will discuss further their
definition, the basis for their selection, and the reasons behind the
arrangements of Tables 1 and 3. We give the entire set of
dimensions here at the beginning, both for later reference and to
emphasize the view of a single computer space in which com-
puter systems can be located. We will refer to Tables 1 and 3
from now on simply as the computer space or, more narrowly,
as the computer structure space, the computer performance
space, etc.

History

Like all systems subject to variation and selection, computers have
evolved through time. So striking and rapid has been this evolution
that the concept of “generation” has become firmly embedded in
the computer engineering culture (to say nothing of the marketing
culture and the view of the lay public). It is at best an ambiguous
term, having none of the sharpness of its root term in biological
evolution, where it is possible to draw a strict genealogical tree.

Chapter 3 I The computer space 39

Nevertheless, the term is useful in stressing that the history of
computer systems is not just a story of particular men discovering
or building particular things, but of a somewhat more impersonal
and widespread series of advances that have changed computer
systems radically.

The generations are best defined solely in terms of logic tech-
nology: The first generation is that of vacuum tubes (1945 - 1958),
the second generation is that of transistors (1958 - 1966), and the
third generation is that of integrated circuits (1 9 6 6 ~) . In fact,
current usage describes hybrid logic technology machines, such
as the IBM System/360, as third generation, and so this extension
must he included. What will be called fourth generation is yet
to emerge; most likely it will he medium and large scale integrated
circuits with possibly integrated circuit primary memory.

It is a measure of American industry’s generally ahistorical view
of things that the title of “first” generation has been allowed to
be attached to a collection of machines which were some genera-
tions removed from the beginnings by any reasonable accounting.
Mechanical and electromechanical computers existed prior to
electronic ones. Furthermore, they were the functional equivalents
of electronic computers and were realized to be such. They were
also separated by a wide gap in performance and structure, both
from each other and from vacuum tube machines. Thus, by rea-
sonable reckoning, we are currently in the fifth generation of com-
puters, not the third. But usage is now too well established to
change.

Actually, it was not always viewed thus. Figure 1 reproduces
a genealogical tree of the early computers prepared by the Na-

Present ’ generation

First
generation

> Predecessors

5 Roots

. . . .’ I

Fig. 1. The “family tree” of computer design. The remarkable growth of electronic computing systems in the Western world began primarily through
government support of research and development in the universities. The need for data-processing facilities of increased capacity inspired further
support for their development in both educational institutions and private industry. The current generation of computers is predominantly the
result of development by private industry. The tree lists many of the machines developed in these ways. At the roots are the contributions of many
existing technologies to the rapid growth from electromechanical t o electronic systems. Some of the milestones are ENIAC (Electronic Numerical
Integrator and Computer), the first electronic computer; EDVAC (Electronic Discrete Variable Automatic Computer), the first internally stored-
program computer and first acoustic delay-line storage; MADM (Manchester Automatic Digital Machine), the first index registers (6 lines) and first
cathode-raytube electrostatic storage; MTC (Memory Test Computer), the first core-storage computer. (Courtesy of National Science Foundation.)

40 Part 1 I The structure of computers

Table 1 The computer-space dimensions

Computer function

Scientific
Business
Control
Communications

File control
(switchinglstore and forward)

Terminal
Time sharing

Logic Historical Cost/operation
technologq Generation date Pc.speed (sec) ($/hit 1s)

Mechanical
Electromechanical 1930 10-1 1000
(Fluidics) (1970) 1 0 - 2
Vacuum tube first 1945 10-3 10
Transistor second 1958 10-5 -1
Hybrid 1964 10-6
Integrated/lC third 1966 10-7 0.1
Medium to large- fourth? 197? 10-8 0.01

scale integrated/
MSI - LSI

Word size Base Data-types

8 b binary word
decimal integer1 address (integer)

bitlbit vector
instruction
floating point

I 12 b

24 b
32 b
48 b character
6 4 b character string

16 b 3 1
? '

character (6b) word vector
character (8b) vector

matrix
array
lists, stacks

Addresses/instruction M.processor state (excluding program counter)

0 address (stack) stack
1 address 1 Accumulator
1 + x (index) address
1 + g (general register) address
2 address
3 address no explicit state
n + 1 address
Language determined
Compound
Microprogrammed

accumulator and index registers
general registers array

Chapter 3 1 The computer space 41

PMS structure Switching Processor function

1 Pc

1Pc-nPio n:m (time-multiple x) Pc (no io)
1 Pc-nPio-P(display) Pi0
2C (duplex) 2:n (dual-duplex) P.display
nPc(mu1 t i processing)
nPc-P(array1 special algorithm) P.array
nPc(paralle1 processing) P.vector move
C (network) P.algorithm
Network n /2 :n /2 (non-hierarchy) P.language

Accessing algorithm Mp.size Ms.size Mp.speed (b /s) Ms.speed (b/s)

l :n (duplex) P.microprogram
lPc(interrupt) Pc

n:m (cross-point)

Linear (stack)
Linear (queue)
Bilinear
Cyclic-random
Cyclic
Random
Content
Associative

tape (large)
disk (medium) magnetic card (large)l

drum (large) drum (small) photostore (large) > 106
core (medium) core (smaller) > 1 0 7
f i lm (small) > 108
integrated circuit > 109

r > 105

M p concurrency lnterprocess communication

1 program subroutines and traps
1 program with interrupts interrupts
1 program with multiple concurrent

subprograms (for example, 1Pc-nPio)
Monitor or fixed program(M) + 1 program
m + n swapped programs
m + n programs (multiprogramming)

interprocessor interrupts

extracodes (programmed operators for
monitor calls)

No relocation
1 segment
2 segments (pure, impure)
>2 segments
Pages

Fixed length, paged segments
Multiple-length paged segments

m + n segments with shared programs intersegment communication

Variable-length segments
Named segments

Processor concurrency
< -

Serial by bit
Parallel by word
Multiple instruction streams, 1Pc
Multiple data streams (arrays)
1 instruction buffer
n instruction buffer
Look-aside memories
Pipeline processing

42 Part 1 I The structure of computers

tional Science Foundation in 1959. Notice that the Harvard Mark
machines, which were constructed from relays (hence electro-
mechanical) are accorded the place of honor as first generation
(but Babbage is nowhere to be seen).

It is not appropriate to provide here an adequate history of
computer technology. The early story has often been told, starting
with Babbage and early mechanical calculators, through Hollerith
punched cards, on to the relay calculators a t Bell Laboratories
and Harvard, up to the birth of electronic machines with ENJAC,
and finally to the stored-program concept with the von Neumann
machine at the Institute for Advanced Studies (IAS), EDSAC at
Cambridge University, and EDVAC at the University of Pennsyl-
vania (with the contemporary developments by ZUSE in Germany
often left out). And there have been a few scattered attempts to
tell some of the story of the last three generations. But to date
no really satisfactory historical account has been given. This is
due in part to recency and in part to the difficulties of evaluating
and sorting out the significant developments of a very complex
technology undergoing rapid growth.

What is appropriate here is to view the evolution of computer
systems as measured by the dimensions of computer space and
to localize the examples of this book in relation to calendar time
and other computers. The concept of generation has led others
to attempt the same thing by constructing a family tree, Fig. 1
being but one example. But the relationships between computers
is not nearly as simple as such a tree implies. We prefer to plot
a straightforward t ime chart,’ as shown in Fig. 2, in which we group
the machines by manufacturer and within each group, by ac-
knowledged family relationship (for example, 701-704-709-etc.).
There is clearly relatively closer kinship within a company than

‘Whereas we have checked the Time Chart numerous times for accuracy,
we make no claim about the nuniber of errors it still has. We have relied
on the following source data: (1) Original papers. These are mostly shown
on the chart as “p”. Normally the reader can infer that the work pre-
sented in a paper occurs prior to the actual publication. There are notable
exceptions (e.g., the core memory, and Atlas papers) which were first pub-
lished to lay claims to certain ideas. (2) Historical reviews. Primary his-
torical papers include: Rosen [1969] and Serrell [1962]. Secondary his-
torical review papers include: Bowden [1953], Campbell [1952], Chase
[1952], Nisenoff [l966], and Samuel [1957]. (3) Encyclopedia. (4) Computer
surveys. Two sources have been used: The Adams Associates Computer
Characteristics Quarterly, published since 1960 [Adams, 1960; Adams
Assoc., 1966, 1967, and 1968); and Martin H. Weik’s four Surtieys of
Domestic Electronic Digital Computer Systems [Weik, 1955; Weik, 1961
(third); and Weik, 1964 (fourth)]. The Adams’ Charts give the date of
first delivery, and the Weik Survey gives the date the computer was first
operating. (5) Manufacturer, organization or person supplied dates. In a
few cases we have asked directly for sDecific oeerational and delivery

between companies. One advantage of such a time chart is its
depiction of the life history of a single system, showing how long
it takes for computer systems to go from paper through prototype
to production.

Not all computer types are shown on the chart, there being
about 250 out of the estimated 1,000 types. Lack of space (and
of perseverance) accounts for the omissions. The major United
States manufacturers, as well as some minor ones, and all ma-
chines of substantial historical interest are represented. All the
machines discussed in this book are gathered together on a sep-
arate line (though they also occur elsewhere, if appropriate).
Foreign machines are omitted, unless they are described in this
book. In addition, the machines of many early minor manufac-
turers are missing (ALWAC, ELECOM, etc.).

The second part of the time chart arranges many computers
by word size, to give the reader our classification. Unfortunately,
only a few samples are given, owing to space limitations. Thus,
the density on the graph does not indicate the true density of
existing machines. Many small computers, which are dedicated to
a particular task, are beginning to be built and a comparatively
small number of very large computers have been built. On the
bottom fine line we place the machines in this book.

The third part of the time chart deals with technology by
listing events along various dimensions that have been significant
in the evolution of computers. Besides the dimensions in the
computer space we have also added some dimensions describing
software systems. Although we have not been able t o deal with
the programming level in this book (except for the ISP interface),
its development is clearly as important as that of the hardware,
and there exists strong mutual interaction between the two.

The fourth (and final) part of the time chart gives selected
technological events leading up to the development of the com-
puter. It includes the early work of Babbage, desk calculators,
and the Bell Labs and Harvard calculators.

Many stories can be read from the chart. For example, note
that the early Bell Telephone Laboratories relay calculator was
used remotely at Dartmouth in 1940, about 20 years prior to
remote use of time-shared computers. Note also that successful
manufacturers tend to have a small number of computer families,
but add members as the technology dictates. (We omit the exodus
of computer companies.) We hope the reader gets as much en-
joyment from browsing the chart as we have (even after we put
it together!).

The computer space in Table 1 and the time chart in Fig. 2
provide an overall framework. We are now ready to consider each
of the dimensions individually, starting with those of system func-

information. tion, then the performance, and finally structure.

l9:2 1343 l 9 t 4 19145 l 9 i 6 I C 7 19148 19149 iq50 1251 i9,52 1253 1954 l9,55 19,56 I957 l9,58 I959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

S O S / S c i e n t i f i c Data Systems

DEC/O lq i fa l Eguipmevt C o r p o r a t i o n

CDClControl Data C o r p o r a t i o n

GE/General E l e c t r i c

Honeydel i

Burroughs

RCA/Radio C o r p o r a t i o n o f America

POP-10 Ir 9100
k (36 b/w) POP-6 I f l m e shared) -

H I T LlNC based
P O P - 8 L I N - 8 Q ~ P - R I Z _ P D P - ~ / ~ PDP-B/L

(12 b /w l k POP-5 -
k PDP-4 ,PDP-7 - POP-9 - - p ~ P - 1 5 [(18 b/w) P D P - i d

-6400 6500 7600 ku
Large S c a l e S c i e n t i f i c (60 b/w) k 6600

17?0(16 b/wr.-
k 3200 L i o o 3 3 n o -3500

k 3600 -3400 - 3800

- - -
160A 160G ,8090,8092

(24 b / w) ~t
(12 b / w l ku 160. = -

148 b/wl ku 1604. 1604A. - - -
I36 b/wl k 6 3 5 , 6 4 5 , 6 2 5 4 3 p p

412 (24 b/wl. - - - -
215 235 205

(24 b/w) 4040 4050.4~6OL4O20

b/w)

-I -
GE 210 16 d/w)

4050 I I

1
[- -

GE l o o ERMA (7 d /w) e-. 'I:
-2200,1200,120 ,4200-8200

200 s e r i e s (6 b /cha r) I B M 1401 based 2oo -
-224-124 (24 b/w) - - -316

l 4 O O - l d O - - -
ku 800-400 Datamat ic 1000 (12 d) .(48 b/w) -

NOTE: not a f a m i l y a+- - W R P w -

Computer C o n t r o l s D i v i s i o n

,
(48 b/w. s tack . m u i t i p r o c e 5 s o r) 0-5000 0-825 6 0 0 0 85000 05500 88501 B6500? 88501

Bu5ine55 (8 b/char) ~ B 2 5 0 0 - B2501'B3500

(6b /cha r) k 8250 m- - , ,8300
0260 8263 8160 -
8270 E213 8170

ir (12 d /w-p luqboa id program) E I O l * E102* E103* - 8280 8283 0180
- 220- I10 d/w) k 204,205.

o a t a t r o n D i v i s i o n

~~~ ~. .~ 
L C P C *  607" - 604* 609* 608*.610* 6400 - 

,360/195 
STRETCH 170301 164 b/w) - 

(Larqe Scale) 
(Accoun t ing  machines-ca:culators) 

Sc ienc i  f i c 

Business 
Hachines 

- 

ERA/Engineer ing Research ASSOL. ( S c i P n t l  I UNIVAC 

UNIVAC ;I (12 b/w) UNIVAC I l L ( 2 7  b/w, b b / c h a r )  I050 (30  b/w-bcd) ( 0 ~ ~ 1 1 1 2 5 5 )  

bM/Ecker t -Mauch ly  (Business) I - - "fC* =%ivAc 

 ice u n i v e r s i t y  ,RICE 

MUSE +ATLAS ATLAS Manchester U n i v e r s i t y  MARK I ( i n d e x  r e g i s t e r s l B - t v b e r )  ATLAS-LATLAS-2 F e i r a n t i  C o r p o r a t i o n  

NPL/Nat ional  Phys i cs  Labora to ry  5-! 
and ACE Based Machines DYSEAC 

NBS/Naf ionalBureau o f  Standards SEAC ( : t u d V ' ( c i r C Y i ~ ~ ~ -  

NIT L i n c o l n  Labora to ry  "TC/Memry ,e,', Computer -TX-o ceG24 

- = A C E  w l i s  E l e c t r i c  DEUCE n d i x  G-15 (one level extra c o d e s ) -  - 
SERC 

_FX-I  L INC/Labora to ry  l n s t r u m n t  Computer 
P h W  

(cons t r U C t  

( tape,drum)  (core memory) (50mhT10g ic ) - i n  Opera t i on  at Wolf R and D z -a Whirlwind I <(EDSAC bared )  

~~~d ~~~~~~~~i~~ JQHNNIAC ( tubes .  selecfron mmor?) lmagne t l c  core)  ( t r a n s i s t o r s  f o r  a r i t h m e t i c  element1 

U n i v e r S l t y o f Chicago MANIAC I - - I 1 (Not IAS compa t ib le) 1 1 1 - e - - P-
U n i v e r s i t y o f I l l i n o i s ORDVAC (f o r BRL - ILLIAC I (a l s o SILLIAC, CYCLONE, ILLIAC I 1 ILLIAC 1 1 1 ILLIAC IV

at lAs+(Burkr, G o l d s t i n e and vonNeumann) WElZAC and M I S T I C f r o m same des ign) (not 1;: based) (Solonan based)

- - ,EDSAC I I

* s

"on Neumann
D T IAS Based

Cambridge U n i v e r s i t y EOSAC (Wi l l i es)

U n i v e r s i t y o f ~ e n n s y ~ v a n I a
(Moore School o f E l e c t r i c a l Eng ineer ing) EDVAC - (E c k e r t , Hauchly and yon Neurnann)

a Announcement f o r s a l e 51 Scheduled . D e l i v e r e d f i r s t w W I thdrawn -P

0 O p e r a t i o n a l k Reasonably compa t ib le s e r i e s
Bell TeleDhone L a b o r a t o r i T s

* Non-s to red Program C a l c u l a t o r Haryaard U n i v e r s y t y 'HARK I * MARK-lI* HARK 171. MARK I V * 5 P r o j e c t S t a r t e d

ENlAC* ' - - - i (pa ten t f o r e ~ e c t d c c i r c u i t s)

- p Paper ku Upward compa t ib le I t * l i t * I V * (B a l I i s t i c i v* V I * Leprechan (t r a n s i s t o r)

- - - - -
15'42 14.43 1 9 4 1945 19.46 1947 If48 15149 1950 1951 is152 l m 3 19% i5'55 l h 6 1g57 l % 8 15'59 1 % ~ 19'61 1g62 $ 6 3 1 8 4 1%5 i$66 19x7 1968 I s 9 1970

Fig. 2a. Time chart: computers by originator.

24-48

16-24

12-16

i - 1 0

CHARACTER STRING BUSINESS

DECIMAL WORD BUSINESS

SHALL EARLY SCIENTIF IC

E

_- . _ . ,

!940 !941 :942 1943 !944 1945 1946 1947 194R 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 l 9 6 1 1962 1963 1964 1965 1966 1967 1968 (9 6 9 1970

:. 2b. Time chart: computers by word size.

I

i

SOFTWARE LINES

OPERATING SYSTEMS

DISCRETE SIMULATION LANGUAGES

. I S T PROCESSING/STRING MANIPULATII

ALGEBRAIC MANIPULATION LANGUAGES

ALGORITHMIC LANGUAGES

ASSEMBLERS. LOADERSiDERS

HARDWARE LINES

MAPPING

Pc CONCURRENCY

Pc FUNCTION

PMS STRUCTURE

SECONDARY MEMORY

HEMORY TECHNOLOGY

PRIMARY MEMORY
(5 i ze;wi d t h ; t i me)

SPEED (LOGIC TECHNOLOGY)

46 Part 1 I The structure of computers

A n a l y t i c a l

i Char les Babbage Dif ference
(1792-1871) ~~~i~~ . card controlled

H u l l e r s Difference Engine 50 d i g i t s / w o r d l
(1 0 0 ~ wordr ,

0 -

+-FIRST GENERFT I ON+SFCOND+TH I RD-

B e l l Telephone Labs

I I / I l l I V v V I

VACUUM TUBES
- .
2 1

A :
z i RLEGRAPH --
% j MFCHANICAL MEMORY j ELECTRO-

ELECTROMAGNET. TELEPHONE. u ; ..
I I I I I

Fig. 2d. Time chart: pre-computer technology.

I I I I I I
35 40 L 5 50 55 60 6: 70

I

9 O p e r a t i o n a l
p Paper

Function

The most striking fact about function is the existence of only a
single dimension, and with only a few values. Perhaps we have
taken a simplistic view of the functions that computers perform,
but we think our computer space represents reality: To wit, tkere
is remarkably little shaping of computer structure to fit the func-
tion to he performed.

At the root of this lies the general-purpose nature of computers,
in which all the functional specialization occurs at the time of
programming and not at the time of design. However, it might
seem that specialized environments would not require all the gen-
erality, so that functional adaptation would still be possible. But
this appears not to be so for two reasons. First, the level of opera-
tions of the Pc (as defined in the ISP) is too basic to reflect the
kind of specialization offered by the environment (think of infor-
mation-transfer or conditional-transfer operations). Second, all
environments ultimately require a variety of tasks in addition to
the main specialized task. These include at least language com-
pilation or assembly, readable formatted output, debugging aids,
and other utility routines. By the time these have been added, a
substantial requirement for generality has been generated.

However, this is not the whole story. A second part is the differ-
ence between the computer type and the specific configuration

assembled for a task. The latter is often carefully specialized to
the function to be performed. But this is mostly the amount of
Mp, the amount of types of Ms, and the number and types of T's.
Within limit?, these are all items that can be attached to any type
of computer (i.e., to any Pc) and are handled in an environment-
independent way. Thus there is little specialization of computer
types, but great specialization of particular configurations. That
this should be the case indicates something about the nature of
the functional specialization-that it can be expressed adequately
in gross PMS terms, as more bits of storage and more data rate.

There is still more to the story. Some functional specialization
exists, as indicated in the dimension. This depends primarily on
two kinds of things beyond the reach of the configurational adapta-
tion described above. The first consists of demands for reliability,
ruggedness, small size, etc. These have strong effects on design,
but below the ISP and PMS levels. The second consists of demands
for large amounts of processing power. One response to this again
affects design at the lower levels of logic, devices, and circuitry
and has little impact on design at the ISP and PMS level. But
response is also possible in terms of the data-types that are built
into the ISP. Large machines have data-types that are appropriate
to their tasks (with operations to match), and these affect the

Chapter 3 I The computer space 47

design. In fact, this effect is the substance of the functional spe-
cialization shown in the computer-space dimension.

Finally, there is one last part of the story, and it is the most
interesting of all. Various groups of computer engineers have felt
strongly from time to time that functional specialization should
exist, and they have set out to create such machines. These efforts
have often produced machines that were different from the exist-
ing main line of computers, i.e., were appropriately specialized.
But the net effect of almost all such attempts has been that the
new idea was seen to be good in general for all computers and
was taken back into the main line of computers. Thus, what started
out to be a functional separation turned out to be simply a way
to produce rapid development of a more universally applicable
computer. A classic example is the expansion of input/output
facilities in creating a functionally specialized business machine,
which simply led to better 1/0 facilities for all computers. We
will have more to say about such examples as we discuss the values
along the dimension.

Computer-system function

Scientific. The first machines were clearly designed for scientific
calculations. In fact, Aberdeen Proving Grounds funded the early
work on the ENIAC for the computation of ballistic firing tables.
And the image used frequently by the early computer designers
was the computer as a statistical clerk, the arithmetic unit being
the desk calculator, the memory the work sheet, and the program
the instructions that the mathematician gave to the clerk.

From a design standpoint, scientific computation has posed two
striking requirements. The first is the great accuracy of the num-
bers, which has led to word lengths of 36 to 60 bits (11 to 18
decimal digits of significance) and arises from the propagation of
roundoff error during repeated arithmetic operations. The second
is the emphasis on fast arithmetic operations, i.e., for arithmetic
power. In the early machines the standard rule for estimating
computation times was to count the number of multiplications in
a program; all else could be neglected. The arithmetic unit has
developed to where the floating point multiply is hardly more
expensive than floating point add. This requirement on fast arith-
metic, however, has really been directed at the logical design level,
not at the ISP or PMS level. Thus, the main effect a t the ISP is
the adoption of long word lengths, floating point data-types (in
addition to integers), and an extensive repertoire of arithmetic
operations in the ISP. The main PMS effect is the emphasis on
the classic “statistical clerk” PMS design.

The press for increased arithmetic processing has led in recent
times to the development of various forms of Pc concurrency, as

in the look-ahead of Stretch (Chap. 34) and the n-instruction buffer
of the CDC 6600 (Chap. 39). This might be considered a unique
functional specialization for scientific computation. It is too early
to tell, but it is our impression that, although the needs for sci-
entific computation initiated the exploration of concurrency and
parallelism, we will eventually see them in all computers above
a certain power, whatever the task domain. Physical limits on
component speed and signal propagation will make these tech-
niques universally attractive.

A better case for permanent specialization can be made in the
special algorithm computers, which compute the fast Fourier
transform or do vector operations. Here we finally have systems
whose whole design is responsive to a narrow class of problems.
This may extend to the very special kinds of Pc parallelism exhib-
ited by the ILLIAC IV (Chap. 27), although there is substantial
generality in such systems.

Business. In the early days of electronic computing it was felt by
many that there was a major functional separation between busi-
ness computing and scientific c0mputing.l Scientific problems were
“large computing-small input/output”; business problems were
“small computing-large input/output.” Certainly most of the
existing computers, designed for scientific computation, had poor
input/output facilities. The IBM 701, for example, used the Pc
to control everything dynamically, actually catching the bits from
running tapes on the fly (by executing well-timed small loops).
These design efforts for business computers resulted in the IBM
702 (and subsequently the IBM 705,708, and 7080). This machine
had two major innovations for IBM: It used characters, and it had
a PMS structure that permitted more flexible and voluminous
input/output. The latter feature was immediately incorporated
into scientific computers, e.g., into the 709, and then into all large
scientific computers as separate inpnt/output control (either Kio
or Pio), for it was realized that there were also demands on input/
output for scientific calculation. Thus the bifurcation was tempo-
rarily halted.

The specialization to characters as a basic type (as opposed
to long words) was already present in the IBM 702 but did not
have its effect until 5 years later with the development of the IBM
1401 (Chap. 18). The latter machine was adapted to business, both
in being character-based and in being small enough so that small
businesses could afford it. It was extremely successful (many thou-
sands were produced) and certainly represents a successful func-

‘Such feelings are still extant, but we are concerned here not with the
validity of the feelings but with what they led to at a particular period
of computer development.

48 Part 1 I The structure of computers

tional specialization for business. However, it is interesting that
the specialization has not been maintained, for the IBM Sys-
tem/360 (Chaps. 43 and 44) is again a single machine, although
it has in essence two internal ISP’s, one centered around characters
and the other around floating point data-types, that is, a business
and a scientific specialization residing side by side.l

Control. The third functional value is a computer used for control
in real time. Examples are process-control computers, aerospace
computers, and laboratory instrument-control computers. The role
of the computer is to act as a sophisticated control (K) in some
larger physical process, and thus it plays a subordinate role. Their
relatively late arrival was due to the high cost and unreliability
of early computers, as well as to the lack of necessary interface
equipment.

The functional specialization is seen most strongly in the word
size, which reflects the appropriate numerical data-type. The
numbers used in control processes are generated by physical de-
vices and are rarely better than 0.1 percent accurate. Since elab-
orate arithmetic calculations are not called for, the numbers, and
hence the word size, can be around 12 bits. Most control com-
puters have been 12 to 18 bits/word. A second specialization, again
reflecting appropriate data-types, is that all control computers are
binary and have boolean operations. This arises because many of
the external conditions to be sensed and effected are binary in
nature.

About the only other functional specialization of control com-
puters is the interrupt2 capability to allow them to respond to
many potentially simultaneous external conditions in real time.
This provides apparent parallelism, though still using a sequential
processor. This is another possible example of functional speciali-
zation leading to reunification rather than divergence, for it has
again been widely accepted that all general-purpose computers
must have good interrupt capabilities. However, in actuality,
interrupts, though not existing in early computers, were developed
to obtain good input/output facilities, not for control computers.

Chapters 7 and 29 give examples of aerospace computers, and
Chap. 33 describes the IBM 1800, which is specifically designed
for process control. As these examples show, a complex ISP is not

lThe story above has been told exclusively in terms of IBM machines.
Although this does not distort the picture too strongly in terms of total
movements of the field, since IBM dominated the market, concurrent
developments were taking place throughout the field. UNIVAC I was the
first computer built by a manufacturer and did not have the idiosyncrasies
we ascribe to IBM; on the other hand, the marketing effort for it was nil.
*Apparently introduced in the UNIVAC 1103.

necessarily required. This in part reflects the fact that control
computers may retain their programs over their whole lifetime,
so that programming and reprogramming is less important. (It is
not absent, however, and so this is not a very strong functional
adaptation.)

Communication. The functional specialization of communication
could be taken as a subfunction of a control computer. The function
is mainly to behave as a switch. In a message-switching application
the computer transfers messages from terminals (and links) into
primary (and sometimes secondary) memories and then transfers
them to other terminals (and links). In message switching, messages
are first stored and then forwarded. The computer in a telephone
exchange functions as a very sophisticated switch control. Here
the computer reads the off-the-hook signal, detects the dialed
numbers, rings the dialed parties, and finally sets the switches to
connect the telephones together. In some instances, when it an-
swers information inquiries about new telephone numbers or re-
routes calls to other phones, it functions as a memory. Thus a
communications computer is functionally a switch or a control
for a switch.

The main distinction between control computers and commu-
nications computers is that the task environment of the latter,
since it consists of digitally encoded messages (even in the case
of the voice telephone exchange), can be handled directly by the
communications computer. That is, the communications computer
can do the work of transshipment and storage as well as control.

There are no pure examples of communications computers in
this book. However, the Pio’s serve essentially the same function
within a single computer (Part 4, Sec. l), and they can profitably
be examined from this viewpoint.

File Control. We list this as a separate specialization only because
a number of computers have been built to do exactly this task.
The specialization is easily described: It is a communication com-
puter with the messages being characters (since they are built for
business), and with the large memory (the file) being considered
to be part of the system. There are no examples of file-control
computers in this book, but the early IBM 305 and UNIVAC file
computers serve this function. An IBM 1800 is used as the control
for a 1012-bit photo-optical memory, for example.

Terminal. Since it is possible to obtain a separate computer system
whose only function is to run a display, we have listed this as a
separate functional specialization. In fact, it is better viewed (and
almost always occurs) as a component of a larger computer system,

Chapter 3 1 The computer space 49

i.e., as a special Pio. The DEC 338 is such a P.display and is
described both later in this chapter and in detail in Chap. 25.

Time-sharing. The requirement to have a large number of users
in simultaneous conversational interaction with a single large
machine has bred a new specialization, that of the time-sharing
computer. All the computers described above can be time-shared
(even if they do not have interrupts or inherent multiprogram-
ming). However, the emphasis on this mode of operation with the
particular timing and flexibility requirements of human users doing
general computing at consoles in multiple software systems has
led to a number of innovations in design. The most important
is the virtual-memory techniques for achieving multiprogramming
(described in Part 3, Sec. 6). There is also substantially increased
complexity of PMS structure to handle the integration of large
files, swapping memories, and the huge software systems that seem
to be endemic to time-sharing systems. It is still too early to tell
whether any of the design responses will produce permanent spe-
cialization or will again simply be the first instigation of design
features that will become universally used.

In summary, we see that there is functional specialization and
that it translates mostly into total size of the machine and into
the data-types available. Many of the other design aspects created
in response to functional specialization have instead become the
common property of all machines.

Performance

For a device that does a complex job, it is meaningless to ask for
a single precise index of performance. It is like asking for the
average speed of a given model of car over its lifetime without
specifying who will own it, where he will drive it, and what sort
of terrain he will encounter along the way. Notice that the diffi-
culty is as much in the complexity of the task environment as in
the complexity of the internal workings of the machine. Specify
everything about the environment, and the performance can often
be given in a single figure. It may be hard to determine, but at
least it is well defined. If you know the terrain and road conditions
perfectly and how the car was driven, then from the structure of
the car it is possible to figure out the instantaneous velocity and
from this to construct the average speed.

To put this in terms of computers, given a particular configura-
tion for a computer system, given a particular program, and given
a particular set of input data, it is possible to determine all aspects
of the performance: how long it took, how much space was used,
whether it was correct, and so on. But we are not interested in

such specifics. We want to know how well the computer system
performs, given some vague notion of the kind of task-programs
and data-that will be used with it. Although we know that we
cannot have adequate measures, we believe that there is something
that can be said about the performance-that tells us that a CDC
6600 is many times more powerful in actual performance than a
PDP-8.

An interesting way to look at the problem of specifying perform-
ance is to play a simple game: We will give you a number, say
4. You are to give the best description of computer systems involv-
ing only that many parameters (equivalently, dimensions or attri-
butes). That is, what is the best description of a computer that
can be stated in four numbers? The game is easier to play if we
speak of the dimensions, rather than the information content of
the description (in bits, say).’ \lie have still not defined “best,”
of course. It can be taken to mean the best prediction of the
relative ordering of the computer system; better on the index
means better on the same task.2

To start at the beginning, what single number would you give
to characterize a computer’s power? Such a question makes most
people uncomfortable, since strong feelings exist for at least two
kinds of numbers, dealing with speed and memory, respectively.
If forced, we would probably settle for something related to proc-
essing speed. The cycle time of the primary memory is a possibility
because for simple machines it determines (limits) the operation
rate. It is a structural parameter, but that is no reason to avoid
it as a performance index. The average number of instructions per
second, or operations per second, is a better indicator. Since the
latter does not take into account the size of the word being proc-
essed, perhaps average bits processed per second is the best single
number. (We measure this number at the processor, and it may
include both the instruction and data streams.)

To take an average we must adopt some weightings. The sim-
plest scheme is simply to add all the instruction (or operation)
times and divide by their number. This is equivalent to weighting
them equally, the rare ones and the common ones. If we want
to do better than that we need some data. Several sets of relative
frequencies, of instruction types, called “mixes,” have been used
in the literature. Table 2 gives four examples. The Gibson mix is

‘It is not fair, of course, to invent tricks to encode many conceptually
independent dimensions into a single one, just to beat the limit. On the
other hand, composite dimensions, such as average operation time, are
perfectly acceptable.
2Definitional precision is not appropriate, since we are not attempting to
deal seriously with the technical questions of indices, only to illustrate the
issues.

50 Part 1 I The structure of computers

Table 2 Instruction-mix weights for evaluating computer power

Arbuckle [1966] Gibson‘ Knight (scientijic) Knight (commercial)

Fixed + / -
X

Floating + / -
Floating x
Floating +
Load/store

-
. . .
. . .
9.5
5.6
2.0

28.5

6
3
1

25 (move)
Indexing 22.5
Conditional branch 13.2 20
Compare . . . 24
Branch on character . . . 10
Edit . . . 4
1/0 initiate . . . 7
Other 18.7 . . .

‘Published reference unknown.
‘Extra weight for either indirect addressing or index registers.

probably the best known. The best source for such data comes
from instruction counts of running programs.

Knight takes the view (Fig. 3) that a single number can be used
to indicate power, and his formula has been evaluated for some
300 computers [Knight, 19661. His formula is the product of
three factors: processing time, memory size (in words), and word
length. The formula was derived (roughly) to measure power so
that technological change could be modeled. Applying the formula
is like measuring automotive-vehicle power as a product of speed,
weight, and the number of wheels. (Such an indicator is roughly
proportional to a car’s momentum.) Thus, although it is a reason-
able single-number indication for power, a computer buyer could
not use it directly.

Taking averages, as in the case of mixes, suggests a more sophis-
ticated approach. A collection of programs, called a “bench mark,”
is developed that does a variety of different tasks. Then the one
number is the time it takes to do this collection. Such a bench
mark generates its own frequencies of occurrence of the primitive
instructions. It brings in a number of additional dimensions that
affect performance: the instruction code, the size of Mp, pro-
gramming skill, input/output devices, etc. It also carries with it
an implicit frequency of different kinds of task demands (how
much of the set involves compiling, how much number crunching,
how much I/O, etc.).

There are severe practical problems in carrying out such meas-
urements on many computers, since the problems must be coded
and run on all the systems. It is somewhat easier if the task set

10(25)*
6
2

10

25(45)2
1

72 74

is restricted to programs coded in a procedure-oriented language,
such as FORTRAN, where all computers accept FORTRAN.
Nevertheless, although it has often been done to compare two
systems, only occasionally has it been done for even a modest
number. We feel that for a general-purpose computer the com-
piler-derived bench mark is a reasonable single-performance
number. Much actual use will be with the compiler, and good
compilers produce code to rival hand coding, so that special fea-
tures of the machine are utilized. Cox [1968] compares several,
using hand coding and compilers for several tasks.

There is a difficulty with the bench-mark scheme that is inher-
ent in its strongest advantage, that of doing a total problem and
thus integrating all features of the computer. The number obtained
depends not only on the type of computer, for example, an IBM
704, but on the exact configuration, for example, 16 kwords of Mp
versus 32 kwords, and even on the operating system and the soft-
ware (which version of FORTRAN). Thus, although the number
perhaps comes closest to an adequate single-performance figure,
it becomes much less of a parameter characterizing the structure
of the computer than one characterizing a contingent total system.

Let us underscore again the distinction between the computer
type and the particular configuration (possibly including basic
software) assembled in a particular installation. Computer systems
are designed with certain forms of variability. To s p e c i ~ a CDC
1604 is to specify many things, such as the ISP of the Pc, the cycle
time of Mp, the K’s used to control secondary memories (Ms), and
interfaces to the external world. But it leaves open many other

Chapter 3 I The computer space 51

~'i ir i i ihl i~s~nttr ihutes of each computing system

P
L
T
t,

= the computing power of the nfh computing system
= the word lengths (in bits)
= the total number of words in memory
= the time for the Central Processing Unit to perform 1 million operations
= the time the Central Processing Unit stands idle waiting for 1/0 to take

A, = the time for the Central Processing Unit to perform 1 fixed point addition
A, = the time for the Central Processing Unit to perform 1 floating point addition
M = the time for the Central Processing Unit to perform 1 multiply
D = the time for the Central Processing Unit to perform 1 divide
L = the time for the Central Processing Unit to perform 1 logic operation
B = the number of characters of 1/0 in each word
KI1 = the Input transfer rate (characters per second) of the primary 1/0 system
Kol = the Output transfer rate (characters per second) of the primary I/O system
KIP = the Input transfer rate (characters per second) of the secondary 1/0 system
KO2 = the Output transfer rate (characters per second) of the secondary 1/0

SI = the start time of the primary 1/0 system not overlapped with compute
HI = the stop time of the primary 1/0 system not overlapped with compute
Sz = the start time of the secondary 1/0 system not overlapped with compute
Ha = the stop time of the secondary 1/0 system not overlapped with compute
R1 = 1 + the fraction of the useful primary 1/0 time that is required for non-

place

system

overlap rewind time

CP

c3

c4

CS

P

W I l

W O l

~ ~

Semi-constant factors Values

Scientific Commercial
Symbol Description computation computation

WF the word factor
a. fixed word length memory 1 1

memory 2 2
b. variable word length

c1 weighting factor representing
the percentage of the
fixed add operations
a. computers without index

registers or indirect
addressing 10 25

b. computers with index
registers or indirect
addressing 25 45

Fig. 3. Knight's functional model algorithm to calculate P for any com-
puter system. (Courtesy of Datamation, vol. 12, no. 9, September, 1966,
page 42.)

weighting factor that indicates
the percentage of
floating additions

the percentage of
multiply operations

the percentage of
divide operations

the percentage of
logic operations

percentage of the 1/0 that
uses the primary 1/0 system
a. systems with only a

primary 1/0 system
b. systems with a primary and

secondary 1/0 system

weighting factor that indicates

weighting factor that indicates

weighting factor that indicates

number of input words per
million internal operations
using the primary
1/0 system
a. magnetic tape 1/0 system
b. other 1/0 systems

number of output words per
million internal operations
using the primary
1/0 system

per million internal
operations using the
secondary 1/0 system

number of times separate data
is read into or out of the
computer per million operations

overlap factor 1-the fraction
of the primary 1/0 system's
time not overlapped with
compute
a. no overlap-no buffer
b. read or write with com-

pute-single buffer
c. read, write and com-

pute-single buffer
d. multiple read, write and

compute-several buffers
e. multiple read, write

and compute with
program interrupt -
several buffers

overlap factor 2-the fraction
of the secondary 1/0
system's time not over-
lapped with compute

number of input/output words

the exponential memory
weighting factor

10 0

6 1

2 0

72 74

1 .O 1.0

variable variable

20,000 100,000
2,000 10,000

the values are the
same as those given
above for WI1

the values are the
same as those given
above for WI1

4 20

1 1

.85 .a5

.7 .7

.60 .60

.25 .55

values are the same
as those given above
for OL1, a through e

.5 ,333

52 Part 1 I The structure of computers

things, e.%., the types and sizes of Ms and the size of Mp. On
some computers it can even leave open part of the ISP (e.g.,
the multiply/divide options on many small machines), or the speed
of the Pc and Mp (e.g., in the IBM System/360).

When we ask questions about computer systems, we should be
clear whether we are talking about a computer “type,” such as
CDC 1604, or whether we are talking about a particular installa-
tion, with all the variability specified. It is possible to describe
either with PMS and ISP, provided we recognize that the diagrams
for the types represent maximal possibilities for assembling par-
ticular systems. This is how almost all the PMS and ISP diagrams
in this book were prepared. From the point of view of our “number
game,” if we are talking about computer types, we might prefer
numbers that do not depend on the particular configuration.

If two numbers were available for describing performance,
what would they be? Clearly there are several directions to go.
One could fractionate the bench mark, so that one has a bench
mark for arithmetic-rich tasks and a bench mark for others (a
composite of compiling and data processing). One could decom-
pose the processing rate into, say, operations per second and word
size (from which bits per second can be recaptured approximately).
Alternatively, one could retain only a single number for processing
rate and add a measure of the memory available, e.g., size of Mp
(in bits). Of the three we would choose the latter, especially if
we were talking about a particular installation rather than com-
puter types, for which Mp size remains variable.

We can continue this game through several numbers. Table 3
shows some of our choices. Various parameters drop out or change
only when they are decomposed into other parameters from which
they can be recovered. Thus, initially Mp must be measured into
bits, but when the word size is given, Mp is more reasonably
measured in words. One of the reasons for exposing such a list
is to emphasize its judgmental and approximate character. There
is as yet no way to validate such proposals for brief descriptions.

Table 3 Performance parameters specification
(as a function of an allowable number of parameters)

If we had bench marks, which are themselves only approximations
at measuring performance, we might look at how well the param-
eters in Table 3 predict the bench marks. But there remain the
difficulties of how to take into account the additional aspects of
the total system (e.g., compiler efficiency) that are implied in the
bench mark. Alternatively, one might want to construct a mixed
description of bench-mark numbers and measurements of the kind
in Table 3. Then the relationship between bench marks and these
other measurements would become an indirect measure of the
efficiency of the rest of the system.

We have discussed performance in a crude and cavalier way,
but this accurately reflects the state of the art. There are no precise
measures for performance. There are precise structure and per-
formance measures of individual components (e.g., memory size,
and speed and word length, and processor instruction times). When
designers (and users) are faced with obtaining a certain total
performance for a given cost, the only method is that of the bench
mark, because the task is such a significant variable. If performance
is to be increased, unless the task is sufficiently trivial, it is difficult
to predict what effect changing even the most direct structural
variables will have (e.g., memory speed).

Structure

We now turn from function and performance, which provide
design constraints and objectives, to the dimensions of structure,
which provide the space in which the design is actually cast. A
structural dimension is one in which the designer can attain any
of the values along the dimension by relatively direct means. Thus
a machine is completely specified by listing all its values along
the structural dimensions. From this, the system’s function and
its performance within that function can be determined.

What dimensions should be selected for structure? The view-
point is distinctly different from that of performance, where one

Number of
parameters
allowed: 1 2 3 4 5

Parameters: Pc(i.rate:(b/s)), - Pc(operation-rate:(op/s))-+
Mp(size:(b))- Pc(i.width(b)) >

-Ms(i.(words)) BT > >
Ms(size:(b)) Mp(i .(words))

Chapter 3 I The computer space 53

averages and combines many features to summarize effective out-
put. This tends to obscure structure. For structure, one wants
maximally independent aspects which are easily obtained if se-
lected as a design choice. For example, if the computer designer
had only a single dimension to describe a computer, he would
undoubtedly select the logic technology used in the Pc and Ks.
This tells him a good deal about many aspects of the computer's
structure. In fact, the technology and the average bits processed
per second by the Pc are correlated, and so each can be used to
predict the other, though only imperfectly. If one is interested
in performance, effective bits per second is preferred; if one is
interested in design, technology is preferred.

The computer space in Table 1 presents our choice of the major
structure dimensions. There is even less means to validate the
choice of dimensions here than there is for performance. Never-
theless, there are a few hallmarks. Perhaps the most important
is redundancy (the opposite side of the coin from independence,
mentioned above). Several dimensions of structure may covary,
so that giving any one of them is tantamount to giving the others.
This covariation need not come from physical dependence; it may
arise from the nature of an appropriate design and good engineer-
ing practice. Such a cluster of covarying dimensions is likely to
indicate an important dimension (which one among the correlates
is to be used is a secondary matter). Table 1 is organized in terms
of such clusters, with one of each selected as the main representa-
tive and placed at the left.

A second hallmark derives from the hierarchical nature of
computer systems. Generally a description of a system consists of
the union of the description of its parts, plus a description of the
interconnections. This is the basic style of PMS, for example. But
there are a few features that affect the total system, Le., affect
many components. These are usually rather important. Technology
is a prime example.

Yet a third clue is that the dimensions discriminate the actual
population of computers. If all machines had single-address in-
structions, for instance, there would be no sense in using number
of addresses per instruction as a dimension. Any computer engineer
who had studied machines a t all would know this to be true of
all computers. Thus one looks for dimensions that spread the
machines out evenly into a substantial number of categories.

If the dimensions of the space are known, a computer is sup-
posed to be defined by a single point. For most existing computers
this is actually the case. However, if a computer system were
complicated enough, say consisting of several processors, each built
with different technologies and having a different number of ad-
dresses per instruction, then such a representation would not be

possible. For instance, the Rice University computer uses vacuum
tubes, transistors, and integrated-circuit logic. But such complexi-
ties are rare; time and good engineering practice work against
it. If it were necessary to consider such cases, then additional
dimensions (e.g., for secondary and tertiary logic) could be added,
or several points in the space for a given computer could be
used.

The computer-structure space is thus our choice of the seven
most important dimensions. It is our response, so to speak, to
playing the number game, given only seven descriptors. They are
arranged in order of importance, although clearly no simple way
exists to validate such an order. But, if we were to have only three
attributes to describe the structure of a computer system, we
would pick logic technology, word size, and PMS structure (i.e.,
what processors exist with what functions).

At this point we are ready to proceed through the space, de-
scribing the various dimensions and discussing how the computer
systems in this book illustrate various points along them. We take
up each major dimension separately. A few of the correlated
dimensions are accorded separate sections, but most are discussed
along with the main dimension.

Technology

Computers are constrained by the physical technology from which
they are constructed. It is not just that new technologies provide
greater speed, size, and reliability at less cost, although of course
they do that. But technologies dictate the kinds of structures that
can be considered and thus come to shape our whole view of what
a computer is. For instance, the emergence of the PMS system
level is due to advances in technology. Prior to transistor technol-
ogy, it did not make sense to think of elaborate PMS structures.
The costs of the various parts were too high and the reliabilities
were too low. When, occasionally, such a machine was in fact
designed, it invariably proved too far ahead of its time to succeed.
An example in this book might be the RW-40, described in 1960
(Chap. 38). A more classic example is the Analytic Engine of
Babbage, which he designed in 1844 and was never able to com-
p1ete.l The technology of the time was entirely mechanical, and
its crude state accounts for a large share of the failure. Thus the
technology is by all odds the most important single attribute to
know about the computer system.

Many technologies go into making up a computer. Each type
of component typically uses a different one. In current (so-called

'Thus, the first real digital computer established the precedent of failing
by a large margin to meet the expected dates of completion and full
operation.

54 Part 1 I The structure of computers

third-generation) machines the Pc may use hybrid- and inte-
grated-circuit technology for its logic, thin-film technology for the
Pc generalized registers, core technology for the Mp, electro-
mechanical technology for tapes and disks (with integrated circuits
for logic), mechanical technology for card punches and type-
writers, and even manual technology for mounting tapes and disk
packs. The existence of all these technologies poses major issues
of systems balance, issues which are only imperfectly resolved. For
example, it remains true in the current generation that input/
output is not in balance with the internal structures. This is due
to the crude state of terminal technology, so that it appears to
cost too much to provide an appropriate solution.’

The heterogeneity of technologies is not a consequence of
cost/benefit analysis; rather, each represents the forefront tech-
nology for the type of device shown. (There is, of course, cost/
performance exchange for any component, but this is usually
within a technology.) Thus there is a sense in which the leading
technology can be used to represent them all. This is the technol-
ogy used for the logic level and is the one listed in the computer
space. If it is known that transistor logic is used in the Pc of
a computer, it is a safe prediction that Ms is electromechanical,
Mp is core, Tio is electromechanical printers and punches, etc.
This reflects the fact that technology develops and hence be-
comes locked with calendar time. Thus a prediction is from
logic technology to date and then to all other things known to
be current at that date.

This correlation of date with technology is given in the com-
puter space along with the generation. I t can also be seen in the
time chart. The correspondences must be taken as very rough only.
The technologies are listed in increasing power (and decreasing
cost). The dates run in exactly the same order. The one exception
is fluidics, which has been introduced very recently and is a special
technology for ruggedness, reliability, and direct external coupling
in certain control systems. (Small fluidic computers are at the early
prototype stage.)

Alongside the technology dimension we list the dimensions:
Pc speed (operations per second), and cost (dollars per million op-
erations), all of which vary directly (or inversely) with logic tech-
nology. In general, costs are extremely difficult to determine, espe-

Although beside the point of the current discussion, one reason why these
imbalances appear to be “permanent” is that the time constant for change
in the technology is of the same order as the time constant for human beings
(i.e., systems analysts, programmers, and users) to understand the imbal-
ance. Before system imbalance is diagnosed and solved, the terms of the
problem change, inducing new imbalances.

cially when technological costs are of interest rather than market
costs (which reflect numerous other factors). Nevertheless the
effect of technology on costs has been so striking (while simulta-
neously pushing up performance along all other dimensions) that
it seemed necessary to give a measure of cost in Table 1, no matter
how crude.

We have indicated only a few of the dimensions that are corre-
lated with technology. In fact, the only dimensions in Table 1 that
are independent of technology are the word length and the Pc
addresses/instruction. All the rest show dependence on technol-
ogy. For some, such as memory speed and size, there is a direct
correlation. For others, such as PMS structure and Pc concurrency,
the development of more complex versions-the leading edge, so
to speak-depends on technology, but there is free use of all
versions that are in existence at any given time. There are still
other dimensions of importance, not shown in Table 1, that have
also changed with technology, e.g., electric-power consumption.

One way to see both what varies and what is independent of
technology is to compare selected machines. For instance, Whirl-
wind (Chap. 6), a first-generation system, and the IBM 1800 (Chap.
33), a third-generation system, have reasonably similar ISP descrip-
tions, if one ignores index registers, which were not invented at the
time of Whirlwinds design. However, they have very different
PMS structures. In Whirlwind, the early system, transferred infor-
mation between Tio’s and Ms was under program control of the
Pc. The existing Pc registers and transfer gates were used because
it was too expensive to have separate ones. In the 1800, which
uses hybrid circuits, it is economical to have additional subsystems
devoted to special functions; hence there are many Pio’s operating
independently of the main Pc. It was not cost alone that limited
the complexity of first-generation vacuum-tube systems. The large
physical size of tubes introduced substantial transmission delays;
their large power consumption added dependency on a cooling
system; and their limited life and deteriorating nature constrained
the number of tubes that could be used in a system requiring high
reliability.

The IBM 700 scientific series (701, 704, 709, 7090, 7040, 7044,
7094 I and 11) offers another comparison, where there is an evolv-
ing structure over time, hence across technologies, but where for
reasons of compatibility the ISP’s have remained almost constant
(except for the 701). Again we see radical increases both inperform-
ance (Pc speed increases by a factor of 5 from the 701 to the 704
and another 10 to the 7094 11) and PMS complexity. But various
other features, though not affecting compatibility, were locked in
with the ISP and remained fairly constant. For example, Mp size
went to 32 kw (kilowords) early in the series with the 704; and

Chapter 3 I The computer space 55

it took a jerry-rigged modification to get 64 kw on a 7094 toward
the end of the lifetime of the series (see Chap. 41, page 517).

Throughout this section we have referred to technology as the
dominant factor in the computer. Does this mean that computer
development waits upon new fundamental windfalls? We have
been lucky in getting the transistor and, to a lesser degree, the
integrated circuit from external efforts. However, core memories
were invented for the computer and resulted because of need.
Read-only memories have also resulted both from development
at the circuit level and from pressure above, requiring the mem-
ories to be developed. All the electromechanical secondary mem-
ories (Le., magnetic tape, drums, disks, and photostores) have
resulted from the computer's needs. Thus, although technology
is dominant, the computer often forces the development.

The Pc operation rate is strongly correlated with logic tech-
nology, as we have indicated in the computer space. Our discussion
about technology and generations is also about operation rate. The
principal reason for the higher operation rate is because of faster
logic technology. Technology also has a secondary effect on in-
creasing speed. More reliable devices allow large computers to
be built. Smaller devices allow higher device densities, thus de-
creasing stray capacitance and inductance and shortening trans-
mission delays. Smaller components also allow increased inter-
connection density.

Operation rate is also relatively highly correlated with total
performance. If we hold the structure and concurrency constant,
the simplest way to increase performance is by increasing the clock
rate. The increase in the performance/cost ratio over the past two
decades of computer evolution has made their primary gains
through higher operation rates. The two 16-bit computers already
mentioned, Whirlwind (Chap. 6) and the IBM 1800 (Chap. 33),
provide a nice comparison of the evolution. With a difference of
10 years and two generations, their cost ratio is -1O:l whereas
performance is -1:5 and the internal clock rates are also -1:5.l

Znformation structure: word length, information base,
and data-types

All computers structure their information in a hierarchy of units,
which we defined as an i-unit in Chap. 2. For example, the IBM
System/360 starts with the bit; then the byte, which is 8 bits; then
the word, which is 4 bytes; then the record, which is a variable
number of words. In between, playing minor roles, are decimal

'However, it is not as dramatic an example as we could find. By picking
a better third-generation example we might get a cost ratio of -1OO:l and
a performance ratio of -1:lO.

digits (4 bits), the halfword, and the double word. A number of
features of the design are related to this hierarchical organization
of data. Before we consider them, we need to characterize the
organization itself. One characteristic of this organization, the
word length (in bits), gives most of the information, the rest of
the hierarchy adding only a little.

Let us see why this is so. At the bottom there is the bit, encoded
in two-state devices. Although other numbers of states are possible,
and ternary (three-state) machines have been proposed occasion-
ally, digital technology has developed exclusively to handle binary
information. There are several reasons for this. The first is the
requirement for high reliability and high signal-to-noise ratios in
the basic devices. Generally a basic n-state device (that is, one
not built up from other k-state devices) is realized by breaking
a continuous physical dimension, such as voltage, current, or
magnetic flux, into n discrete levels or regions. Reliability and
signal-to-noise ratio then depend on keeping adequate separation.
This is easiest to do with two states (e.g., in the limit they become
on-off devices) and becomes progressively more difficult as n in-
creases. The second reason is the simplicity of the logical design
for binary representations. A basic device for combining two
ternary digits must deal with 3 x 3 = 9 configurations, rather than
2 x 2 = 4 configurations for the binary case. This also gets worse
as n increases.

A final reason-the coup de grace, so to speak-is that no one
has ever found striking advantages for the resulting processing
structure in having more than two states. Thus there are no com-
pelling reasons to suffer the first two disadvantages. In short, what
might have been an important dimension on which to distinguish
computers, namely, the number of states in the basic encoding,
turns out instead to be one of the great uniformities in digital
technology.

Information base. That the physical devices deal ultimately in bits
does not imply that the information processing must be organized
in terms of bits. It is possible to select an arbitrary base (one with
any number of states) and construct the entire ISP in its terms.
A base unit is represented physically, of course, as a set of bits.
If one wanted a base 13 machine, for example, one would have
to use at least 4 bits (with 16 states) to encode it. But no operations
at the ISP level would refer to anything but base units and data
structures built up from sets of base units, and there would be
no way to manipulate directly the bits that represented the base.
Thus, using a base other than binary obtains whatever advantages
might accrue to n-state units, without any of the disadvantages
at the device level.

56 Part 1 1 The structure of computers

Computers have been built with a variety of different bases,
the main ones being binary, decimal, and character. The character
has shifted between a 6-bit character and an 8-bit character
(byte).’ The arguments for bases other than binary (which repre-
sents the natural base of the computer) all hinge on the alphabets
used externally by human beings and the desire to avoid conver-
sions into a different representation inside the computer. With
universal acceptance of higher languages, such as FORTRAN and
ALGOL, this argument has also lost much of its force. In fact,
all third-generation machines are binary. Nevertheless, in the fifties
there was much controversy over which base to use, and the
machines presented in this book exhibit all three bases.

There is little difference between binary and decimal com-
puters in their ISP organization. However, there is a great differ-
ence between these two and character machines. The latter are
designed for handling text and are constructed to deal with varia-
ble-length strings of characters. Correspondingly, they deempha-
size numerical computation. Both these decisions affect the ISP
considerably. Thus, in the computer space we indicate the base
dimension along with the word-length dimension. The two to-
gether make up a single dimension.

Word length. Let us now examine the role of word length. The
word is the first major information unit above the base. It is defined
as n bits for a binary computer or n digits for a decimal computer
(character machines being excluded as not having a fixed word
length). Sometimes there are intermediate units, but they always
play a minor role and we can disregard them at this stage. As we
noted earlier, the main determinant of word length has been the
function of the total system: large word lengths for arithmetic
systems, small word lengths for control systems (and character
strings for business). Thus, only within narrow limits is the word
length a free design choice.

However, the interesting thing about word length is not so
much its determinant as the way it affects other aspects of the
total system design. This starts with a design decision that the
unit of information transfer between components will be a word.
As soon as this becomes the case, then registers in various com-
ponents must hold a word, since that is what arrives or is to be
transmitted. Thus the word becomes the information unit of the
Mp, and most of the registers of the Pc hold one word. The instruc-
tion is designed to fit into one word, since that is the number
of bits that is obtained “at once” and hence can be used to effect
the next time increment of processing.

‘Seven bits have been proposed for communication purposes but have never
been made the basis of a machine, as far as we know.

Once these basic features are set, others follow. An integer
number of any smaller units, such as the character, should fit into
a word, since otherwise a set of words will not provide a homoge-
neous sequence of subunits. (That is, only five 6-bit characters fit
into 32 bits, so that a set of 32-bit words filled with 6-bit characters
has a number of 2-bit holes in it. This can complicate algorithms
that deal with long character strings.) The constraint of compati-
bility is not so strong with Ms, since speeds are slow enough to
permit conversion algorithms (either hardware or software). Still,
the system is simpler (and therefore usually will work better) if
incommensurabilities of information units do not exist. Thus, to
pick an example, the number of parallel tracks on magnetic tapes
tends to divide evenly into the word length. IBM tapes for the
700 series of 36-bit machines have six data tracks; for the Sys-
tem/360, which has a 32-bit word, the tapes have eight data tracks.

There is an interesting correlation between the word length
of a computer and the number of data-types that it makes availa-
ble. As we saw in Chap. 2, the operations in a computer can be
classified according to the type of data they operate upon. Each
data type tends to have a certain set of operations appropriate
to it (for example, + , -, X, and / for numbers) and the decision
to include a data-type carries with it the decision to include
its operations, Thus the number of operations tends to grow with
the number of data-types. The total amount of hardware in a
computer grows as the word size (because data paths are word-
parallel2) and also as the number of operations. Thus machines
with large word size tend to be large machines and have many
data-types and many operations, (“Large” as an adjective for
machines invariably means big and expensive, hence-given eco-
nomics-capable of doing large amounts of processing.)

There are two additional, somewhat independent, features that
support the relationship between word size, number of data-types,
and size of computer. First, with a large system there will already
be available many of the pieces necessary to add additional oper-
ations. That is, the marginal cost of a new operation goes down
as the system grows. Therefore, given a large system, there is a
tendency to add more operations, The number of operations per
data-type is not easy to increase; rather, one adds new data-types.
Second, with small word lengths, one cannot define many worth-
while data-types that will fit into a word, and multiple-word data-
types are left to the programmer to define with software. With
large word lengths there are many different worthwhile data-types
that fit into the word, for instance, decompositions of the word
into partial words, or into character strings. Each of these requires

The issue of bit-serial versus bit-parallel is discussed subsequently.

Chapter 3 I The computer space 57

additional operations, since the initial data-types involve the entire
word or some large part of it (i.e., the word, address, and integer
operations).

In sum, the word length stands as an indicator of many aspects
of the machine. It not only tells something about the basic organi-
zation of many components but indicates how big the computer
is, both in number of data-types and number of operations. Figure
2 shows time lines of well-known computers with their word
length, with a special time line for the ones in this book. Five
groups are suggested in the figure which classify these c0mputers.l
The classes overlap, and to separate a computer into one of two
classes requires more knowledge (e.g., the number of data-types).
For example, the 24-bit SDS 9300 and CDC 3200 appear in the
same class with the 36-bit IBM 7090 just because both machines
have floating point hardware and, in fact, perform comparably for
arithmetic tasks.

The one design choice that makes word length have few of the
consequences just described is making a computer bit-serial rather
than bit-parallel. In many machines information transfers are con-
ducted on a single bit stream (especially Pc-Mp transfers). Coinci-
dent with this is the construction of operations on a bit-by-bit
basis. This works well for arithmetic and logical operations. Time
is traded for hardware. The cost of the system becomes independ-
ent of word length, but the processing rates go down correspond-
ingly. This design decision was an extremely important one when
logic was expensive and unreliable. It has become less so in the
current era, where processors and transfer paths are relatively few
in number while both the cost and the reliability of components
have improved. However, as large parallel processors are con-
sidered (- lo3 P’s), bit-serial processors again become a serious
design alternative. (See the serial computers of Part 3, Sec. 2.)

In summary, word length is an important dimension, and we
find many characteristics either proportional to or inversely pro-
portional to it. To be sure, these relations hold only for current
design practice, as we have seen with the bit-serial designs. The
main-line computers in Part 2 are ordered according to increasing
word length.

Data-types. We have presented the number of data-types as being
correlated with word length and also with computer size through
the effect on number of operations. Although far from perfect,
there is a rough order in which specific data-types are included
in a computer. We have listed the main types in such an order
in the data-type dimension of the computer space. (See Chap. 2

‘The class number is essentially [log,(Mp word length) - 21.

for their definitions.) To be located at a point on this dimension
(say at floating point) means to have all the data types below it
on the dimension, (i.e., word, address, integer, boolean.) Occa-
sionally machines which violate this have arisen. Decimal ma-
chines do not generally have boolean data-types, and there has
been some attempt at machines with only floating point, i.e.,
without a separate integer type (e.g., the CDC G202).

The reason behind this cumulation of data-types in a fixed order
is that certain general tasks must be performed by any computer.
It must transmit data between the Pc and Mp, and this trans-
mission has nothing to do with the meaning or content of the data;
thus there is always the “unit of transmission,” which is the word
(except on character machines). Next, all computers manipulate
addresses to achieve generality (e.g., to compile), providing for a
second data-type. Next come integers, since almost all algorithms
make use of arithmetic (this could conceivably be absent in some
communications computers), and on up to floating point numbers,
multiple precision, and vector and string operations. At each stage
the uses are more specialized so that lower ones cannot be elimi-
nated, except for a few cases such as handling addresses as regular
integers.

Addresses per instruction and processor state

The number of addresses in an instruction has been a traditional
way of describing processors (i.e., their ISP’s) and hence the com-
puter systems containing these processor^.^ We use it in Parts 2
and 3 to separate the different processors.

Originally the dimension was simple: one-, two-, three-, and
four-address machines were constructed. It has become somewhat
more complex. A “one plus one” machine has one address for data
and one for determining the next instruction, and is to be distin-
guished from a two-address machine, which uses both addresses
for data. Index registers and so-called general registers provide
instruction schemes which lie somewhere between one- and two-
address organizations. When processors admit several instruction
formats or variable-length instructions, matters become even more
complicated.

A correlated dimension in the computer space is the amount
of processor state, that is, the number of bits that exist in the
processor, as described in the ISP. This is the amount of informa-
tion that can be held at the end of one instruction to provide the
processing context for the next instruction. It consists of a number
of status and mode bits (in modern machines packaged into regis-

Originally the Bendix G-20.
3Although used mostly to describe Pc’s, the description applies to any
processor.

58 Part 1 I The structure of computers

ters, but in earlier machines simply scattered around in the proc-
essor), the next instruction address, the accumulator and other
arithmetic registers, the index registers, and other general registers
making up a “scratch-pad’ memory. It is a simpler descriptor of
the ISP than addresses per instruction, since it is independent of
the number and variety of instruction formats. It is easy to define
processor state generally for any ISP, but difficult to define ad-
dresses per instruction.

The processor state is not the total number of bits in the proc-
essor, since there may be registers in the physical system that are
used within the interpretation of one instruction but which carry
no information between instructions. Address registers for obtain-
ing operands from Mp are the most common such “underground”
or “temporary” registers, but there can be others. We implied this
distinction by defining processor state in terms of the ISP rather
than the physical processor.

The correlation between the processor state and the number
of addresses per instruction is not simple, since it rests on two
separate issues. For the first, note that larger programs perform
transformations on the state of Mp (or even Ms or Tio’s) and are
not concerned with the state of the processor. Processor state
enters only because, in decomposing the total algorithm into a
series of small steps, it is not possible (or efficient) to make each
step a transformation from Mp to Mp. Basically, this happens
because the instruction does not hold enough information to spec-
ify the Mp-to-Mp transformations. For example, if one wants to
add two numbers, two operands are required, and an instruction
must contain at least two addresses; if it does not, then an inter-
mediate state (i.e., processor state) must be created to hold the
information while the additional instructions are fetched. Thus,
one-address organizations require the most processor state, with
less for two- and three-address organizations, This consideration
stops at three (two operands and a result) because only a few
elementary operations are more than binary. The processor state
cannot be eliminated entirely, however, since there must be at
least an instruction address (a program register) to maintain con-
tinuity of the program.

~ The second source of correlation between processor state and
instructions per address comes from differential access time to
processor registers and to Mp. As long as there is an appreciable
differential, substantial gain, processing power can be obtained
from increasing processor state. This derives, again, from the struc-
ture of algorithms which generate intermediate results that are
used almost immediately afterward and then are of no further
interest. Rapid temporary storage and retrieval are beneficial
under these conditions. Thus, working against higher address

organization is the extra time to store in Mp results that need only
temporary storage. Thus, also, index registers and general registers
almost always imply increased processor state, although they need
not do so logically (that is, the registers could exist in Mp and
still have their effect on the instruction format).

With interrupts and multiprogramming the processor state
gains additional significance, since it is the amount of information
that has to be saved and restored when switching programs.
For example, in the Honeywell H-800, an early three-address
computer, the processor state per program consisted only of the
program counter and index registers, and when io-halts occurred
during processing, the Pc was switched immediately to another
program. Eight programs could run concurrently (by having a total
processor state of 64 program registers). In present computers with
general-register state, often 25 - 100 words must be stored, which
implies an appreciable time for switching contexts.

We can now consider briefly the different organizations accord-
ing to addresses per instruction. To show the common similarities,
we give in Fig. 4 a state diagram that can be used for all processors.
In common is the basic idea of the stored program: Fetch an
instruction, determine what the instruction is to do, then execute
it (the fetch-execute cycle). Other than this, only a part of the
state diagram will be applicable to a given processor type.

As shown in the computer space, the addresses-per-instruction
dimension starts with zero addresses, then one address, then one
plus indexing, one plus general registers, and on up to two, three,
and variable addresses. However, from an expository viewpoint
one should follow a different course, starting with single-address
machines, then indexing, then two- and three-address machines,
then general registers, and finally the zero-address and variable-
address organizations. This not only puts the more common
organizations first but makes it easy to relate the organizations
to each other.

P(l address) and P(l + index address). These Pc’s constitute most
first-, second-, and simple third-generation computers. The earliest
outline of the structure was the IAS computer (Chap. 4), which
has come to be known as the von Neumann computer. Although
fundamentally like the IAS computer, EDSAC’s adaptation ap-
pears to be the closest prototype to this class. Although EDSAC
is not described, it influenced M.I.T.’s Whirlwind I significantly
(Chap. 6).

A significant change to the IAS machine was the addition of
the index register (called B-tubes) in the Manchester University
machine in the early 1950s. The evolution can be seen by compar-
ing the first and third generations using Whirlwind (Chap. 6) and

Chapter 3 I The computer space 59

f e t c h
operand

f e t c h
(read)
lav. r I

\ 4

Request Determines the Request
inst ruct ion operand
q f rom Mp instruct ion q t rom Mp

store
(write)
(av. w)

operation opera1
specif ied address

CaIcuIa t ion
q (0) (0v.w)

Return for s t r i n g
or vector da ta fetch next instructiok

Multiple
results

PC2

'Mp control led s t a t e
'PC control led s t a t e

Note: Any s t a t e may be null

S t a t e name
soq/oq
saq/aq
sa. o/o.o
sov.r/ovr
sav.r/av r
solo
SOV.W/O" w
sav.w/av w

Time in a s ta te
toq
t a q
to.0
tov. r
tav. r
t o
tov. w
tav. w

Meaning
Operation t o determine the inst ruct ion q
Access (t o Mp) fo r t h e i n s t r u c t i o n q
Operation t o decode t h e operation of q
Operation t o determine t h e variable address v
Access (t o Mp) read t h e variable v
Operat ion specified in q
Operation t o determine t h e variable address v
Access (to Mpl t o wr i te variable v

Fig. 4. ISP interpretation state diagram.

the IBM 1800 (Chap. 33) or looking at the IBM 701-7094 evolution
in Part 6, Sec. 1. Index registers are motivated by the frequent
occurrence, in 1 address systems, of circuitous address calcula-
tions that involve first computing the address (e.g., the index of
an array in Mp) and then planting it just ahead in the instruc-
tion stream in order to make use of it as an address. Providing
a set of index registers introduces a second address into the in-
struction, even though of extremely limited function. Thus we
classify processors with indexing as having (1 + x) addresses
per instructi0n.l An alternative view of index registers suggests
that they double the number of data-types by allowing operations
on vector data elements rather than just scalars.

'Indirect addressing, on the other hand, does not add to the addresses per
instruction; rather, it introduces a second operation per instruction.

For the 1 address processor, the processor state (Mps) typically
consists of the program counter (instruction location counter), an
Accumulator/AC, a Multiplier-Quotient register/MQ (the exten-
sion of AC), and one or more Index registers/X/XR.

With only one address in the instruction, the one arithmetic
register, A, must be used for temporary results. Thus an effective-
address integer (z) is computed as a function of the address part
(v part) of the instruction (9) and the index registers. This process
is typically

z := v + X[j]

where X[j] is the jth index registers as specified in the instruction.
There are several forms for the transmission operators between

A and Mp.

60 Part 1 I The structure of computers

A t z loud immediate
A + MpExI load direct
A t Mp[Mp[x]] load indirect
M[x] c A store direct
Mp[Mp[z]] t A store indirect

In indirect operations a convention may be required to determine
what address in Mp[z] is to be used.

Similarly, the binary operations (+, -, X, /, A, V, 0, con-
catenation, etc.) are generally of the form’

A t A b M p [z]

Rarely do we find the symmetrical operation form

For unary operations (-,, -, abs, sin, cos, etc.) the most com-
mon forms are

A t u A
A t u Mp[z]

Rarely do we find

MP[ZI + MP[ZI
Mp[z] t u A

In both the above cases, exclusion of the operations that place
results in Mp[z] stems from the added cost of including the sym-
metrical function and the marginal utility of such a function,
which stems from the result of applying u not being available for
further processing.

The transmission, unary, and binary operators account for al-
most all operations in these computers. If we allow A to stand
for any part of the Mps, rather than just the accumulator, then
the instructions not included above are input/output data trans-
mission, e.g.,

M p c T and T c M p

and conditional execution

(branch if zero AC) -+ ((AC = 0) -+ (P c z))

Having index registers requires operations to process them. At
a minimum they must be loaded and stored (usually from and to
Mp), Le.,

Mp[z] t X store index

X c Mp[z] load index register

Any of the addressing modes suggested above can be used for an operand:
that is, I immediate, Mp[z] direct, and Mp[MP[z]] indirect.

But simple operations on an X are also desirable; for example,

X t X + 1

Here X is used to point to (access) the next element in a vector.
More complex operations can be carried out by placing X in the
A register, via the program steps:

A t X load A with I<
A c f(A) manipulate A
X t A load X with A

An operation to add k to X would then be

A t X ; next
A c A + k; next
X t A

instead of

Mp[z] t X; next
A +- Mp[z]; next
A t A + k; next
Mp[z] c A; next
x +- Mp[zI

which assumes no transmission paths between X and A. Ideally
we would like to perform any operation directly on X as simply

X c X + k

From this begins the idea that X should look like the main arith-
metic register, A. This is, no doubt, one evolutionary path to
general-register processors.

Part 2, Sec. 1 is devoted entirely to 1 address computers in
the first three generations. They were the “main line” of computer
development.

P(2 address) and P (3 address). The computers in Part 3, Sec. 1
have instructions which contain multiple addresses per instruc-
tion. The addresses (v) specify operands in Mp (Fig. 4). The Mps
decreases as the number of addresses per instruction increases,
since the operands need not be held temporarily between instruc-
tions (Le., each instruction performs a complete operation).

The instruction form for the 3 address computer is

where b is a binary operator, and vl, v2, and vB are the addresses
specifying the operands. In the case of unary operations, u, v2 is
usually blank. In the case of a binary operation and a three-address
computer, the states are oq, aq, 00, ov.r, av.r, ov.r, av.r, 0, ov.w,

Chapter 3 I The computer space 61

av.w (Fig. 4). MIDAC (Chap. 14) and Strela (Chap. 15) are typical
three-address computers.

A 2 address computer does not necessarily require more proc-
essor state than a 3 address computer, since the operations can
correspond to

and

However, sometimes extra Mps is usual. The RW-400 (Chap.
38) has an accumulator, and operations generally terminate with
results both in primary memory, Mp[v,], and in the accumulator.
The branch on accumulator instructions allows results to be
checked directly without referring to Mp. An especially nice
instruction in 2 address computers is the transmission instruction
(a special-case unary operation): Mp[v,] t Mp[vl].

The IBM 1401 (Chap. 18) has two registers, Laddress and
B-address, which hold v1 and v2 and can be loaded by the v1 and
v2 parts of the instruction. These registers point to (address) oper-
ands and do not contain data. The remaining processor state is
the Instruction-address. The 1401 has instructions with no
address parts, and these instructions take as operand addresses
the values of Laddress and B-address as of the previous in-
struction. The 1401 instruction-interpreter state diagram is given
in Chap. 18 (Fig. 3) . The state-diagram specialization (Fig. 4)
is roughly:

oq, aq, 00 {ov.rl,av.r1,0v.r2,av.r2,0,0v.w2,av.w2}. . .
{ ov.rl,av.r1,0v.r2,av.r2,0,0v.w2,av.w2}

where the sequence delimited by the { . . . } is the operation on
a character; because the 1401 operates on variable-length strings,
it is repeated until the end of the string.

P(n + 1 address). Processors with n + 1 addresses deviate only
slightly from the u-address processors above. The final, or +1,
address explicitly specifies the address of the next instruction. As
such, it can be used with any instruction set. There are two reasons
why + 1 addressing is used. First, freedom is provided in the
placement of each instruction within the program address space.
Second, the next instruction address can be calculated in parallel
with the execution of the current instruction.

For computers with cyclic memories (Part 3, Sec. 2), the + 1
address allows both data and the next instruction to be specified
independently, providing the opportunity to arrange the program
and data in an optimum fashion. Since each instruction completion
time depends on the location of data, it is desirable that the next

instruction location be variable rather than the implicit next ad-
dress used for most processors. This is almost universal practice
in computers with Mp.cyclic (see LGP-30 in Chap. 16 for an
exception).

Microprogrammed processors may use the + 1 address to locate
the next instruction, and there may be several such next addresses.
Microprogram subroutines tend to be short (intrinsic to interpret-
ing an instruction set), and there are many jump addresses. The
increased speed from not having to compute the next instruction
address is worth the added space cost. The IBM System/360 Model
30 (Chap. 32) shows the use of multiple (+1) addresses and if
classified according to our scheme would be at least a €'(micro-
program; 3 + 1 address).

P(generaZ register). The general register processor has a small array
of registers that can be used for multiple functions. These have
fast access compared with the Mp, so that it pays to do as much
processing as possible within them. Since the general register array
is small, it requires only a small address (3 to 8 bits). Thus the
instruction format contains fields for one (or more) general regis-
ters. There must still exist addressing for Mp, though this never
exceeds a single address. Thus we classify general registers ma-
chines as (1 + g) addresses per instruction.

The organization of a (1 + g) system can vary from something
very close to a (1 + x) organization, in which essentially every
instruction involves some Mp information, to an organization in
which the only Mp instructions are transfers between Mp and Mps
(the processor state holding the general registers), and there is a
two- or three-address instruction set involving only Mps (see the
CDC 6600 in Chap. 39). That is, from a data point of view the
Mps acts like a directly addressable Mp.

The processor state of a general register processor is invariably
held entirely within the general register array (rather than having
additional independent registers). This is due in part to an already
available mechanism (the array) and in part to the need for pro-
gram switching, which is somewhat simplified by having all the
Mps held in a single homogeneous memory.

The general registers typically perform a variety of functions:

1 Arithmetic registers (accumulator and the accumulator ex-
tension for the multiplier-quotient).

2 Index registers.

3 A second index register or base register; if the program
addresses (v) are short, a base register is needed to address
any area of Mp.

4 Subroutine linkage registers.

62 Part 1 1 The structure of computers

5 Program flag (sense) registers for boolean variables. where

6 Stack pointer (P may have multiple simultaneously active b are binary operators (+ - ,, , l A , l etc,)

7

8

u are unary operators (7 I - I ahs() 1 - a b () I etc.)

G is the general-register array
g, g,, g,, g, are instruction parts specifying a general register, G
v, vl, v,, v3 are Mp addresses specified as a function of instruction and
general registers (for example, v := (address + G[g]) or v := (ad-

stacks).

Address pointers to data arrays and lists.

Temporary data storage for intermediate results.

9 Temporary program storage for short program loops.

The power of a general register processor is obtained because
the registers can serve many functions. Thus the operations on
these registers can be extensive, because the operations need not
be duplicated in other parts of the structure. For example, special
operations for index registers are not necessary because the opera-
tions for integers apply universally to both the accumulator and
index registers. Of course, such generality requires compromises.
The stack computer is faster for problems which can utilize stacks,
whereas the general register Pc must utilize Mp for the stack(s)
and does not have the encoding efficiency of a pure stack processor
(see below). In addition, the assignment (and reassignment) of
general registers is most crucial, since they are a scarce resource
with many uses. A general register organization allows processors
with a high degree of parallelism to be constructed, since several
instruction subsequences can be executed concurrently.

The actual number of registers is rather critical and depends
not only on the algorithms of tasks coded but also on the technol-
ogy. In multiprogramming and interrupt computers, the program
switching time increases with the number of registers. Thus the
upper bound on the number of registers is both cost and program
switching time.

We would expect to find instructions which produced the fol-
lowing affects.

Addresseslinstruction

dress + G[g,] + G[g,]) in the IBM System/360).

General registers can be thought of as an outgrowth (generali-
zation) of the 1 + x processors, as we have already suggested.
Alternatively, they can be thought of as evolving from a 2 or 3
address structure. The UNIVAC 1103A, a 2 address processor
(Chap. 13), was no doubt a forerunner of the general register
UNIVAC 1107 and 1108. Pegasus (Chap. 9) is, we think, about the
earliest computer to use general registers (1956). In Part 2, Sec.
2 we discuss four general registers computers.

P.stack (0 addresses per instruction). From a PMS viewpoint the
P.stack is built around having a first-in-last-out memory (Mstack)
as part of the processor state. Conceptually, it is built around the
fact that computations can often be sequenced so that no explicit
names (Le., addresses) are required for temporary results. All
operations are performed on the top of the stack. As each partial
result is computed, it is pushed down in the stack and appears
again to participate as an operand at exactly the appropriate point
in later calculation. Thus the stack operates as an implicit memory
for all intermediate products and not only are transfers between
P and Mp avoided but space in the instruction for Mp addresses
is eliminated.

Instructions in such a system consist only of operations, since
all their operands are in the stack. Thus the instruction format
is that of zero addresses per instruction. There must, of course,
be some addressing of Mp (just as in a general-register organiza-
tion). However, the addresses for Mp themselves sit in the stack
so that the instruction contains only the transfer (load or store)
operation, not the address. There still must exist some way of
getting fresh data in the stack, and all P.stacks have at least one
operation that loads an address written in the program stream onto
the top of the stack.

Why there should be this happy correspondence between cal-
culations and memory to be performed and stack memories re-
quires a little explication. I t rests fundamentally on the phrase
structuring of calculation in which each partial result is required
at one and only one point, so that each subcomputation can be
nested in the program (and hence its result nested in the stack)

Chapter 3 I The computer space 63

in the same order as it will occur as operand to the one operation
that uses it.

There are several arguments against a Pstack. Multiple stacks
are often required. Part of the power of a P.stack is derived from
having higher-speed Mps for the stack. Yet only the top few (2 - 8)
registers of the stack can be in Mps. When M.stack overflows into
Mp, the speed of operations can become much worse than not
having a stack at all. A simpler implementation, for example,
P.general,registers, is as fast and perhaps more general. Another
difficulty with the stack is the inability to access other than the
top. If full addressing is provided, then the organization has be-
come almost general register. Yet another difficulty arises from
inhomogeneity of data-types, especially if several of them are
packed into a single word (the width of the stack). Thus, for in-
stance, in one stack machine (the Burroughs B 5000 in Chap. 22)
there is a completely separate nonstack ISP for string manipula-
tion.

A simple numerical computation is given in Table 4 as a com-
parison of the P.stack, P . l address, and P.general,registers. Here,
the Pstack is probably shown at its best as there are no array-
indices calculations or program-flow manipulations involving
testing, etc. The criteria we measure are the algorithm encoding
space and the problem running time.

The kinds of instructions interpreted by a P.stack are typically:

Interpreter state
Operation sequence Example

Load oq, aq, 00, ov.r, av.r M.stack-top t Mp[v]
Store oq, aq, 00, ov.w, av.w Mp[v] t M.stack-top
Unary operation oq, aq. 00. o(u) M.stack-top t u M.stack-top
Binary operation O q , aq, 00, o(b) M.stack-top c M.stack-top b

M . stack-top- 1

Variable numbers of addresses per instruction. Although there are
a few operations that require the specification of three or more
addresses, these are of such low frequency that no machine has
ever been built (or seriously proposed, for that matter) that has
more than three data addresses and one next-instruction address.
(Some of the microprogrammed processors have more than one
next-instruction address, and they often do several operations in
parallel in one instruction.)

However, there have been developed processors that can have
a variable number of operands. Most of these involve the use of
an instruction that is larger than a single Mp word. Thus, bringing
in the first word of an instruction, which contains the operation
code, determines how many additional operands are needed and

hence how many additional words to obtain from Mp. (In a char-
acter-based system this may require several reads per operand;
in a word-based system this may be one or two operands per read.)
The gain in such a system is the higher average density of opera-
tions per instruction, bought at the price of extra Mp accesses.

Most such variable-address processors have a mixture of one,
two, and three addresses per instruction-simply a mix of the types
already considered. The fundamental limit to such variability is
the processor state (plus the additional within-instruction tempo-
rary state). This, of physical necessity, must be finite, and the
number of addresses must yield an amount of information that is
less than this total state. Otherwise the processor cannot hold onto
it to process it.l Thus the various processors which claim to operate
from a higher language (see the P.languages of Part 4, Sec. 4) must
in fact either translate into another simpler programming lan-
guage, as does the FORTRAN machine (Chap. 31), or become an
interpreter which processes a small amount of a language state-
ment before the rest.

PMS structure

The idea that there is significant higher organization to computers
is relatively new. Texts on logical design of computers develop
a model based on an arithmetic section, input/output devices, a
memory for holding instructions and data, and a single control
to force the other components to interact. A PMS diagram of an
early model is given in Fig. 5 (X represents an external agent,
usually a man). The Whirlwind I manual-model figure (page 10)
used in Chap. 1 was rather highly developed because it had a

secondary memory and switching. Figure 6 is a PMS diagram
which reflects this more accurate model. Often computer designers
lump the devices at the periphery and call them all input/output;
these devices are both input/output terminals (T) and secondary
memories (Ms).

'If it processes a large amount of information, but in pieces (i.e., sequen-
tially in real time), it is not really executing a single instruction based on
all the addresses but has decomposed the total computation, just as a
single address organization has.

Fig. 5. Early model of a stored program digital computer PMS diagram.

64 Part 1 I The structure of computers

Table 4 Comparison of stack, general registers, and accumulator Pc for evaluating the expression: f = (a - b)/(c - d x e)

Pcstuck [stack contents] Pcgeneral register Pc. 1 address

Push a [a] Load G[1], a Load d
Push b [.a, b] Subtract G[1], b Multiply e
Subtract [a - b] Load G[2], d Inverse subtract c1
Push c [a - b, c]
Push d [a - b, c, d]
Push e [a - b, c, d , e]
Multiply [a - b, c, d x e]
Subtract [a - b, c - d x e]
Divide [(a - b)/(c - d x e)]
Pop f [] - stores stack at

Multiply G[2], e
Inverse subtract G[2], c1
Divide G[1], G[2]
Store G[1], f

Store temporary
Load a
Subtract b
Divide temporary
Store f

location, f

Program size:
Address integer/ai
Operation parts/o

6 ai
4 0

Number of Mp refer-
ences for data:

Program size for
hypothetical example 4 x 6

6 x (18 + 1)

machines: 138
Program size in bits
among specific C’s:

B850 1 3: 168

6 ai + 8 ai(gr)
7 0

8 ai
8 0

6 x (18 + 6 + 42)
1 x (6 + 2 x 49
182 192
IBM System /360:208(above1) IBM 7090:288(above1)

:224(actual) 360(actual)
+ base register overhead

8 x (18 + 6)

(0 - 192)*

‘Not an instruction in the specific.example machines.

2Assume 16 general registers.

3The Burroughs Corporation 88501 Pc.stack (discontinued)

4Not completely true, since Systern/360 has only a 12-bit address and uses base registers. Some overhead should be assumed. Worst case (but not unreasonable) IS

6 x 32 or 192-bit overhead.

If we separate each component according to its function, assign
control (K) to each element, and finally introduce the processor
(P), we get the structure of Fig. 7 . Of course, a large part of P
is a data operator (D). The processor has the behavioral properties
attributed to the structure of Fig. 5. If we include the control
within each component, we get Fig. 8 from Fig. 7.

To consider larger structures, consisting of several Mp’s, P’s,
Ms’s, and T’s, one might think to expand the system as shown in
Fig. 9, in which we connect everything through a single switch.
If the central S has sufficient power for multiple conversations,
this indeed provides maximum generality. However, although

Fig. 6. Early computer model (with Ms and S) PMS diagram. Fig. 7. General computer model (with distributed control) PMS diagram.

Chapter 3 1 The computer space 65

designs have been proposed for such a system, technology and
economics have so far prohibited their actual realization. Instead,
there has developed the general latticelike structure shown in
Fig. 10. Each switch in this structure connects components on one
side with components on the opposite side (the S interconnecting
the P’s being the exception).

The lattice structure of Fig. 10 is hierarchical in the sense that
the Mp’s form the inner core and one travels out toward the
periphery in moving from left to right. With this movement there
is a general decrease in data rate, being highest through the Mp-P
switch and lower as one moves to the right.

The model has five switches (S). One switch connects the com-
puter’s peripheral devices with the external environment (human
beings, other processes, etc.). Three switches appear alike in the
way they interconnect Mp-P, P-K, and K-(T I Ms), respectively.
However, they are usually quite different. We would expect any
P to connect with any Mp. We probably would expect to have
only one or two Pio’s connected to a given set of K’s. Most cer-
tainly one or two K’s would manage a given set of Ms’s or T’s.
Thus the structure nearest the periphery becomes more like a tree,
rather than a lattice (examples are provided in Figs. 11 and 12).
The last switch in Fig. 10, unlike the above four, provides inter-
communication among the processors. In any multiprocessor struc-
ture (even 1Pc-nPio) there must be communication among the
processors. A switch of this type is organized as a nonhierarchy
and appears like a conventional telephone exchange, since any P
can call another. On the other hand, the amount of communica-
tion (measured in bits) is rather low.

The P’s and (usually) Mp’s have their controls associated with
them, and we have not bothered to show such K’s in the diagram.
The K’s that are shown provide control for the T’s and Ms’s. These
are separated in the figure because they are separated in current
computer systems and made into identifiable physical components.
Under current technology they are expensive devices, so that one
K per T or Ms is not economical. Therefore, each K needs to be

P

I

P P P . . .

T - X

Ms M5 Ms.. .
I

X

Fig. 9. General computer model (with multiple components) P M I
diagram.

U
periphery

lX(hurnan /computer /network lrnechanical process)
where

P i 0 := -Pia- 1 - Kio-

K := ~ ~ I I I - K - I - K - K -
T ;= -T-l-K-T-

Ms := k M s - 1 - K - M s -

Fig. 10. General computer model (multiprocessors) PMS diagram.

~ T . c o n s o l e -

Mp-Pc-

K-Strn

-€::- K-Sfx

rT-

Fig. 8. General computer model (without K) PMS diagram. Fig. 11. Tree-structured computer (1Pc) PMS diagram.

66 Part 1 1 The structure of computers

shared among a set of T’s and Ms’s. (That is, one purchases a single
magnetic-tape controller for, say, four magnetic tapes.) The shared
K also explains why only one of a given class of devices (e.g.,
magnetic tapes) can operate at a time. As technology changes
(especially costs), these separate K s may disappear.

Nearly all the computers discussed in this book fit the lattice
model of Fig. 10. However, it is not unlikely that structures will
be or have been built that do not conveniently fit it. For example,
NOVA (Chap. 26) does not fit the model nicely, although the more
complex ILLIAC IV arithmetic-computer portion (Chap. 27) does.

The values along the PMS structure dimension of the computer
space have been generated from the general model and laid out
in the order of their evolution. This evolution is strictly from less
complex to more. The seemingly more complex network structures,
such as the duplexed computers, are not necessarily as complex
as a single multiprocessor computer. Duplex computers have been
used for some time. The slow evolution to the parallel processor
structure is due primarily to limitations in technology. A struc-
tured computer with a distributed control is more expensive than
a tightly integrated design with shared function. In addition,
multiprogramming-a question of software-must be present to
allow multiprocessing.

The PMS structure plays only a minor role in obtaining multi-
processing and parallel processing. The classical debate about
building large computers has always been resolved by building
a single large processor (e.g., the CDC 6600 and Stretch, Chaps.
39 and 34). Proponents of multiprocessors say that one can always
add several large processors to a structure and increase the per-

Mp MP ~ ’ ~ ~ ~ - S IK --S r TT:
K i o Ms

P i 0

u
I a t t i ce rne rno rv -Drocesso r T- X

I
. .

/
s w i t c h i n g

c o m p u t e r b o u n d a r y
(p e r i p h e r y)

Fig. 12. Tree-structured computer (1Pc-2Pio and lattice Mp-P switch)
PMS diagram.

formance of a one-processor structure. In Part 6, Sec. 3, when we
discuss the IBM System/:360, we advocate multiprocessing.

Today there is no parallel processing in the form suggested
in Chap. 37. We include a discussion of parallel processing on the
bet that it will come in the future. Part 5 is dedicated to moving
along the PMS structure dimension.

The simple 1 Pc structure shown in Fig. 11 is a tree. Although
there are no values on the information rates, the nature of the
fixed1 and time-multiplexed switches indicates that perhaps the top
two T’s, one Ms, and one of the bottom T’s can all be active at
a given time. In Fig. 12 a 1 Pc, 2 Pi0 computer is given. Here
we note that the control of one secondary memory is by a Kio
rather than the Pio. (The Kio cannot fetch its next instruction from
Mp and must rely on Pc for control.) Note that there is necessarily
a lattice connection between the 2 Mp and the Pc, 2 Pio, and
Kio. The special cases of P.displays multiprocessors, P(array I wired
algorithm), and parallel processing are all realized from the general
model of Fig. 10.

Switching

A principal issue of a computer design at the PMS level is switch-
ing (as we indicated in the preface). Unfortunately, we do not
illuminate switching problems in this book except to provide
examples. The switching dimension of the computer space is cor-
related with PMS structure, as we have just seen. To have a more
complex structure, more complex intercommunication (switching)
is required. Figure 13 shows the various logical switches, together
with some of the more common implementations. The switch
parameters are also given in the Appendix of this book. Each of
the switching issues will be discussed in turn as they apply to
various parts of the structural model (Fig. 10). The reader should
note that Fig. 13 has relatively primitive switches. More complex
switches can be formed by cascading (connecting) the primitives
together. (A noncomputer example is the manner in which tele-
phone exchanges are constructed and interconnected together.)

Processor-memory switching. Only recently, with the advent of
multiple processors, has memory-processor switching become an
important problem. But the Mp-P switch makes multiprocessing
possible, and it is a determining factor in both performance and
reliability.

The structure of the processor-memory switch for computers
which have multiple memories and multiple processors is a lattice
if simultaneous memory/processor dialogues are allowed. A cross-

‘A relative value for the attribute that denotes the time a switch is closed.
Fixed usually denotes a time duration such that more than 1 i-unit is
transmitted.

Chapter 3 I The computer space 67

Group I . H i e r a r c h i c a l s w i t c h e s f o r c o n n e c t i n g am comDi

t o bn components f o r 2-way c o n v e r s a t i o n s . The l o g i c a

s t r u c t u r e s a r e f i r s t g i v e n , f o l l o w e d b y common p h y s i c

r e a l i z a t i o n s , F o r t h e p h y s i c a l r e a l i z a t i o n s l i n k s a r

r e q u i r e d b e t w e e n p a i r s o f c o m p o n e n t s . N o t a l l p h y s i c

r e a l i z a t i o n s a r e g i v e n ; i t i s assumed t h e r o l e s o f t h

a n d b ' s c a n b e i n t e r c h a n g e d .

a l - L - S - b I
. l a gate; switching at b)

1 al- 5 - L - b

,] b gate; switching at a)

a l - S-L - S - b l

.lC gate; switching at a,b)

a - s (d u p l e x) 1

n

. 2 (d u p l e x I a : n b : c o n c u r r e n c y : l ; n S . g a t e)

a l [~ ~ ~ ~ b 2 bl

L - S - b

. z a duplex; r a d i a l ; switching at b)

I
a l f? - L - bp

S - L - b

L S - L - b

,2b duplex; r a d i a l ; switching at a)

1 a - L 1 --I-S-b
L

S-b
. 2

L .
-S-b

I

il

n 3 . 2 c S d u p l e x ; b u s / c h a i n ; comonZy used for k'-T, c P-K interconnection

n

, 3 dual-duplex; 2 a ; n b ; c o n c u r r r n c y : L ; 2 n S.gate)
/

7"'
" 7 " '

L-

L- 8

'Jbn
L-s

.3a S(dua l -dup lex ; r a d i a l ; switching a t b , duolez version o f . % a)

S-

Ls-s - L

. 3 b S (d u a l - d u p l e x ; r a d i a l ; switching at a, duplez version of

L L Hi'"'
L L

i' :s hn

.3c S (d u a l - d u p l e x ; b u s / c h a i n ; duplex version of .Zc)

rn

. 4 S t i m e - m u l t i p l e x . c r o s s - p o i n t : m a : n b . c o n c u r r e n c y : l ;
+ s . ~ ~ ~ ~ ; c'ascale of :? dupZes

1 S - L - b
i

a - L - S

n

Fig. 13. Logical and physical switch structures PMS diagrams.

68 Part 1 I The structure of computers

a -S I 1

L

L
"- s i

L

a m I

. 4 b S (t irne-mu1 t i p l e x ; c r o s s - p a i n t : b u s / c h a i n) ;:a, s (c r a s s - p a i n t)-,

am b"

1 m a ; n b : c a n c u r r e n c y : r n i n (m , n)
m x n S . g a t e ;::%

a - L

L L L
I l l
b l b p . . . b n

. 5 a S (c r o s s - p o i n t : r a d i a l : Links to a or b ma!/ he n u l l :

a - L I Y L I L - i

bn
b _ . .

bl 2

. 5 b S (c r a s s - p a i n t : b u s / c h a i n . use? for V p - P interconnect

r u a l - d u p l e x c r o s s -

p o i n t

1
a J

a ; n 0 ; concurrency:

a T S 4

s-
n

.6a s (d u a l - d u p l e x ; c r o s s - p o i n t ; r a d i a l)

a

rn a; n b; c o n c u r r e n c y : l

bl

b 2

bn

Group 1 1 . N o n - h i e r a r c h i c a l s w i t c h i n g f o r i n t e r c o n n e c t i n g a

components f o r 2-way c o n v e r s a t i o n s .

S (dup lex ; n o n - h i e r a r c h i c a l)

a i

, 8 s (dup lex ; n o n - h i e r a r c h i c a l ; c o n c u r r e n c y : l)

a - L - S

a - L - S
l

a - L - S

.9a S (dup lex : n o n - h i e r a r c h i c a l ; c e n t r a l)

Fig. 13. (Continued)

Chapter 3 I The computer space 69

L rer'undant, use? to keep

constant

.8b S(duplex; non-hierarchical; bus/chain)

3 . 9 S cross-point: non-hierarchical; m a; concurrency:m/Z
m Y (m-l)/2 S.gate c

a l - L 1

central)

non-hierarchical; radial; m x (m-l)l2
a l l nodes have l i n k s t o alZ o ther 3

.IO Sk-trunk; non-hierarchical; rn a; concurrency:min(rn/2 k); F x rn S.gate; T ' s mau not be extemai!

Fig. 13. (Continued)

t, tg . . . t k

.loa S(k- trunk; c e n t r a l ; non-hierarchical)

I

Fig. 13. (Continued)

point switch provides redundancy and is used to form the lattice
structure. To vary from the full-duplex/duplex switch (for
m-memories and one processor, or p-processors and one memory)
requires more components to be devoted to the switching, to
buffering, and to arbitration control. Hence duplex switches are
used on most multiprocessor computers. The processor-memory
switching possibilities can be seen nicely in Fig. 13. The im-
portant switch parameters are the number of memories, the num-
ber of processors, and the number of simultaneous processor-
memory dialogues. In current designs P always originates the
dialogue, which is generally taken to mean the reading or writ-
ing of a given word in Mp. The range of complexity is roughly

S(nul1; 1M; 1P; concurrency: 1)I
S(simplex1 I half-duplex2 I full-duplex3; (mM; 1P)I(lM; pp);

concurrency: 1) I
S(time-multiplex cross-point; mM; pP; concurrency: 1) I
S(cross-point; mM; pP; concurrency: min(m,p))

An %duplex can be used to increase the number of processors
which can be connected to the memory system while not having
to provide additional switch points on each memory. For example,
in the CDC 3600 [Casale, 19621 a basic S(8M; 4P; concur-
rency: 4) is expanded by placing another S(1M; 6P; concurrency: 1)
in series to give a possible overall S(8M; 24P; concurrency: 4).
This scheme was used to provide multiple processor accesses to the
memories.

Processor-control switching. The first switching problem developed
with the need to communicate with several input/output devices.
This switching is hierarchical in nature; one (or two) processors

'A switch which allows communication in one direction between two
ports.
Z A switch which allows communication in either direction but only one
direction at a time.
3A switch which allows concurrent communication between two ports.

70 Part 1 I The structure of computers

maintain control of many K s by giving a K a single instruction
task. At the completion of the task the K signals the processor
that the task has been completed.

The switch provides a link between processor and controls for
the secondary memory or the terminals and is parameterized by
the number of processors, the number of controls, the number of
simultaneous conversations, and who originates the dialogue. In
these switches the control of information transmission is always
by the processor. The evolution has been approximately as follows:

1 S(nul1; 1P; 1K; concurrency: 1; initiator: P)
P and K are connected during data transfers.

S(simp1ex I half-duplex I full-duplex/duplex; 1P; 1K;
concurrency: 1; initiator: P, K)
Each K operates independently because it can return or
request communication with P when control task is com-
pleted.

S(dua1-duplex; 2P; 1K; concurrency: 2; initiator: P, K)
Duplex paths from dual P’s to each K for reliability.

S(cross-point; pP; kK; concurrency: min (p,k) initiator: P,K)
General case of multiple P’s and K’s with communication
among the components.

2

3

4

The early machines used the first structure, and concurrent
operation of controls was possible only by starting several controls
and by very carefully programming the timing for the data trans-
fers. Two conditions occurred to cause this: The buffering for a
T or an Ms was associated with the processor, and the control
could not signal the processor. Although rather trivial to imple-
ment, the idea (item 2 above) of allowing a K to signal the proc-
essor did not occur until after the idea of arithmetic processor
traps were incorporated into processors. The interrupt was used
as the method by which a K communicated its desire to converse
with a P. The early IBM 709 provided a separate, independent
processor for handling the communication with input/output
equipment. Simultaneous processor-to-input/output or secondary-
memory dialogues could take place (provided the devices were
connected to the right processor). In most of the early computers,
part of the control function (data buffering) was associated with
the Pc, and, as such, only one device could operate at a time. This
stemmed from the comparatively high cost of registers, so that
links were established for a fixed period of time during a com-
plete block transfer of data.

In some of the military computers a duplicate set of K’s is
provided for reliability. The more elaborate switching structures
(types 3 or 4 above) are rarely used between Pio’s and K’s; thus

to work on a peripheral requires the use of the rest of the com-
puter. The S. dual-duplex is becoming more common; it provides
a method of off-line operation for maintaining better component
utilization and a more reliable structure.

Control-terminal and control-secondary-memory switching. The
switches which link a control with a particular terminal or second-
ary memory are generally fairly straightforward. Normally, a fixed
duplex switch is used. However, a dual-duplex switch is used if
multiple access paths to the component are required. The switch
links a secondary memory to a control during the transmission
of relatively long information units (e.g., records). A typical ex-
ample of such a switch is the bus structure used when magnetic
tape units connect to a common control. Only one of the units
operates at a time (although all can be rewinding simultaneously).
The switches are far less interesting than those above. Because
they are nearer the periphery, failure in them does not imply a
failure in the complete system.

Processor function

The emergence of complex PMS structures is coincident with the
development of functionally specialized processors. In the simple
computers of Figs. 5 to 9 there is place only for Pc. In the general
lattice there can be a Pc specialized to perform no input/output
operations; one or more Pio’s specialized to communicate with
the T’s and Ms’s and even to organize information in Mp for
transshipment; additional Pio’s specialized to handle graphic dis-
plays (hence P.display); and even P’s specialized to work on spe-
cific data-types (for example, P.array) or specific algorithms (e.g.,
the fast Fourier transform). In addition, any of these processors
may be realized by microprogramming, which is to say, by having
its ISP interpreted by a specialized P.microprogram.

Although the existence of various functionally specialized
processors is coupled most closely with the PMS structure dimen-
sion, the processors themselves are defined primarily by the data-
types they can process. In this they agree entirely with the com-
puter-system-function dimension. Possibly the processor-function
dimension should be considered simply an extension of the com-
puter-system-function dimension. On the other hand, the inclusion
of microprogrammed processors really extends the PMS structure
dimension to where a P can be seen as a cascade of two P’s.

The processor-function dimension in the computer space is laid
out in an evolutionary way, so that its correspondence with PMS
structure is clear. P.microprogram is put at the beginning of the
dimension ahead of Pc, not because it occurs earlier in evolu-
tionary development, but because it extends the PMS dimension

Chapter 3 1 The computer space 71

down into the processor. Any of the P’s along the dimension can
be attained by a P.microprogram.

As an actual dimension characterizing a total computer it must
be viewed cumulatively (similarly to the data-type dimension).
Thus, if a computer has a Pio, it also has a Pc, and if it has a P.array
it also ha5 the prior ones. There are numerous exceptions to this,
such as small Pc’s with €‘.displays (hence with no Pio’s). This
evolutionary ordering does not correspond to complexity or num-
ber of data-types in the P. Pc and P.array are the most complex;
Pi0 and P.vector,move are least.

We will make a few brief comments on each functional type,
taking them in the order of the dimension.

Microprogram processor (P.microprogram). The term microprogram-
ming was introduced initially in “The Best Way to Design an
Automatic Calculating Machine” (Wilkes, 1951~). We use “micro-
programmed” to mean that an ISP is defined by an interpreter
program residing in an internal Mp, processed by an internal
processor (the €‘.microprogram). Thus the structure is really an
external processor (ISP) being defined by the computer formed as

P : = Mp(interna1; read-only)-P.microprogram

The operations that microprogram processors perform are
primitive in comparison with other processors. The task of the
microprocessor is to interpret the instructions of the ISP it is
realizing. This involves mostly data transfers among the registers
of the processor state (Mps) plus simple boolean tests. Although
it must handle all the data-types of the larger ISP, it does so only
as bit fields to be extracted and transferred from one register to
another. The complex data operations (e.g., multiplication) are
carried out by other units (D’s). In fact, if a complex instruction
set were to be used for the P.microprogram, the external processor
might as well be implemented directly in hardware. In very
minimal P’s, for example, C(PDP-8) in Chap. 5, the ISP is essen-
tially already at the level of a microprogram ISP, as shown by the
inclusion of instruction that can be microcoded.

The long lag between the idea of microprogramming and its
more widespread adoption is due to several reasons. Early ISP’s
were comparatively straightforward, so that a microprogram ap-
proach was not economically justified. The interpretation overhead
time is higher than with the hardwired approach, and unless
complex functions are realized this time becomes objectionable.
In addition, suitable read-only memories were not developed until
the mid 1060s (though it is imclear whether this is came or effect).
An additional feature of using a P.microprogram is the ability to

realize several ISP’s within a single physical processor. IBM has
exploited this feature extensively in the System/360 (Part 6,
Sec. 3), which is by far the most ambitious use of microprogram-
ming. One can argue that without the additional payoff, which
was used to ease the transition to a new incompatible computer
system by providing emulation of the old system, the micropro-
gramming would be marginal.

Several P.microprogram design approaches have emerged:
Kampe (Chap. 29) presents a design based on a short word; the
internal processor is very much like a conventional processor. At
the other extreme, the IBM System/360 (Chap. 32) is based on
a long word which allows multiple operations to be coded in
parallel. (The parallel operations are necessary to gain an accept-
able performance level.) Thompson Ram0 Wooldridge called their
AN/UYK a “stored logic” computer, and it provided the ability
to use primary memory for defining the ISP. The IBM System/36O
Model 25 (page 567) also iises this approach. The Hewlett-Packard
desk calculator (Chap. 20) shows the use of microprogramming
on a relatively circumscribed, but complex, task.

Central processors (Pc). These processors interpret an instruction
set for manipulating arithmetic, logical, and symbolic data-types.
In all simple systems it is the only processor and thus does all
tasks. The growth of processor specialization can be described in
terms of relieving the Pc of simpler functions that require sub-
stantial processing time but do not make full use of the devices
within the Pc, such as the arithmetic units. Crucial to this issue
is the time it takes the Pc to switch from one task to another (recall
the discussion on Mps, the processor state), since many of the jobs
that are extracted to specialized processors are demand jobs, such
as input/output.

With the removal of tasks from the Pc, it becomes more spe-
cialized. A very pure example of this is the Pc of the CDC 6600
(Chap. 39), which has no input/output instructions of any kind
in the Pc. That is, not only has the control and management of
communication and transmission with the T’s and Ms’s been re-
moved from the Pc, but the act of initiation has been removed
as well and placed in the Pio’s. Thus, the 6600 Pc is just an
engine for working on the arithmetic, logical, and symbolic (ad-
dress) data-types.

The mixture of operations to be performed in most complex
algorithms prevents specialization of the Pc from going very far,
e.g., from there being a P.arithmetic, for with every switch be-
tween capabilities distributed in distinct P’s there must be inter-
communication of the components, which introduces an overhead
cost in processing time.

72 Part 1 I The structure of computers

lnput/output processors (Pio). The Pi0 specializes in the manage-
ment of peripherals (secondary memories and terminals). They are
also called peripheral processors, data channels, and channels1
The tasks a Pi0 and its subordinate peripherals perform are the
transmission of information between Ms and Mp; the transmission
of information between some extra computer real-time system
(e.g., human); and the transmission of information outside the C,
via a T to some other information media (e.g., a card reader, card
punch, line printer, etc.). All the above tasks are similar and often
are considered the same, though in principle they can be quite
different. A task in this environment is the management of some
quanta of information, whether it be one bit or character, a voice
message, or a record or file from magnetic disk or magnetic tape.
Thus a Pi0 does not usually change any information; it is merely
an interpreter for moving information. There are three exceptions:
Computation is required for error and correction and/or detection;
computation is required if recoding and reformatting are done;
and computation is required when search operations are carried
out on Ms without Pc intervention.

To accomplish the above tasks requires a fairly simple instruc-
tion set. Typically it contains jump (branch); data transmission
within Mp to initialize process variables; simple counting ability,
e.g., to control error retries; subroutine calling; interrupt process
handling; initializing KMs or KT; testing the state of KMs or KT;
and sometimes code conversion (data in one code format is con-
verted to another code). Thus substantial arithmetic and logic
facility is not needed. Part 4, Sec. 1 provides a detailed discussion
of Pio's.

Display processors (P.display). The P.display is a complex Pi0 that
processes information for display terminals. The data-type is a
representation of a complex graphic object, e.g., lines, points,
curves, and spatially localized text. The representations vary con-
siderably from system to system, using various list pointers and
vector encodings. The operations on the data-types include the
maintenance of the display (due to the short-term persistence of
the CRT); the selective modification of the representation under
commands from the T.display or the Pc, such as adding or deleting
a line, inserting text, etc.; the control of T.inputs such as key-
boards, light pens, joysticks; and the performance of more complex
spatial transformations, such as translation, rotation, scale change,
and determination of hidden lines.

'These terms are usually used without distinguishing between a Pin and
a Kin, that is, whether the device interprets a sequential program (and
thus is capable of sustained independent activity) or only decodes a single
instruction.

The €'.display is a good example of a highly complex but spe-
cialized data-type for which there are substantial local operations
to perform, that is, where no interaction is needed with a complex
algorithm (that requires the Pc). Users of displays wish to correct,
modify, and transform the display in geometrically simple ways
(in effect, edit and view) between processing of the graphic infor-
mation by complex algorithms. Thus the graphic display is a prime
candidate for the development of a specialized processor.

The DEC 338 (Chap. 25) is typical of these processors, being
neither the simplest nor the most complex (e.g., it does not have
rotation or hidden line elimination instructions).

Array processors (P.array). The array processor might be considered
a more general Pc. It has been proposed or discussed in the litera-
ture for some time. (See bibliography for Chap. 27, page 329.) The
information unit processed is an array of one (vector) or two
(matrix) dimensions. Instructions are provided to operate on these
data. The specification of algorithms for a P.array is based on the
assumption that an operation can be carried out in parallel for
array elements. Actually, both serial (sequential) and parallel
(concurrent) execution can be implemented. Both structures have
the same logical characteristics, from an ISP viewpoint, and may
differ only in execution rate. The three array processors, ILLIAC
IV (Chap. 27), NOVA (Chap. %), and the IBM 2038 (page 577),
are discussed in Part 4, Sec. 2 (page 315).

Vector-moue processors. The vector-move processor is a special-case
P.array. It is capable only of moving a word vector at some loca-
tion in Mp to some other location within Mp. Because of its limited
instruction set, such a P is found only in computers which require
constant Mp shuffling. This condition arises either because of a
hierarchy of Mp speeds or because the programs must have a
particular structure before they can be interpreted by the proc-
essor. A time-shared computer might require such a processor for
multiprogram memory management. It is therefore common to find
block (vector) transmission instructions in a Pc. The IBM Sys-
tem/360 has Pio(Storagc channel) for this function (page 577).

Special algorithm processors (P.aZgorithm). Only a small number
of special algorithm processors have been specified and/or imple-
mented. High performance is almost guaranteed by hardwiring and
through specialization. The time to fetch the algorithm (instruc-
tion fetch time) and many of the references to Mp for temporary
data are eliminated by hardwiring. A hardwired algorithm can
easily outperform a stored program by a factor of 10 - 100. The
lack of these processors in systems stems mainly from lack of
market demand.

Chapter 3 I The computer space 73

It is not clear that the special algorithm processors meet our
criteria for being a processor, because of the rather limited func-
tions they perform. In fact, some so-called processors are just K’s,
or D’s since they have no instruction location counter and inter-
pret only a single instruction at a time, requesting each new
instruction from a superior component.

Algorithms which have been hardwired (or proposed) include
the fast Fourier transform using the Cooley-Tukey algorithm;
cross-correlation, autocorrelation, and convolution processing;
polynomial and power-series evaluation; floating-point array
processing; and neural network simulation.’

Language processors (P.Zanguage). Laqguage P’s interpret a lan-
guage that has been designed to some external criteria, such as
a procedure-oriented language (ALGOL or FORTRAN) or a list
language (IPL-VI). Thus complexity takes the form of a complex
data-type for the “instruction,” rather than a complex data-type
for processing (e.g., floating complex numbers). If such processors
were extended to do all the things a Pc also does, then they would
become more complex than a Pc. However, to date, most of them
are experimental and focus exclusively on language interpretation.

In Part 4, Sec. 4, several examples are presented. It is worthy
of note that of the three P.1anguage.s only EULER (chap. 32) has
been implemented in hardware using a P.microprogram.

Memory access

The most useful classification of memories is according to their
accessing algorithm.2 These are queue (i.e., access according to
first-in-first-out discipline); stack (i.e., access according to first-
in-last-out discipline); linear (e.g., a tape with forward read and
rewind); bilinear (e.g., a tape with forward and backward read);
cyclic (e.g., a drum); random (e.g., core); and content and associa-
tive. All these memories are explicitly addressed except the stack
and queue, which deliver an implicitly specified i-unit on each
read.

Memory size and basic operation times (Le., the time constants
in the access algorithm) are important too, of course. But once
a distinction is made between Mp and Ms, then for any given
technological era there have existed characteristic sizes and speeds

‘Chasm: A Macromodular Computer for Analog Neuron Models [Molnar,
19671.
‘Access for writing should be distinguished from access for reading. Mem-
ories are conceivable with arbitrarily different read and write access algo-
rithms (e.g., random read and cyclic write). However, in general, the two
access algorithms are tightly coupled, and normally only the read access
algorithm is given.

for memories of a specified access algorithm. Where there has
been variation, either it has been linear with size (e.g., buying
two boxes of magnetic core Mp versus buying one) or there has
been a narrow range of cost/performance tradeoff (as in data rate
for magnetic tapes, in which modest increases in density and tape
speed can be bought for substantially increased dollars). Table 5
shows the relative price, size, and performance of various mem-
ories. The memory-size versus information-rate plot (Fig. 14) shows
the clustering of memories and their suitability for a particular
function.

From a technology standpoint, Mp’s have been constrained to
either cyclic- or random-access memories (although one can easily
construct any type from random-access memories). In Part 2, Sec. 1
we have not separated the machines according to whether they
used cyclic- or random-access memories. The early first-generation
computers used cyclic-access memories. Part 3, Sec. 2 presents
only the cyclic-access memories.

Similarly, Ms’s have been constrained to be cyclic or linear,
although quasi-random access has been achieved with some disks
and magnetic-card memories (random by block and linear or cyclic
within a block). Any Ms’s can be part of almost any computer
structure. Thus there is no large effect of Ms structure on the main
design features of computer systems, and they are not discussed
to any extent in the remainder of the book. Our discussion of
memory type below deals exclusively with Mp and Mps.

Stack and queue memories (M.stack, M.queue). Data elements in
a stack and queue are not accessed explicitly, as we noted above.
The stack has some rather unique properties that aid in the com-
pilation and evaluation of nested arithmetic expressions. Although
there are no machines employing stacks exclusively for primary
memory, there are stacks in some arithmetic processors. Part 3,
Sec. 5 is devoted to processors with stack memories (i.e., with
stacks in the processor state).

The IPL-VI machine (Chap. 30) is the only computer in the
book to have its entire memory organized as a list of stacks.
Although no hardware exists that inherently behaves as a stack
or queue,3 it can be simulated by a random-access memory. A shift
register capable of shifting in either of two directions is a stack.

Cyclic-access memories (Mp.cyclic). Nearly all the first-generation
(vacuum tube) computers had Mp.cyclic. The Mpxyclic acoustic,
magnetostrictive delay line, and magnetic drum provided an in-

3Small (10 - 1,000 word) queue- and stack-accessed memories are espe-
cially easy to build with large-scale integrated-circuit technology.

74 Part 1 I The structure of computers

Table 5 Memory characteristics

Memory size Memmy performance

Module Modules/ Access Data
Access size computer time rate

M e m y module Function method (bits) sec (bits/sec) Cost/bit($)I

Punched paper card

Magnetic card

Magnetic tape

Moving-head disk pack

Fixed-head disk

Drum

Bulk core memory

High-speed core or

Integrated circuit
thin-film memory

(scratch-pad memory)

Integrated circuit

Read only
(content addressable)

(capacitor, inductor)

permanent, random + (500 - 1,000)/
archival linear card; -

1,000 card/unit
secondary, linear + 3 x 109

archival constant +
secondary,

archival

secondary,
files swapping

secondary,
files swapping

secondary,
swapping

primary and/or
secondary,
swapping

primary

primary,
processor
state

primary, cache

processor
instruction-set
definition

cyclic
linear

linear +
cyclic

cyclic

cyclic

random

random

random

content,

random
random

2 x 10s

2 x 108

5 x 101

(1 - 5) x 107

107

105 - io6
103 - 105

2 x 105

(1 - 5) x 105

1-2

1-4

1 - 16
1 - 16
1 - 40
1 - 10
1-8

1 - 16
1

1-2

1

io0 - 103 104 2 x 10-6 +
2 x 10-1

1.5 x 10-8 + 0.4 x lo6 10-1 - 100
5 x 10-5

100 - 102 0.4 - 4 x 106 2 x 10-7 +
10-4

10-1 - 100 2.5 x 106 3 x 10-6 +
10-4

10-3 106 - 101 -10-2

(5 - 30) x 10-3 io6 - 107 10-3

0.02 - 0.05 (2 - 10) x 10-6 106 - 108
0.05 - 0.25 (0.2 - 2) x 10-6 107 - 10s

-10-7 109 0.25 - 1.0

1-3 109 -10-7

10-6 - 10-7 10s - 109 10-3 - 10-2

'The f i rs t componen t is the m e m o r y media (e.g., a disk pack), and t h e second componen t is the t ransducer (e.g., a disk drive)

expensive, simple, producible memory. By the second generation
the cost of Mp.random (though still more expensive than an
Mp.cyclic) was about equal to the processor logic. The incremental
cost for an Mp.random in a large system was then small, whereas
the performance gain could be a factor of up to 3,000 (access time
of 10 microseconds versus 30 - 30,000 microseconds). Some of the
first-generation machines were reimplemented using transistors
(the LGP-30 became the LGP-21). Only a few new cyclic
access machines were introduced in the second generation. Most
notable was the low-cost Packard-Bell PB-250 using transistor logic
and magnetostrictive delay lines (a derivative of the Bendix G-15
and NPL ACE).

Nearly all these computers use some form of n + 1 addressing.

The memory is organized on a digit-by-digit serial basis for a word
(e.g., ZEBRA with binary and IBM 650 with decimal). Hence, the
arithmetic or logic function hardware is implemented for only a
single digit. An operation is done for the entire word by iterating
over all digits in time; thus the cost of a serial computer is nearly
independent of its word length.

Because of the cyclic and synchronous nature of these Mp's,
it is difficult to synchronize them with secondary memories and
terminals (which are also synchronous). The very early machines
had no large secondary memories. In some cases, where magnetic
tape was used, it was added at very low performance (low density,
low speed, and, therefore, low data rates) so that synchronization
was not a problem. In other cases a small random-access core

Chapter 3 1 The computer space 75

IO”

1 0’0

109

1 0 8

I 07

r 1 0 6
J3

m
1 0 5

2.

0

al
E

3 1 0 4

1 o 3

1 0 2

10’

100

11-21 Magne t i c --- c a r d
L / \ /-

I
Mov ing h e a d d i sk

(6-8)
’ ’ , l

----‘\
super conductive
in tegrated an

I
Mov ing h e a d disk-pak
(1 un i t 1

M = (processor def in i t ion 1,
read card only, capacitive

Drum, f i x e d head d i sk

(321

M s - tape , drums,d isc,magnet ic
(128)

Content
addressed.
integrated

M(terrnina1
M(work ing)

IBM card (and card reader)

- _ ~ - -~ ~ ~ - - ~~- ~ - ~ - ~-~ ~

M(Logic) \

Stepping switches T rans i s to r c i rcu i ts \
I ,Integrated transistor /

\ /Mechanical Relays Fluid

io5 lo6 10’ io8 io9 iolo io”

’ (x) indicates width of informotion,In bits Ef fec t i ve in format ion rate! in b i ts /sec

Fig. 14. Memory size versus effective information rate.

memory was added to provide synchronization between the two
memories (for example, IBM 650).

Rundoni-uccess memories (Mp.randon~). Random-access memories
were used late in the first generation, and they have remained
the predominant memory during the second and third generations.
It is unlikely that their popularity will decline unless content-
addressable memories can be constructed sufficiently cheaply (if
then). The earliest first-generation random-access memories were

electrostatic and depended on maintaining a charge on plates of
an array of capacitors. The most common was the Williams tube
(invented by F. H. Williams at the University of Manchester)
which works in essence like a CRT, with the beam used to charge
a capacitor array at the tube face [Williams and Kilburn, 19491.
Other schemes included an array of capacitors which were selected
by digital logic (Pilot, Chap. 35).

Late in the first generation Forrester [1951] invented the core
memory, which rapidly became the predominant primary-memory

76 Part 1 I The structure of computers

component. It is unlikely that it will be replaced in the near
future; the most likely candidate is large-scale integrated-circuit
arrays of flip-flops.

The random-access memory seems nearly perfect for the Mp’s
of present computers. Of course, enthusiasm for this memory may
be based on not knowing how computers would have developed
if we had not had them. However, with little or no effort an
M.random can be a stack, a queue, a linear, a cyclic, and even
(within limits) a content or associative memory. It is an organiza-
tion which is very hard to beat.

Content-addressable and associative memories. It is posdde to
conceive of many exotic accessing capabilities, and numerous
proposals have been made involving either theoretical structures
or experimental prototypes. Since no particular varieties have
become widespread, terminology is still variable. Content-
addressable memories are usually taken to mean a collection of
cells of predetermined size (i.e., a fixed i-unit) such that if one
presents as “address” the contents of a predetermined part of the
cell (the tag or content address) then the contents of the entire
cell will be retrieved. An associative memory is usually taken to
mean a system such that, when presented with an item of informa-
tion, it delivers one or more “associated” items of information.
The principle of association is variable, yielding different kinds
of associative memories. Content-addressable memories provide
a form of association, as do all memories, in fact. Thus the term
“associative memory” tends to denote forms of association different
from familiar ones-forms that presumably have less sharp con-
straints imposed by the structure of memory (as opposed to the
structure of the information in the memory).

No examples exist of a computer with a content-addressable
memory as its primary-memory structure. However, both the IBM
360 Models 67 (page 571) and Model 85 (page 574) use 8 and
-1,000-word content-addressable memories, respectively, to in-
crease performance (in both cases they are transparent to the
program). The CDC 6600 instruction buffer is in effect a small
content-addressable memory. In the above three cases, the con-
tent-addressable memories vary in size and position in the struc-
ture; however, the pattern of use is common. There is a large but
slower Mp.random behind the content-addressable memory. The
purpose of the fast small content-addressable memory is to hold
local, current data so that an access will not have to be made to
the random-access memory.

Small prototype associative addressable M’s have been con-
structed, but they are normally based on random-access memories
nnder the control of special hardware. There are immediate uses

for content-addressable memories with a large information-content
address. For example, the read-only memories for microprogram
processors use long words principally because content-addressable
memories are not available. Ideally a microprogrammed processor
would like to look at a fairly large processor state to determine
what action is to be taken in the microprogram. It is interesting
to speculate about the evolution of computers if a content-
addressable memory had been developed in place of the random-
access memory.

M p concurrency

Multiprogramming is the simultaneous existence of multiple,
independent programs within Mp being processed sequentially or
in parallel by one or more processors. Multiprogramming provides
each user program with a memory space independent of other
users. It may provide, in addition, the sharing by several users (for
independent use, not for communication) of a block of Mp, which
thus does not have to be duplicated. For example, operating sys-
tems software, including compilers, assemblers, loaders, and edi-
tors, can be usefully shared.

The ability to have multiple programs gives rise to a corre-
sponding problem of communication between programs. We have
defined this as a correlated dimension in the computer space
(interprogram communication) and will discuss it in the next sec-
tion. The issues it raises are just the opposite from those raised
by the requirement for multiple programs, which are discussed
in this section. Here we are concerned with protecting one pro-
gram from another-with assuring that no unjustified communica-
tion will occur-and with obtaining appropriate space in Mp so
that multiple programs can run.

The requirement for protection is obvious. If two independent
programs are to be resident in Mp at the same time, they must
not have access to each other’s space. Not only would such access
(especially for writing) have disastrous consequences when the
programs are running, but they would be entirely unpredictable
and undebuggable from the viewpoint of the programmer of each
individual program. Thus this requirement is absolute; i.e., it must
be highly reliable. This implies a hardware solution, although
purely software schemes are possible in special cases.

The requirement for appropriate space is somewhat more sub-
tle. Certainly there must be enough space in Mp for all the pro-
grams that are to be resident simultaneously. It must be possible
to find that space, assign it to a new program, and make it available
again when that program is finished. But what kind of space will
do? Must it be a single interval of Mp, large enough for the total
program with data? Arid if the program is assembled or compiled

Chapter 3 I The computer space 77

in Mp and is removed temporarily to make room for another
program, must it be brought back into the exact same addresses
into which it was originally assembled?

The key issue resides in the kind of intercommunications that
hold within a program and its data, for these determine how and
in what way a program is interconnected and depends on the
specific Mp addresses that it occupies. These connections are of
two kinds: explicit addresses present in the program and data and
implict relations between addresses due to addressing algorithms
(e.g., that programs are laid sequentially in Mp, or that the ele-
ments of an array are to be accessed by indexing and hence must
occupy consecutive addresses). Again, although some purely soft-
ware solutions to the space issue exist, hardware is involved in
a fundamental way.

Thus, the two main questions of program concurrencyl-
protection and space assignment-imply basic design features of
a computer system. It might seem that they imply separate fea-
tures and should be separate dimensions in the computer space.
In fact, each proposal for how to solve the space-assignment prob-
lem also contains a particular proposal for the protection problem.
Thus we treat them as a single dimension.

Virtual-address space and Mp mapping. Before considering various
solutions to Mp concurrency (Le., the values along the dimension),
let us introduce two concepts in terms of which all current solu-
tions can be understood. Consider a particular program, PRO-
GRAM-1, one of many that might wish to reside in the Mp. PRO-
GRAM-1 assumes a set of addresses, some explicitly and some
implicitly, in the addressing algorithm it uses. PROGRAM-1 re-
quires a memory space that has addresses that satisfy all these
requirements, the implicit and explicit ones. Other than that it
does not care how these addresses are realized. Let us call this
address space required by PROGRAM-1 its virtual memory, Mv.
Thus, each program has its own virtual memory. (You might think
of this as having its own Mp, except, as we shall see, this Mp may
be many times bigger than any actual Mp and still be entirely
feasible.)

Actually to run PROGRAM-1 requires that it be placed in the
real Mp in such a way that the real addresses of Mp containing
it satisfy all the requirements, that is, that it be a faithful image
of the virtual memory. Thus there must be some memory mapping
that maps the actual addresses into the actual memory. Once
PROGRAM-1 is placed in Mp there must be some process that
takes each virtual address (as it occurs to be processed in an

‘See also Randell and Kuehner [1968].

instruction) and finds the actual address in Mp, so that the correct
contents can be obtained.

This might seem simply a complicated and abstract way to view
matters, but it becomes essential as soon as we realize that the
computer can have hardware memory mappings other than the
familiar direct-addressing structure of Mp. Furthermore, if this
mapping is given the right properties, it may solve some of the
space-assignment and protection problems for Mp concurrency.
What we have really done is to divorce the addressing required
by the programs from that provided by the physical computer,
so that we can redesign it (via the memory mapping) to meet new
design requirements that were not apparent when the original
random-addressing schemes were created.

Let us make the notion of memory mapping more precise. The
program contains virtual addresses, z (that is, symbols in the pro-
gram that denote addresses are taken to denote addresses in Mv).
During the execution of the program, whenever there is a refer-
ence to an address z (either explicitly via an address calculation
or implicitly via, say, getting the next instruction), a computation
occurs on z to obtain the actual address in Mp. This computation
is part of the Pc, just as is an automatic indexing or indirect-
addressing calculation. It takes as input not just the virtual address
z but information on where the program is located in Mp. The
latter information is called the map, and a program’s map infor-
mation is determined when it is placed into Mp on a given run.
Thus, using our ISP notation, and calling the address calculation
f, we get

Mv[z] : = Mp[f(z,map)]

That is, the information in virtual memory at virtual address z
is the same as the information in actual memory at address

This whole scheme is built to permit programs to be placed
in Mp’s in various ways, e.g., relocated or scattered around, and
still make it possible to run the program. Any such scheme brings
a solution to the protection problem, namely, that for some values
of z the above calculation cannot take place or is invalid (i.e., there
is no mapping for z). This can correspond to a violation of protec-
tion, which can then be prevented. All calculations may even be
permissible, but f is so arranged that it never produces an address
in anyone else’s part of Mp.

The memory map is part of each user’s program. With many
users, it must reside in Mp, since there will not be enough space in
Mps to hold a large amount of mapping information. However,
when a program is being executed, some part of the mapping
information becomes part of the Mps (Le., at least the Mp address

f(z,map).

78 Part 1 I The structure of computers

of the rest of the map). In addition, the map may contain special
access control information, such as whether a part may be read,
read as data, written, or read as program. The map can also collect
statistical information concerning whether a part of the program
has been used or has been changed (written).

Random-access memories for Mp constrain the mapping by
requiring linear addresses of the form Mp[O:p], since the mapping
calculation must be economical (as it is performed with very high
frequency). We would not consider a map structure which provides
every word in Mv to be mapped into an arbitrary word in Mp,
for this would require a map exactly the same size as Mv. With
many programs in Mp, there would be little room for anything
but maps. Similarly, the amount of processing in f, the calculation,
must be very minimal. These two aspects constrain the mapping
scheme strongly.

The constraint to linear addresses appears to force the structure
of virtual memory to consist of a multidimensional array. This can

Table 6 Memory-allocation methods

be one-dimensional, Mv[O:n], or two-dimensional, Mv[O:s][O:m]. It
could be of higher dimension, but the need seems not to have been
felt (since within any single dimension one can have multi-
dimensional arrays as one normally does in a regular Mp). How-
ever, the two-dimensional array, which also is called segmented
addresses, since it can be taken as a discrete collection of s + 1
segments each of m + 1 linear addresses, has advantages in terms
of the mappings; namely, segments can be placed disjointly in Mp
without fear that virtual-address calculations will cross from one
segment to another.

With this introduction to the problems of multiprogramming
we will look at some of the hardware schemes. Table 6 provides
a summarization of them, including a brief description of how each
scheme operates.

No special mapping hardware. If no hardware exists in the Pc to
accomplish a memory address mapping, then when the address

Hurrlioare designution
(cinaizged in order uf t n c r m w i g
hardiLcire coinplerity)

Method of’ memory allocation
among multiple users

Limits of particular
method (example of use)

Xo relocation Mr 5 ,Mp;
Conventional computer-no memory-al- No special hardware. Completely done by inter-

location hardware pretive programming.

1 + 1 users. Protection bit for each A protection bit is added to each memory cell.
The bit specifies whether the cell can be
written or accessed.

memory cell

1 + 1 users. Protection bit for each A protection bit is added for each page. (See
memory page. above scheme.)

Page-locked memory Each block of memory has a user number which
must coincide with the currently active user
number.

Completely interpretive programming
required. Very high cost in time is paid
for generality. (JOHNNIAC interpret-
ing JOSS).

Only 1 special user + 1 other user is al-
lowed. User programs must be writ-
ten at special locations or with special
conventions. or loaded or assembled
into place. The time to change bits if
a user job is changed makes the
method nearly useless. No memory
allocation by hardware. (IBM 1800)

No memory allocation by hardware. (SDS
Sigma 2)

Not general. Expensive. Memory reloca-
tion must be done by conventions or
by relocation software. A fixed, small
number of users are permitted by the
hardware. No memory allocation by
hardware. A program cannot be moved
until it is r u n to completion. (IBM
System/360)

Chapter 3 I The computer space 79

Relocation and protection: Mu 5 Mp:
One protection count and one field reg-

ister (addresses formed and checked
by logical operations)

All programs are written as though their origin
were location 0. The count register deter-
mines the number of high-order bits to be
examined. The field register is then com-
pared for identity with the requested address.

One set of protection and relocation reg-
isters (base address and limit regis-
ters). Also called boundary registers.

Two sets of protection and relocation reg-
isters. Two segments.

n 2 3 sets of protection and relocation
registers.

Mapping, Mu 2 M p :
Memory page mapping

Memory page/segmentation mapping

Indirect references through a descriptor
table to segments.

All programs written as though their origin were
location 0. The relocation register specifies
the actual location of the user, and the pro-
tection register specifies the number of
words allowed.

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo-
geneous virtual memory.

Similar to above. More similar t o page mapping.

For each page (26 to 21' words) in a user's vir-
tual memory, corresponding information is
kept concerning the actual physical location
i n primary or seconaary memory. If the
map is in primary memory, i t may be desir-
able to have "associative registers" at the
processor-memory interface to remember
previous reference to virtual pages, and their
actual locations. Alternatively, a hardware
map may be placed between the processor
and memory to transform processor virtual
addresses into physical addresses.

Additional address space is provided beyond a
virtual memory above by providing a seg-
ment number. This segment number ad-
dresses or selects the page tables. This al-
lows a user an almost unl imited set of ad-
dresses. Both segmentation and page map
look-up is provided in hardware. May be
thought of as two-dimensional addressing.

All data are considered part of a descriptor
array which is referred to by a number. A
descriptor table indexed by the descriptor
number is used to locate the array in Mp
and give its size.

Memory allocation blocks must be in
power of 2. Unless blocks are the
same size, the memory utilization can
be poor. Although faster than the fol-
lowing scheme (which requires a hard-
ware adder), the inflexibil i ty of loca-
tion and size makes i t restrictive.
(IBM 7040)

As users enter and leave, primary-mem-
ory holes form, requiring the moving
of users. Pure procedures can be im-
plemented only by moving impure part
adjacent to pure part. (CDC 6600,
PDP-6)

Similar t o above. Simple, pure proce-
dures with one data array area can be
implemented. (UNIVAC 1108, PDP-10)

Has not been used in any conventional
computer.

Relatively expensive. Not as general as
following method for implementing
pure procedures. (Atlas, CDC-3500,
SDS-940)

Expensive. Little experience to judge
effectiveness. (GE 645, IBM 360/67)

An indirect reference must be made to
the description table in Mp. (B 5500)

80 Part 1 1 The structure of computers

z is encountered in the program, the information at Mp[z] will
be obtained. There are still, however, two different ways to obtain
the effect of a virtual memory.

First, one can operate interpretively, with a software system
taking the place of hardware. That is, the programs of all the users
are in a nonmachine language (e.g., a higher procedure-oriented
language), and each access in the language is processed by the
software interpreter before an access is made to Mp. It is clear
that all the logical power of a memory mapping is available with
this scheme. The only drawback is the loss of efficiency from the
interpretation, which may range from a factor of 5 to 100. Conse-
quently this scheme is used only in special circumstances, such
as multiuser time-shared conversational algebraic languages.

The second scheme is to modify the code at the time it is placed
in the Mp for a given run, so that all addresses in the code corre-
spond to the actual Mp addresses used. That is, an assembly or
translation operation is performed each time the program is placed
in Mp. The advantage of this scheme is that no further address
calculations are necessary. There are three disadvantages. Assem-
bly operations are expensive so that, although the scheme is tolera-
ble if the program is brought in once and run to completion, it
is not tolerable if programs are continually being swapped in and
out of Mp. In addition, the program must be laid into continuous
intervals of Mp corresponding to predetermined segments of the
program, for assembly occurs on a static representation of the
program and cannot unravel the potential effect of address algo-
rithms. Finally, the size of Mv (i.e., the addresses used externally)
must be not greater than Mp.

Relative to these software schemes-one interpretive and very
expensive and one involving assembly (Le., compilation) and load-
ing-the hardware schemes to be described appear as address
interpreters, where the cost of continuous interpretation has been
made tolerable.

Protection for words or pages hardware. There are three schemes
in Table 6 that provide a means of protecting one part of Mp
against references from other programs. The rationale for these
designs is that there will be only two users (or user classes), one
user being superior and assumed perfect (its program debugged).
References to Mp via the imperfect program to a perfected and
superior part of Mp are forbidden. These schemes provide no
method of hardware mapping, and physical addresses are the same
as virtual addresses. In the simplest scheme, as in the IBM 1800
(Chap. 33), a protect bit is added to every word in Mp, that is,

Mp[O: 2lS - 1](0: (w - l) , protect-bit)

Every reference Mv[z] takes place as

Mv[z] : = (7Mp[z](protect,bit) + Mp[z];
Mp[z](protect-bit) + protection violation t 1)

That is, any reference to a word with a protect bit causes an error.
The other two schemes protect on the basis of blocks of words.

Protection and relocating register(s) hardware. A protection and
relocation register mechanism is used in four schemes of Table
6. These provide either one concatenated, one additive, two addi-
tive, or n additive register pairs for mapping a single program into
one, one, two, or n nonadjacent blocks in Mp. The authors know
of no schemes where more than three registers are used; this would
really be akin to using a more general page map. Generally, these
schemes restrict Mv 5 Mp.

An additive protection and relocation register pair is shown
in Fig. 15 in which four users are occupying a Mp[0:7999]. Each
user program is written to occupy a continuous address space in
a virtual Mv. Thus in ISP, when Pc is running programs for user-j,
which address Mv[z], with z varying from 0 to vj - 1 the map-
ping uses actual memory. The action is

Mv[z] : =((z < Protection) -+ Mp[z + Relocation];
z 2 Protection + (Protection violation t 1))

Protection and Relocation are the two registers that specify map-
ping. The implementation of this scheme generally takes the form
of adding the contents of the relocation register after all address
calculations have taken place. Thus, in PMS we might think of
the structure

Mp-K(ad&ess translation)-Pc.

M(l Protection,Relocation)

Page-map hardware. Figure 16 shows the memory allocation using
a page map. Note that, of the 4,096 words it is possible to define
by the map, the range 1,024 to 2,047 is actually undefined. Along
with the map containing the addresses to words in actual Mp, it
is desirable to have accessor protection control information. Such
information might specify:

1 No restrictions (any form of reading or writing can take

2 Read only as data.
3 Read only as a program.
4 Writing.
5 Undefined.

place).

Chapter 3 I The computer space 81

6 Defined but located in Ms.
7 This page has been written in (to know whether a copy in

Ms has to be updated).
8 This page has been accessed.

This scheme is essentially a generalization of n protect/relocate
registers hut includes more control bits, suggested above, and
restricts each block to he the same size. Note that Mv can he
greater than Mp. In addition, parts of the virtual memory may
remain unused.

There are two ways the above scheme is usually implemented:

1 A complete map is first considered as a conventional, ex-
plicitly addressed M whose addresses correspond to the
virtual-address pages. At a given page-memory address the
contents of the map specifies the address in Mp. The map
is similar to an indirect reference. However, the map is
usually about 10 times faster and about 1/1,000 the size,
since it keeps track only of pages, not words. The PMS
structure is

Mp-M.map-Pc

2 The map is retained in Mp and referenced by a protection
and relocation register which are set for the particular active
user. In order to avoid making references to Mp for each
word reference to Mv by a Pc, a small, fast M(content ad-
dress) is placed between Pc and Mp. The PMS structure is

L(data) -

t K(address translation) t L(addresses) t
I

M(content address; 8 - 16 words)

Pc

MenLorii-segmentation hardware. Figure 9 (page 574) in the intro-
duction to the IBM System/360 shows the logical mapping process
for a segmented memory. There is provision for a very large two-
dimensional virtual-address space. This scheme is discussed exten-
sively in the literature [Arden et al., 1966; Dennis, 1965; Gibson,
19661. The physical implementation is similar to that of paging.
Note that two levels of mapping are provided: the segment map
and the page maps. The two levels facilitate the sharing of a single
segment by two jobs.

The Hurroughs R 5000 (Chap. 22) and the later R 8500 have
a mapping that is more closely integrated into the Pc because they

Relocation r ' E 3
- ,/ k--Z-21

Protection H +
u q

Table of user location information

3
0 i 2 2

User-memory'' addresses in 1,000s of
words

Hardware registers,I7 ----'I ,,
when user 2 is
running

\

"Absolute memory'' addresses in 1,000s of words

Fig. 15. Memory allocation using a boundary (relocation and protection)
register.

provide a variable-sized address space (not paged) within a seg-
ment. The segments are named, and a large number of segments
exist.

lntetprogram communication

The dimension of interprogram communication is completely cor-
related with the multiprogramming dimension as we have previ-
ously noted. To have a problem of intercommunication, there must
be a structure of components that require communication. At the
simplest level the dimension is represented by a single program,
and there is no need for intercommunication. Variables of the

r,,,,,,

(2 - 4) 2 0 4 8 - 4 0 9 5 for

Map locoting u s e r , ~ j k
v i r t d memory in

"absolute" memory

0-1023 for y

Absolute memory

Fig. 16. Memory allocation using a page allocation map.

82 Part 1 I The structure of computers

program are completely accessible to the whole program, and the
address space is essentially uniform.

The second value of the dimension, subroutine calling, produces
a hierarchy of communication contexts. There is not a fixed num-
ber of levels to the hierarchy, since each subroutine may call others
ad izuuseum. When subroutines are present, address names and
values within the subroutine become addresses which are local
to that part of the subprogram. Such a structuring is apparent
when looking at the higher-level languages such as FORTRAN,
ALGOL, and PL/I, where there are explicit statements for con-
trolling the names (addresses) that are available to each of the
parts of the program. The concept of subroutine structure has been
with us almost from the first programs.

The next value of the dimension relates to signaling within a
single process. It is akin to subroutines embedded in hardware.
These are called extracodes and were perhaps first suggested for
the Atlas (Chap. 23). Each extracode can be looked at as just a
call to a specific subroutine. The variables of the user (caller’s)
program are made available to the called (extracode defined)
program. The calling usually is accompanied by a context shift,
in which a completely different program (one that is used by any
number of calling programs) takes command to interpret the in-
struction. This scheme is used in systems which are controlled by
a special software monitor. When a function such as the input
or output of a file is required, the main program issues a call to
the monitor to make the transfer. (In theory, the monitor knows
about conditions in the system and has the capability to perform
the complex function.) A central monitor control can then begin
to run another program if the request is one which would normally
halt the computer. This form of communication is useful to supply
extra facilities to users and to have a method of knowing what
the users are doing (e.g., so that equipment will be better utilized).

As more complex program structures are directly represented
by the hardware, the intercommunication complexity also in-
creases beyond the simple subroutine call. If a segmented-memory
scheme is used, the problem of communicating between the seg-
ments can be solved in a range of ways. The value of the range
would be somewhere between ignoring the problem with the
hardware and providing methods for naming of addresses between
the communicating segments.

In the above cases, the communication among the various
programs or parts of programs is done explicitly by one program
to another program. The instruction trap does not fit this view
so nicely. Here, conditions occurring within a single process which
are not explicitly called cause another part of the program to be

called. Typical conditions which cause traps are arithmetic results
outside expected range or erroneous program conditions (e.g.,
trying to call someone else’s program). The trap causes a change
in context that is synchronized with the process causing it. Trap-
ping is a form of program interruption; a trap is an intraprocess
interrupt as distinct from interprocess interrupts.

Intercommunication between two independent processes (being
carried out by two independent components) is usually accom-
plished by using the program interrupt. The interrupting process
requests that a program interrupt occur in a component (inter-
ruptee). The interrupter’s request is acknowledged by the inter-
ruptee, and a change of process state occurs in the interruptee;
a new process is then run in the interruptee on behalf of the
interrupter. The program interrupt is used among processors in
a multiprocessor system and between 1Pc and nPio’s. A control
K may also use the program-interrupt request to communicate
with its superior Pi0 or Pc. For example, a Pi0 does not usually
have the logical capability to execute an algorithm which would
decide that action is to be taken for various error conditions.

Usually the interruptee is equipped with certain logic which
is capable of arranging priorities of requesting interrupters. The
typical kinds of interrupt requests are component faults (e.g.,
parity error), a timer has counted down, and various task comple-
tions (e.g., a program has completed, a tape unit has rewound,
a disk arm has stopped moving, a certain record has been found
on tape, a buffer is full).

State diagrams would show how each of the communication
methods above are similar to one another. A typical interrupt state
diagram is shown in Fig. 17. There are four states: normal process
interpretation, process state saving, interrupt process interpreta-
tion, and process state restoration. The sequence is as follows:

Normal instruction interpretation is occurring in the inter-
ruptee.

The interrupter requests an interrupt.

After some delay, t.acknowledgment, a state is reached in
which part of the interruptee’s process state is saved.

After t.acknowledgment + tsave, a program is running in
the interruptee in response to the interrupter.

The interrupt program is run for t.interrupt.

At the completion of the interrupt program, the original
process state is restored in the interrupter.

After t.restore, normal processing resumes in the inter-
rupter.

Chapter 3 I The computer space 83

The significant attributes of the system are the various times re-
quired to move from state to state. These times are directly related
to the amount of process state which must be saved (and restored)
when switching context.

The intercommunication problem is probably the least under-
stood dimension in the computer space. It is rather intimately
related to the ISP, in that the various calling methods (implicitly
and explicitly) depend on the ISP. Also, the amount of processor
state (a function of the ISP) affects the response time for making
context transitions. Most interrupt systems allow several inde-
pendent classes and/or sources of interrupters. The classes are
arranged in priority so that lower-level interrupters are ignored
until higher-level interrupt programs are run to completion (see
Chap. 42 on the SDS 910-9300 series). The design problems as-
sociated with intercommunication are not those of implementa-
tion but of knowing what should be implemented. The PMS
structure part and the corresponding register-transfer implementa-
tions for intercommunication are, by comparison, straightforward.

Processor concurrency

Concurrency (parallelism) in the processor is the number of events
or logical operations that are happening at a given time. If the
basic logic technology is held constant, decreasing the processing
time (increasing the power) requires increasing the number of
parallel operations. An exact measure of parallelism can be made
in terms of the number of n-bit operations made per clock pulse.
The parallelism in a structure is also a measure of its complexity;
to have a highly parallel structure implies control structure to-
gether with multiple data paths (and operations) which can be
concurrently evoked.

Processor parallelism is also necessary to overcome Mp speed
technological boundaries. Thus it is difficult to isolate completely
the processor from the memory.

Flynn [19661 categorized high-speed processors by whether
there are single or multiple instruction streams and whether each
stream has single or multiple data streams. The CDC 6600 and
IBM Stretch are examples of a single instruction stream and a
single data stream. An ILLIAC IV processor has a single instruc-
tion stream with multiple data streams. Thus, the single instruction
stream and multiple data stream are a form of array processing
in which an instruction performs an operation on multiple data
elements.

The CDC 6600 main processor has multiple instructions of a
single stream in the fetch, buffering, and decoding process at a
given time. In addition, instructions are being executed in parallel

Interrupt request
f rom interruptor,

Interpret
instruct ion in Mp
(interpretation in

in ter rupted state1

No in ter rupt
request

t restore Interrupt
program execution

Fig. 17. State diagram for the interrupt process.

by the 10 parallel data-operations. The 6600 has functionally differ-
ent data operators, although a system could exist in which these
operators are the same, or, if the operator were much faster, a
single unit could be used sequentially. Depending on the utiliza-
tion of the 10 data units, there could be a computer with several
processors which share a common set of data-operations. The 6600’s
peripheral processors are implemented in a mode whereby several
instructions streams are processed in parallel by a single processor.
The simplicity of the shared processor for multiprocessing or
parallel processing thereby provides still another form of parallel-
ism. The following subsections discuss particular forms of paral-
lelism. At one end of the dimension there is the most primitive
structure, a serial processor, and a t the other end there are pipe-
line processors.

Serial processors. At the most elementary level only one bit of an
n-bit word is operated on at a given time. There is no concurrency,
and even the most trivial operations on n bits requires a time of
n. The bit-serial processor was used in the first generation because
the cyclic primary memories to which it connected were funda-
mentally bit-serial (see page 73) . Although the processor memory
could be made to operate on a parallel basis where words were
available in one unit of time, such a tradeoff was not worthwhile
because of the relatively long access time to Mp. The word lengths
for serial processors tended to be relatively long, because the cost
is independent of word length (see page 216).

Parallel-b y-word processors. The simple parallel-by-word processor
is the most common processor of the first to third generation. This
occurred in part because Mp became parallel by word. Within

84 Part 1 1 The structure of computers

the processor we assume that almost every internal register-
transfer operation requires one or more clock times. (A simple
multiply operation usually takes between n/2 and 2n clock times.)
We do not mean to rule out multiple simultaneous internal opera-
tions within the processor, but they are exceptions. With only a
view of a processor's registers, it is easy to tell if multiple opera-
tions are possible. Most of these processors do only one operation
at a time. As a rule, the simple processor is locked to the primary-
memory cycle time (usually core). Approximately 2 - 10 events
(clock times) are available within the processor. For example, the
PDP-8 (Chap. 5) has four events, and the IBM 7090 (Chap. 41)
has 10 events. A precise measure of parallelism would count the
number of operations per clock time for given program conditions.

Multiple instruction streams, 1 Pc. The only example of this
structure in the book is the CDC 6600. Opportunities for such
a structure are possible with the parallel computer suggested by
Lehmann (Chapter 37).

Multiple datu streams. The most obvious implementation of
multiple data streams with one or more instruction streams is
the array processor. Part 4, Section 2 is devoted to these struc-
tures.

1-Instruction buffer. The 1-instruction buffer is a form of looking
ahead in the instruction-interpretation cycle and is about the
simplest form of parallelism in a parallel-by-word processor. A
single register is assigned the role of holding the next instruction
to be interpreted. The IBM 7094 Instruction Backup Register
(Chap. 41) is typical of this case. In the 7094 two instructions are
fetched at a time. More generally the next instruction would be
fetched during the execution of the current instruction.

n-Instruction buffering. Multiple instruction buffering is a general-
ization of the 1-instruction buffer above. It can take several forms
depending on the algorithms used to fetch the next instruction
(i.e., the look-ahead) and the organization of the memory holding
the instructions. Stretch (Chap. 34) and the CDC 6600 (Chap. 39)
use instruction buffers. A small, restricted content-addressable
memory holds a block of instructions. In the simplest case of these
computers a block of memory, relative to the instruction counter,
is kept in the local instruction buffer memory.

Look-aside buffering (sluve) memories. Look-aside is a more general
form of instruction buffering because both instructions and com-
monly accessed data tend to migrate to the faster look-aside

memory. This scheme is discussed for the IBM System/360 Model
85 (page 574). The look-aside memory suggested by Wilkes
[1965] is a content-addressable memory for retaining the active
(most recently used) memory words.

Pipeline processing. Pipeline (assembly-line) concurrency is the
name given to a system of multiple functional units, each of which
is responsible for partial interpretation and execution of the in-
struction stream. A pipeline processor has several partially com-
pleted instructions in process at one time. Each processor stage
operates on a specific part of the instruction, e.g., instruction fetch,
effective-address calculation, operand fetching, execution of opera-
tion specified by the instruction, and results storing. A PMS dia-
gram for a pipeline processor is given in Fig. 19. Thus there is
a separate functional unit for each state suggested by the state
diagram of Fig. 4. There must be interlocks so that sequence is
preserved, i.e., so that results are not used until they are available.
Figure 18 shows a time/function diagram of a pipeline processor.
There are at least three instructions being interpreted simultane-
ously. Although we have not extended Fig. 18, we would expect
the processor in the sketch to operate on about eight instructions

1 - J

I *
= t q 3

Instruction 3

t o q Operation t i m e t o determine instruction q
t o q Access t i m e to d e t e r m i n e instruction q
to" Ooerat lan t m e t o determine dotum v
t o v
t o O p e r a t i o n t l m e for instruction
t oo Operation t i m e t o determine operation of instruction
t q Total instruction time

A c c e s s t i m e t o determine datum v

Fie. 18. Time-function diagram for a pipeline processor. .. I . .

Chapter 3 I The computer space 85

M.data M . i ns t ruc t ions t4.data

ins t ruc t ion fe tch data se tup execution data res tore
- I U -

L

Fig. 19. Example of processor parallelism by spatially independent control function (pipeline processing) PMS
diagram.

at one time. Note that the processor sometimes completes later
instructions first. In this model there is only one instruction fetch-
ing, one operand fetching, and one operand storing unit, while
there are multiple data operation units. The particular number
of each type of unit is obviously not fixed for all structures but
depends heavily on the memory system, the number of instruction
streams, and the ISP.

A processor may require many data-operation units in order
to avoid bottlenecks. Each unit is independent and may be
functionally capable of carrying out only selected tasks. Multiple
data-operations are normally desirable in a pipeline processor
so that several operations can be carried out at a time, since
most of the processing time within the processor is spent on the
operations (e.g., multiplication, division, shifting, etc.)

Conclusions

You now have our view of the important aspects of the stored-
program computer. We have tried to organize the parameters as
dimensions so that a computer can be viewed as a point (or points)

in a multidimensional space. The previous discussion has enumer-
ated the values of one dimension, while (in effect) holding the
values of other dimensions constant. The dimensions are highly
correlated, especially with cost and evolutionary time. We have
been brief in presenting the dimensions because the book is pri-
marily about computer examples. However, one should he able
to recognize the dimensions and values when they are encountered
within the context of a particular computer.

The remainder of the book is organized around these dimen-
sions. The examples lose the identity of dimensions because they
are descriptions of points in the space (computers). Furthermore,
the descriptions themselves are not especially organized around
these dimensions but are based on the designer’s own view of his
machine.

References

AdamA60,66,67,68; AdamC6O; ArbuR66; ArdeB66; BowdB53;
CampR50; CasaC62; ChasC52; CoxJ68; DennJGS; FlynM66; ForrJFjl;
GibsC66; KnigK66; MolnC67; NiseN66; RandB68; RoseS69; SamuA57;
SerrR62; WeikM55,61,64; WilkMSla,65; WillF49.

PART 2

The Instruction-set Processor: main-line computers

To have a "main line" of computers is to have a family that predominates through
the generations. Predominance can probably best be measured by the percentage
of distinct computers produced within the family, as opposed to outside it. Members
of the family need not all be identical; especially evolution over time can be tolerated.
But it must be the case that there is at any moment a "standard" design which
is seen as emerging from the just prior "standard" design.

Within these definitions there indeed has been a main line in computer systems.
It is based on the Burks, Goldstine, and von Neumann memorandum, reprinted as
Chap. 4. The most striking characteristic is the evolution from 1 address organization
(l) , through index-register (1 + x) to general-register (1 + g) organization. Left
outside the main line have been multiple-address organizations, character machines,
and stack machines. This seems to be an appropriate description, even though a
character machine (variable-length character string), the IBM 1401, probably holds
the record for number of machines produced (when each model of the IBM Sys-
tem/360 is counted as a separate computer).

A second characteristic feature has been the PMS structure, which has evolved
from a single P to a Pc-nPio structure. This has not been uniform within the family,
since it applies only to the larger members; the small machines, such as the PDP-8
(Chap. 5), have no separate Pio's. It might seem that all computer systems, both
within and without the family, have evolved in this same way. But this disregards
the history of computer development. For a while, in the early fifties, there were
seen to be two main lines of potential development: scientific computers, featuring
large computation and small input/output, and business computers, featuring small
computation and large input/output. The latter started to develop into the Pc-nPio
structure (with the IBM 702) but, instead of a separate line developing, scientific
computers (with the IBM 704 and UNIVAC computers) adopted the more powerful
input/output structure. Again, despite its success, the 1401 has not bred a new
generation of computer systems in its image, either within IBM (where one might
argue that the overriding consideration was to have a uniform series) or by IBM's
competitors.

A third characteristic of the main line is the use of binary as opposed to decimal
as the basic radix of the machine. This affects both the arithmetic and whether logi-
cal processing (on bit vectors) can be done. The issue seems almost settled in the
third generation, with smaller machines being binary and larger machines having
multiple data-types. The last serious venture into a large pure decimal machine was
the UNIVAC LARC, delivered in 1960. In retrospect, the difference in organizations
between binary and decimal machines seems small enough so that we have included
them all in the same section.

There are a number of striking features that are characteristic of the main line
but do not differentiate it from any of the alternatives that have actually been
produced. These features include the stored-program concept; the use of sequential

a7

88 Part 2 1 The instruction-set processor: main-line computers

instructions of the operator-operand variety; the use of the word as an information
unit, within the range of 12 to 64 bits; and a processor state of less than 100 words.
Alternative organizations are conceivable, though they have clearly not seemed
practical to computer designers. For instance, in the early fifties there was an at-
tempt to construct an electronic plugboard machine, after the fashion of the ENIAC
and the IBM CPC (Card Programmed Calculator). And we see in the new programmed
desk calculators (Part 3, Sec. 4) yet another organization that is rather far from
the main line (but because of low cost may yet be a part of the future main line).
These desk calculators, by the way, are decimal, rather than binary.

Section 1

Processors with one address per
instruction

This section is principally concerned with the ISP. It is the
largest section in the book, reflecting the dominance of the
one-address organization during the first two generations.
Machines with index registers are included, but not machines
with general registers, which are discussed in Sec. 2. Some
processors store two single-address instructions per word, fol-
lowing the pattern of the IASl (von Neumann) machine (Chap.
4). In machines with short word lengths, one single-address
instruction is stored in one or two words, for example, in the
16-bit IBM 1800 (Chap. 33) and in the 12-bit PDP-8 (Chap. 5).
The evolution of these machines can be seen by comparingfirst-
and third-generation machines (e.g., Whirlwind and the IBM
1800). In general, the section is arranged by increasing word
length, alternatively complexity and performance.

Preliminary discussion of the logical design of an electronic
computing instrument

This article (Chap. 4) is important for historical as well as tech-
nical reasons. It is one of a series' written in 1946 prior to
building the first fully stored-program computer. Although its
authors were not engineers, it is written with the caution of
those responsible for the implementation of a rather significant
development task. The major problems for the computer are
identified, the alternatives analyzed, and a rationale for each
decision is given. If computer designers were all required to
analyze and describe their machines in such a fashion prior
to building them, there would be fewer, but better, computers.
Some of the especially enjoyable aspects of the discussion in-
clude:

Institute for Advanced Study, Princeton University, Princeton, N.J.

'The articles in the series were:

1 Selection of word length and number base.

2 Discussion of the instructions needed.

3 Concern for the input/output structure and the idea of
displays (now almost a reality).

4 Rationale for not including floating-point arithmetic
(caution about the technology).

5 The lack of necessity for the rather trivial binary-decimal
conversion hardware and the idea of cost effectiveness.

6 Analysis of the addition, multiplication, and division
hardware implementation. (This description includes a
nice, one-page discussion of the average carry length for
addition.)

It is difficult to say which machines have been influenced
by this memorandum since the idea of data and instructions
stored together in a homogeneous primary memory is so basic
to all computers. The idea of the single-address instruction set
and format is at the heart of all the machines discussed in this
section. However, it did not have index registers. Many of the
machines with long word length, like IAS, use the two-instruc-
tions-per-word format.

Subsequent machines built with only minor variations in-
clude ORDVAC; ILLIAC I at the University of Illinois with a 40-bit
electrostatic memory and vacuum-tube logic; AVIDAC, ORACLE,
MANIAC I, WEIZAC, SILLIAC, BESK, DASK, CSIRAC, and
JOHNNIAC at the RAND Corporation with a 40-bit core memory
and transistor logic [Gruenberger, 19681. Other similar com-
puters include the IBM 701 with a 36-bit word, electrostatic
memory and vacuum-tube logic; and the CDC 1604, with a
48-bit word, core memory, and transistor logic (possibly in-
fluenced by MANIAC 1 1) .

On the Principles of Large Scale Computing Machines (1946) [Goldstine and
von Neumann, 1963al.
Preliminary Discussion of the Logical Design of an Electronic Computing

The DEC pDp-8

The PDP-8 is included as Chap. 5 to illustrate the effects Of
Instrument, pt. I, vol. l(1946) [Burks, Goldstine. and von Neumann, 19631.
Planning and Coding of Problems for an Electronic Computing Instrument,
Dt. 11. vols. 1.2.3 (1947-19481 rGoldstme and von Neumann, 19636, 1963c,

a 12.bit word length, it is given in detail using a ~yop .down~~
approach in Order that the student may thoroughly understand

1963dl. it by simulating it, interpreting it, writing microprograms that

89

90 Part 2 1 The instruct ion-set processor: main- l ine computers Section 1 I Processors w i th one address per ins t ruc t ion

emulate it, making incremental modifications to it, and com-
pletely redesigning it.'

The PDP-8, although not the first 12-bit computer, achieved
a status that made it the first standard for small, low cost
dedicated computers. There is an active market now for com-
puters in this size and price range to which the marketing
culture has responded with the names microcomputer, mini-
computer and midicomputer for 8- to 12-, 12- to 16- and 16-
to 24-bit word-length computers, respectively.2

The PDP-8 has a nearly minimal processor state because
the address and ISP integers are 12 bits. Twelve bits is just large
enough to represent data from external physical process
environments (analog signals) and also just right to address a
4096 word memory. System software (editors, assemblers,
compilers, etc.) can surprisingly all f i t into this sized m e m ~ r y . ~
The processor state is only 26 bits, and the predecessor PDP-5
had a hardwired state of only 14 bits.

The PDP-8 is also discussed in Part 5, Sec. 2, page 396.

K-T(CRT; d i s p l a y ; a rea :S2 i lO2 in2)-,

K -T (I i g h t ; pen)>

K - T (f i l m ; camera),'

64 bs/w; 12 n 2048 w ;

800-IO00 f t ; 30 i n / s e c ; (2+1

i ndex) b / cha r ; 100 c h a r / i n

' M (t o g g l e s w i t c h ; 8 ~ s / w ; 3 2 w ; 16 b/w)

'Pc(50 kop/s ; 16 b/w; I i n s t r u c t i o n / w ; 1 a d d r e s s / i n s t r u c t i o n ;

M.processor s t a t e (3 w); t echno logy : vacuum tube ; 1948-

1966)

3 8 (f i x e d ; f rom: Pc; t o : 8 K; concu r rency : 1)

4Mp(*O:I; co re ; 8 vs/w; 1024 w ; 16 b/w; taccess : 2 a s)

The Whirlwind I computer

Whirlwind I is based on Wilkes' EDSAC at Manchester Univer-
sity. Chapter 6 describes the computer and gives a brief descrip-
tion of vacuum-tube logic and electrostatic storage-tube tech-
nology. The PMS structure of Whirlwind I with core memory is
given in Fig. 1.

The Memory Test Computer (MTC) of M.I.T.'s Lincoln Labora-
tory was the first computer to use a core memory. MTC was
built to test the memory which Whirlwind I received in August,
1953. Subsequent modifications included the addition of an-
other 2,048-word magnetic-core memory in September, 1953.

The machine's construction and technology are outstanding.
It has effective marginal checking and preventive-maintenance
test facilities. At the time the machine was dismembered and
moved from M.I.T., it had a use time availability of greater than
95 percent. Although Whirlwind I left M.I.T. in 1960, the ma-
chine was reassembled and was operational as late as 1966.

The machine's PMS structure is a simple 1 Pc. The K to Mp
block transfers are via the Pc on a one-at-a-time, programmed
basis. A single data transfer can be initiated to a particular
device, thus providing some opportunity for input/output and
processing concurrency. The simple structure is due to the high

'Perhaps also because of one of the au thor 's (GB) obvious a t tachmen t

*See the computers in th is size range Chapter 3, Flgure 2, page 43.

3Conce~vably a corollary to Parkinson's law: Programs expand to f i l l every word in
t h e pr imary m e m o r y of a computer .

Fig. 1. Whirlwind I PMS diagram.

register costs of the vacuum-tube technology; thus only a single
central processor register is provided to hold (or buffer) data
during a K transmission to a T or Ms. Appendix 1 of Chap. 6,
which is from the programming manual, gi,ves its instruction
set.

The IBM 1800

The IBM 1800(Chap. 33) is a third-generation, 16-bit computer.
It is discussed in Part 5, Sec. 2, page 396.

Some aspects of the logical design of a control computer:
a case study

Chapter 7 presents the aerospace computer Apollo designed by
M.I.T.'s Instrumentation Laboratory. It is presented in contrast
to the general-purpose 16-bit computers, Whirlwind (Chap. 6)
and the IBM 1800 (Chap. 33). The Apollo computer uses a
M(read only) because it is obviously a problem to reload pro-
grams. Kampe's SD-2 (Chap. 29) and Apollo (Chap. 7) are both
controllers and have other similar design constraints. The IBM
1800 is also used for control purposes. In fact, the computers
in this section up to and including the 24-bit SDS 910-9300
series are all designed for control environments. However, all
the latter machines have a goal of generality not present in the
Apollo.

Section 1 I Processors with one address per instruction 91

The SDS 910-9300 series

The SDS 910-9300 computers are illustrative of typical, second-
generation, 24-bit computers. The computers are discussed in
Part 6, Sec. 2, page 542. Chapter 42 also attempts to show
how implementation affects performance for the series.

The LGP-30 and LGP-21

The LGP-30 and later LGP-21 is presented in Chap. 16 and dis-
cussed in Part 3, Sec. 2, page 216.

IBM 650 instruction logic

The IBM 650 (Chap. 17) is a one plus one address computer.
Its attributes as a cyclic-memory computer, though hardly ap-
parent at the ISP level, are discussed in Part 3, Sec. 2, page
216.

The IBM 7094 I, II

Part 6, Sec. 1 shows the evolution of the IBM 36-bit scientific
computers. The IBM 7094 I I (Chap. 41) is presented for many
reasons (page 517). Among them are its effect on the later IBM
System/360 and its position as the standard large scientific
computer of the late fifties and early sixties.

The UNIVAC system

The YNIVAC system, first delivered in March, 1951, was later
known as UNIVAC I. UNIVAC (UNIVersal AutomaticComputers)
was the second computer1 to be manufactured by the Eckert-
Mauchly Computer Corporation, subsequently a division of
Remington-Rand.2

UNIVAC is a single-address, decimal computer with 12 digits/
word. Two instructions are stored per word. In effect, UNIVAC
is a decimal version of the IAS computer. The Mp consists of
1,000 words, made up of 10 words/delay line. Each delay line
requires 404 microseconds to recirculate.

UNIVAC is significant because it was the most important
computer during the early 1950s. Its performance record is
discussed in Chap. 8. The UNIVSERVO magnetic-tape system
was rather advanced for 1950, considering performance, error
checking, and buffering. Particularly nice is the ability to parti-
tion the input/output system for off-line printing and key
punching.

One-level storage system

The 48-bit Atlas was developed at Manchester University and
subsequently manufactured by Ferranti Corp. (now part of Inter-
national Computers and Tabulators). The development began
about 1960, and the paper was written in 1962. The importance
of Atlas with respect to current and future machines is dis-
cussed in Part 3, Sec. 6, page 274.

The engineering design of the Stretch computer

The IBM Stretch (also called the IBM Model 7030) single-
address computer (Chap. 34) is one of the earliest computers
built to provide maximum computing power subject to no ap-
parent cost, size, and producibility constraints. A discussion
of its importance is given in Part 5, Sec. 2, page 396.

l T h e Eckert-Mauchly BINAC was apparent ly t h e f i r s t computer t o be manu-

* Eckert.Mauchly Computer Corporat ion was init ial ly independent of Reming ton -

factured by a corporat ion.

Rand.

Chapter 4

Preliminary discussion of the logical
design of an electronic computing
instrument1

Arthur W. Burks / Herman H . Goldst ine /
John von N e u m a n n

PART I

1.

1.1. Inasmuch as the completed device will be a general-purpose
computing machine it should contain certain main organs relating
to arithmetic, memory-storage, control and connection with the
human operator. It is intended that the machine be fully automatic
in character, i.e. independent of the human operator after the
computation starts. A fuller discussion of the implications of this
remark will be given in Sec. 3 below.

It is evident that the machine must be capable of storing
in some manner not only the digital information needed in a given
computation such as boundary values, tables of functions (such
as the equation of state of a fluid) and also the intermediate results
of the computation (which may be wanted for varying lengths of
time), but also the instructions which govern the actual routine
to be performed on the numerical data. In a special-purpose
machine these instructions are an integral part of the device and
constitute a part of its design structure. For an all-purpose machine
it must be possible to instruct the device to carry out any compu-
tation that can be formulated in numerical terms. Hence there
must be some organ capable of storing these program orders. There
must, moreover, be a unit which can understand these instructions
and order their execution.

Conceptually we have discussed above two different
forms of memory: storage of numbers and storage of orders. If,
however, the orders to the machine are reduced to a numerical
code and if the machine can in some fashion distinguish a number
from an order, the memory organ can be used to store both num-

Principal components of the machine

1.2.

1.3.

‘From A. H. Taub (ed.), “Collected Works of John von Neumann,” vol. 5,
pp. 34-79, The Macmillan Company, New York, 1963. Taken from
report to U. S. Army Ordnance Department, 1946. See also Bibliography
Burks, Goldstine and von Neumann, 1962a, 1962b, 1963; and Goldstine and
von Neumann 1963a, 1963h, 1963c, 1963d.

bers and orders. The coding of orders into numeric form is dis-
cussed in 6.3 below.

If the memory for orders is merely a storage organ there
must exist an organ which can automatically execute the orders
stored in the memory. We shall call this organ the Control.

Inasmuch as the device is to be a computing machine
there must be an arithmetic organ in it which can perform certain
of the elementary arithmetic operations. There will be, therefore,
a unit capable of adding, subtracting, multiplying and dividing.
It will be seen in 6.6 below that it can also perform additional
operations that occur quite frequently.

The operations that the machine will view as elementary are
clearly those which are wired into the machine. To illustrate, the
operation of multiplication could be eliminated from the device
as an elementary process if one were willing to view it as a prop-
erly ordered series of additions. Similar remarks apply to division.
In general, the inner economy of the arithmetic unit is determined
by a compromise between the desire for speed of operation-a
non-elementary operation will generally take a long time to per-
form since it is constituted of a series of orders given by the
control-and the desire for simplicity, or cheapness, of the ma-
chine.

1.6. Lastly there must exist devices, the input and output
organ, whereby the human operator and the machine can com-
municate with each other. This organ will be seen below in 4.5,
where it is discussed, to constitute a secondary form of automatic
memory.

1.4.

1.5.

2.
2.1. It is clear that the size of the memory is a critical considera-
tion in the design of a satisfactory general-purpose computing

First remarks on the memory

92

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 93

machine. We proceed to discuss what quantities the memory
should store for various types of computations.

In the solution of partial differential equations the storage
requirements are likely to be quite extensive. In general, one must
remember not only the initial and boundary conditions and any
arbitrary functions that enter the problem but also an extensive
number of intermediate results.

2.2.

a For equations of parabolic or hyperbolic type in two inde-
pendent variables the integration process is essentially a
double induction. To find the values of the dependent vari-
ables at time t + At one integrates with respect to x from
one boundary to the other by utilizing the data at time t
as if they were coefficients which contribute to defining the
problem of this integration.

Not only must the memory have sufficient room to store
these intermediate data but there must be provisions
whereby these data can later be removed, i.e. a t the end
of the (t + At) cycle, and replaced by the corresponding
data for the (t + 2At) cycle. This process of removing data
from the memory and of replacing them with new informa-
tion must, of course, be done quite automatically under the
direction of the control.

For total differential equations the memory requirements
are clearly similar to, hut smaller than, those discussed in
(a) above.

Problems that are solved by iterative procedures such as
systems of linear equations or elliptic partial differential
equations, treated by relaxation techniques, may be ex-
pected to require quite extensive memory capacity. The
memory requirement for such problems is apparently much
greater than for those problems in (a) above in which one
needs only to store information corresponding to the in-
stantaneous value of one variable [tin (a) above], while now
entire solutions (covering all values of all variables) must
he stored. This apparent discrepancy in magnitudes can,
however, be somewhat overcome by the use of techniques
which permit the use of much coarser integration meshes
in this case, than in the cases under (a).

b

c

2.3. It is reasonable at this time to build a machine that can
conveniently handle problems several orders of magnitude more
complex than are now handled by existing machines, electronic
or electro-mechanical. We consequently plan on a fully automatic
electronic storage facility of about 4,000 numbers of 40 binary
digits each. This corresponds to a precision of T 4 0 - 0.9 x
i.e. of about 12 decimals. We believe that this memory capacity
exceeds the capacities required for most problems that one deals

with at present by a factor of about 10. The precision is also safely
higher than what is required for the great majority of present day
problems. In addition, we propose that we have a subsidiary
memory of much larger capacity, which is also fully automatic,
on some medium such as magnetic wire or tape.

3. First remarks on the control and code

3.1. It is easy to see by formal-logical methods that there exist
codes that are in abstracto adequate to control and cause the
execution of any sequence of operations which are individually
available in the machine and which are, in their entirety, con-
ceivable by the problem planner. The really decisive considera-
tions from the present point of view, in selecting a code, are more
of a practical nature: simplicity of the equipment demanded by
the code, and the clarity of its application to the actually impor-
tant problems together with the speed of its handling of those
problems. It would take us much too far afield to discuss these
questions at all generally or from first principles. We will therefore
restrict ourselves to analyzing only the type of code which we
now envisage for our machine.

There must certainly be instructions for performing the
fundamental arithmetic operations. The specifications for these
orders will not be completely given until the arithmetic unit is
described in a little more detail.

It must be possible to transfer data from the memory to
the arithmetic organ and back again. In transferring information
from the arithmetic organ back into the memory there are two
types we must distinguish: Transfers of numbers as such and trans-
fers of numbers which are parts of orders. The first case is quite
obvious and needs no further explication. The second case is more
subtle and serves to illustrate the generality and simplicity of the
system. Consider, by way of illustration, the problem of interpola-
tion in the system. Let us suppose that we have formulated the
necessary instructions for performing an interpolation of order n
in a sequence of data. The exact location in the memory of the
(n + 1) quantities that bracket the desired functional value is, of
course, a function of the argument. This argument probably is
found as the result of a computation in the machine. We thus need
an order which can substitute a number into a given order-in
the case of interpolation the location of the argument or the group
of arguments that is nearest in our table to the desired value. By
means of such an order the results of a computation can be in-
troduced into the instructions governing that or a different com-
putation. This makes it possible for a sequence of instructions to
be used with different sets of numbers located in different parts
of the memory.

3.2.

3.3.

94 Part 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

To summarize, transfers into the memory will be of two sorts:
Total substitutions, whereby the quantity previously stored is
cleared out and replaced by a new number. Partial substitutions
in which that part of an order containing a memory location-
number-we assume the various positions in the memory are
enumerated serially by memory location-numbers-is replaced by
a new memory location-number.

It is clear that one must be able to get numbers from
any part of the memory at any time. The treatment in the case
of orders can, however, be more methodical since one can at least
partially arrange the control instructions in a linear sequence.
Consequently the control will be so constructed that it will nor-
mally proceed from place n in the memory to place (n + 1) for
its next instruction.

The utility of an automatic computer lies in the possi-
bility of using a given sequence of instructions repeatedly, the
number of times it is iterated being either preassigned or depend-
ent upon the results of the computation. When the iteration is
completed a different sequence of orders is to be followed, so we
must, in most cases, give two parallel trains of orders preceded
by an instruction as to which routine is to be followed. This choice
can be made to depend upon the sign of a number (zero being
reckoned as plus for machine purposes). Consequently, we intro-
duce an order (the conditional transfer order) which will, depend-
ing on the sign of a given number, cause the proper one of two
routines to be executed.

Frequently two parallel trains of orders terminate in a common
routine. It is desirable, therefore, to order the control in either
case to proceed to the beginning point of the common routine.
This unconditional transfer can be achieved either by the artificial
use of a conditional transfer or by the introduction of an explicit
order for such a transfer.

Finally we need orders which will integrate the input-
output devices with the machine. These are discussed briefly in
6.8.

We proceed now to a more detailed discussion of the
machine. Inasmuch as our experience has shown that the moment
one chooses a given component as the elementary memory unit,
one has also more or less determined upon much of the balance
of the machine, we start by a consideration of the memory organ.
In attempting an exposition of a highly integrated device like a
computing machine we do not find it possible, however, to give
an exhaustive discussion of each organ before completing its
description. It is only in the final block diagrams that anything
approaching a complete unit can be achieved.

3.4.

3.5.

3.6.

3.7.

The time units to be used in what follows will be:

1 p e c = 1 microsecond = 10F seconds
1 msec = 1 millisecond = lop3 seconds

4. The memory organ

4.1. Ideally one would desire an indefinitely large memory ca-
pacity such that any particular aggregate of 40 binary digits, or
word (cf. 2.3), would be immediately available-Le. in a time
which is somewhat or considerably shorter than the operation time
of a fast electronic multiplier. This may be assumed to be practical
at the level of about 100 psec. Hence the availability time for a
word in the memory should be 5 to 50 psec. It is equally desirable
that words may be replaced with new words at about the same
rate. It does not seem possible physically to achieve such a capac-
ity. We are therefore forced to recognize the possibility of con-
structing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.

The most common forms of storage in electrical circuits are
the flip-flop or trigger circuit, the gas tube, and the electro-
mechanical relay. To achieve a memory of n words would, of
course, require about 40n such elements, exclusive of the switching
elements. We saw earlier (cf. 2.2) that a fast memory of several
thousand words is not at all unreasonable for an all-purpose instru-
ment. Hence, about lo5 flip-flops or analogous elements would be
required! This would, of course, be entirely impractical.

We must therefore seek out some more fundamental method
of storing electrical information than has been suggested above.
One criterion for such a storage medium is that the individual
storage organs, which accommodate only one binary digit each,
should not be macroscopic components, but rather microscopic
elements of some suitable organ. They would then, of course, not
be identified and switched to by the usual macroscopic wire con-
nections, but by some functional procedure in manipulating that
organ.

One device which displays this property to a marked degree
is the iconoscope tube. In its conventional form it possesses a linear
resolution of about one part in 500. This would correspond to a
(two-dimensional) memory capacity of 500 x 500 = 2.5 x lo5.
One is accordingly led to consider the possibility of storing elec-
trical charges on a dielectric plate inside a cathode-ray tube.
Effectively such a tube is nothing more than a myriad of electrical
capacitors which can be connected into the circuit by means of
an electron beam.

Actually the above mentioned high resolution and concomitant
memory capacity are only realistic under the conditions of tele-
vision-image storage, which are much less exigent in respect to

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 95

the reliability of individual markings than what one can accept
in the storage for a computer. In this latter case resolutions of
one part in 20 to 100, i.e. memory capacities of 400 to 10,000,
would seem to be more reasonable in terms of equipment built
essentially along familiar lines.

At the present time the Princeton Laboratories of the Radio
Corporation of America are engaged in the development of a
storage tube, the Selectron, of the type we have mentioned above.
This tube is also planned to have a non-amplitude-sensitive switch-
ing system whereby the electron beam can be directed to a given
spot on the plate within a quite small fraction of a millisecond.
Inasmuch as the storage tube is the key component of the machine
envisaged in this report we are extremely fortunate in having
secured the cooperation of the RCA group in this as well as in
various other developments.

An alternate form of rapid memory organ is the acoustic feed-
back delay line described in various reports on the EDVAC. (This
is an electronic computing machine being developed for the
Ordnance Department, U.S. Army, by the University of Pennsyl-
vania, Moore School of Electrical Engineering.) Inasmuch as that
device has been so clearly reported in those papers we give no
further discussion. There are still other physical and chemical
properties of matter in the presence of electrons or photons that
might be considered, but since none is yet beyond the early dis-
cussion stage we shall not make further mention of them.

We shall accordingly assume throughout the balance of
this report that the Selectron is the modus for storage of words
at electronic speeds. As now planned, this tube will have a capac-
ity of 2’* = 4,096 =: 4,000 binary digits. To achieve a total elec-
tronic storage of about 4,000 words we propose to use 40 Selec-
trons, thereby achieving a memory of 212 words of 40 binary digits
each. (Cf. again 2.3.)

There are two possible means for storing a particular
word in the Selectron memory-or, in fact, in either a delay line
memory or in a storage tube with amplitude-sensitive deflection.
One method is to store the entire word in a given tube and then
to get the word out by picking out its respective digits in a serial
fashion. The other method is to store in corresponding places in
each of the 40 tubes one digit of the word. To get a word from
the memory in this scheme requires, then, one switching mech-
anism to which all 40 tubes are connected in parallel. Such a
switching scheme seems to us to be simpler than the technique
needed in the serial system and is, of course, 40 times faster. We
accordingly adopt the parallel procedure and thus are led to con-
sider a so-called parallel machine, as contrasted with the serial
principles being considered for the EDVAC. (In the EDVAC the

4.2.

4.3.

peculiar characteristics of the acoustic delay line, as well as various
other considerations, seem to justify a serial procedure. For more
details, cf. the reports referred to in 4.1.) The essential difference
between these two systems lies in the method of performing an
addition; in a parallel machine all corresponding pairs of digits
are added simultaneously, whereas in a serial one these pairs are
added serially in time.

To summarize, we assume that the fast electronic memory
consists of 40 Selectrons which are switched in parallel by a com-
mon switching arrangement. The inputs of the switch are con-
trolled by the control.

Inasmuch as a great many highly important classes of
problems require a far greater total memory than 212 words, we
now consider the next stage in our storage hierarchy. Although
the solution of partial differential equations frequently involves
the manipulation of many thousands of words, these data are
generally required only in blocks which are well within the 212
capacity of the electronic memory. Our second form of storage
must therefore be a medium which feeds these blocks of words
to the electronic memory. It should be controlled by the control
of the computer and is thus an integral part of the system, not
requiring human intervention.

There are evidently two distinct problems raised above. One
can choose a given medium for storage such as teletype tapes,
magnetic wire or tapes, movie film or similar media. There still
remains the problem of automatic integration of this storage
medium with the machine. This integration is achieved logically
by introducing appropriate orders into the code which can instruct

the machine to read or write on the medium, or to move it by
a given amount or to a place with given characteristics. We discuss
this question a little more fully in 6.8.

Let us return now to the question of what properties the sec-
ondary storage medium should have. It clearly should be able to
store information for periods of time long enough so that only a
few per cent of the total computing time is spent in re-registering
information that is “fading off.” It is certainly desirable, although
not imperative, that information can be erased and replaced by
new data. The medium should be such that it can be controlled,
i.e. moved forward and backward, automatically. This considera-
tion makes certain media, such as punched cards, undesirable.
While cards can, of course, be printed or read by appropriate
orders from some machine, they are not well adapted to problems
in which the output data are fed directly back into the machine,
and are required in a sequence which is non-monotone with re-
spect to the order of the cards. The medium should be capable
of remembering very large numbers of data at a much smaller price

4.4.

4.5.

96 Part 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

than electronic devices. I t must be fast enough so that, even when
it has to be used frequently in a problem, a large percentage of
the total solution time is not spent in getting data into and out
of this medium and achieving the desired positioning on it. If this
condition is not reasonably well met, the advantages of the high
electronic speeds of the machine will be largely lost.

Both light- or electron-sensitive film and magnetic wires or
tapes, whose motions are controlled by servo-mechanisms inte-
grated with the control, would seem to fulfil our needs reasonably
well. We have tentatively decided to use magnetic wires since we
have achieved reliable performance with them at pulse rates of
the order of 25,00O/sec and beyond.

Lastly our memory hierarchy requires a vast quantity of
dead storage, i s . storage not integrated with the machine. This
storage requirement may be satisfied by a library of wires that
can be introduced into the machine when desired and at that time
become automatically controlled. Thus our dead storage is really
nothing but an extension of our secondary storage medium. It
differs from the latter only in its availability to the machine.

We impose one additional requirement on our secondary
memory. It must be possible for a human to put words on to the
wire or other substance used and to read the words put on by
the machine. In this manner the human can control the machine's
functions. It is now clear that the secondary storage medium is
really nothing other than a part of our input-output system, cf.
6.8.4 for a description of a mechanism for achieving this.

There is another highly important part of the input-
output which we merely mention at this time, namely, some
mechanism for viewing graphically the results of a given compu-
tation. This can, of course, be achieved by a Selectron-like tube
which causes its screen to fluoresce when data are put on it by
an electron beam.

For definiteness in the subsequent discussions we assume
that associated with the output of each Selectron is a flip-flop.
This assemblage of 40 flip-flops we term the Selectron Register.

4.6.

4.7.

4.8.

4.9.

5. The arithmetic organ

5.1. In this section we discuss the features we now consider
desirable for the arithmetic part of our machine. We give our
tentative conclusions as to which of the arithmetic operations
should be built into the machine and which should be pro-
grammed. Finally, a schematic of the arithmetic unit is described.

In a discussion of the arithmetical organs of a computing
machine one is naturally led to a consideration of the number
system to be adopted. In spite of the longstanding tradition of

5.2.

building digital machines in the decimal system, we feel strongly
in favor of the binary system for our device. Our fundamental unit
of memory is naturally adapted to the binary system since we do
not attempt to measure gradations of charge at a particular point
in the Selectron but are content to distinguish two states. The
flip-flop again is truly a binary device. On magnetic wires or tapes
and in acoustic delay line memories one is also content to recog-
nize the presence or absence of a pulse or (if a carrier frequency
is used) of a pulse train, or of the sign of a pulse. (We will not
discuss here the ternary possibilities of a positive-or-negative-
or-no-pulse system and their relationship to questions of reliability
and checking, nor the very interesting possibilities of carrier fre-
quency modulation.) Hence if one contemplates using a decimal
system with either the iconoscope or delay-line memory one is
forced into a binary coding of the decimal system-each decimal
digit being represented by at least a tetrad of binary digits. Thus
an accuracy of ten decimal digits requires at least 40 binary digits.
In a true binary representation of numbers, however, about 33
digits suffice to achieve a precision of lolo. The use of the binary
system is therefore somewhat more economical of equipment than
is the decimal.

The main virtue of the binary system as against the decimal
is, however, the greater simplicity and speed with which the
elementary operations can be performed. To illustrate, consider
multiplication by repeated addition. In binary multiplication the
product of a particular digit of the multiplier by the multiplicand
is either the multiplicand or null according as the multiplier digit
is 1 or 0. In the decimal system, however, this product has ten
possible values between null and nine times the multiplicand,
inclusive. Of course, a decimal number has only log,,2 - 0.3 times
as many digits as a binary number of the same accuracy, but even
so multiplication in the decimal system is considerably longer than
in the binary system. One can accelerate decimal multiplication
by complicating the circuits, but this fact is irrelevant to the point
just made since binary multiplication can likewise be accelerated
by adding to the equipment. Similar remarks may be made about
the other operations.

An additional point that deserves emphasis is this: An important
part of the machine is not arithmetical, but logical in nature. Now
logics, being a yes-no system, is fundamentally binary. Therefore
a binary arrangement of the arithmetical organs contributes very
significantly towards producing a more homogeneous machine,
which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human
point of view is the conversion problem. Since, however, it is
completely known how to convert numbers from one base to

Chapter 4 1 Preliminary discussion of the logical design of an electronic computing instrument 97

another and since this conversion can be effected solely by the
use of the usual arithmetic processes there is no reason why the
computer itself cannot carry out this conversion. It might be
argued that this is a time consuming operation. This, however,
is not the case. (Cf. 9.6 and 9.7 of Part 11. Part I1 is a report issued
under the title Planning and Coding of Problems for a n Electronic
Computing Instrument.’) Indeed a general-purpose computer, used
as a scientific research tool, is called upon to do a very great
number of multiplications upon a relatively small amount of input
data, and hence the time consumed in the decimal to binary
conversion is only a trivial percentage of the total computing time.
A similar remark is applicable to the output data.

In the preceding discussion we have tacitly assumed the de-
sirability of introducing and withdrawing data in the decimal
system. We feel, however, that the base 10 may not even be a
permanent feature in a scientific instrument and consequently will
probably attempt to train ourselves to use numbers base 2 or 8
or 16. The reason for the bases 8 or 16 is this: Since 8 and 16
are powers of 2 the conversion to binary is trivial; since both are
about the size of 10, they violate many of our habits less badly
than base 2. (Cf. Part 11, 9.4.)

Several of the digital computers being built or planned
in this country and England are to contain a so-called “floating
decimal point”. This is a mechanism for expressing each word as
a characteristic and a mantissa-e.g. 123.45 would be carried in
the machine as (0.12345,03), where the 3 is the exponent of 10
associated with the number. There appear to be two major pur-
poses in a “floating” decimal point system both of which arise from
the fact that the number of digits in a word is a constant, fixed
by design considerations for each particular machine. The first of
these purposes is to retain in a sum or product as many significant
digits as possible and the second of these is to free the human
operator from the burden of estimating and inserting into a prob-
lem “scale factors”-multiplicative constants which serve to keep
numbers within the limits of the machine.

There is, of course, no denying the fact that human time is
consumed in arranging for the introduction of suitable scale fac-
tors. We only argue that the time so consumed is a very small
percentage of the total time we will spend in preparing an inter-
esting problem for our machine. The first advantage of the floating
point is, we feel, somewhat illusory. In order to have such a floating
point one must waste memory capacity which could otherwise be
used for carrying more digits per word. It would therefore seem

5.3.

lSee Bibliography [Goldstine and von Neumann, 1963b, 1963c, 1963dI.
References in this chapter are all to this report.

to us not at all clear whether the modest advantages of a floating
binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control circuits.

There are certainly some problems within the scope of our
device which really require more than 2-40 precision. To handle
such problems we wish to plan in terms of words whose lengths
are some fixed integral multiple of 40, and program the machine
in such a manner as to give the corresponding aggregates of 40
digit words the proper treatment. We must then consider an addi-
tion or multiplication as a complex operation programmed from
a number of primitive additions or multiplications (cf. $9, Part
11). There would seem to be considerable extra difficulties in the
way of such a procedure in an instrument with a floating binary
point.

The reader may remark upon our alternate spells of radicalism
and conservatism in deciding upon various possible features for
our mechanism. We hope, however, that he will agree, on closer
inspection, that we are guided by a consistent and sound principle
in judging the merits of any idea. We wish to incorporate into
the machine-in the form of circuits-only such logical concepts
as are either necessary to have a complete system or highly con-
venient because of the frequency with which they occur and the
influence they exert in the relevant mathematical situations.

On the basis of this criterion we definitely wish to build
into the machine circuits which will enable it to form the binary
sum of two 40 digit numbers. We make this decision not because
addition is a logically basic notion but rather because it would
slow the mechanism as well as the operator down enormously if
each addition were programmed out of the more simple operations
of “and”, “or”, and “not”. The same is true for the subtraction.
Similarly we reject the desire to form products by programming
them out of additions, the detailed motivation being very much
the same as in the case of addition and subtraction. The cases for
division and square-rooting are much less clear.

It is well known that the reciprocal of a number a can be
formed to any desired accuracy by iterative schemes. One such
scheme consists of improving an estimate X by forming X’ =
2X - ax2. Thus the new error 1 - uX’ is (1 - ax)?-, which is the
square of the error in the preceding estimate. We notice that in
the formation of X’, there are two bona fide multiplications-we
do not consider multiplication by 2 as a true product since we
will have a facility for shifting right or left in one or two pulse
times. If then we somehow could guess l / a to a precision of 2-5,
6 multiplications-3 iterations-would suffice to give a final result
good to 2-40. Accordingly a small table of Z4 entries could be used
to get the initial estimate of l /a. In this way a reciprocal l /a

5.4.

98 Part 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

could be formed in 6 multiplication times, and hence a quotient
b/a in 7 multiplication times. Accordingly we see that the question
of building a divider is really a function of how fast it can be made
to operate compared to the iterative method sketched above: In
order to justify its existence, a divider must perform a division in
a good deal less than 7 multiplication times. We have, however,
conceived a divider which is much faster than these 7 multipli-
cation times and therefore feel justified in building it, especially
since the amount of equipment needed above the requirements
of the multiplier is not important.

It is, of course, also possible to handle square roots by iterative
techniques. In fact, if X is our estimate of all2, then X' =
yz (X + a / X) is a better estimate. We see that this scheme involves
one division per iteration. As will be seen below in our more detailed
examination of the arithmetic organ we do not include a square-
rooter in our plans because such a device would involve more
equipment than we feel is desirable in afirst model. (Concerning the
iterative method of square-rooting, cf. 8.10 in Part 11.)

The first part of our arithmetic organ requires little dis-
cussion at this point. It should be a parallel storage organ which
can receive a number and add it to the one already in it, which
is also able to clear its contents and which can transmit what it
contains. We will call such an organ an Accumulator. It is quite
conventional in principle in past and present computing machines
of the most varied types, e.g. desk multipliers, standard IBM
counters, more modern relay machines, the ENIAC. There are of,
course, numerous ways to build such a binary accumulator. We
distinguish two broad types of such devices: static, and dynamic
or pulse-type accumulators. These will be discussed in 5.11, but
it is first necessary to make a few remarks concerning the arith-
metic of binary addition. In a parallel accumulator, the first step
in an addition is to add each digit of the addend to the corre-
sponding digit of the augend. The second step is to perform the
carries, and this must be done in sequence since a carry may
produce a carry. In the worst case, 39 carries will occur. Clearly
it is inefficient to allow 39 times as much time for the second
step (performing the carries) as for the first step (adding the digits).
Hence either the carries must be accelerated, or use must be made
of the average number of carries or both.

We shall show that for a sum of binary words, each of
length n, the length of the largest carry sequence is on the average
not in excess of 210g n. Let p,(o) designate the probability that
a carry sequence is of length u or greater in the sum of two binary
words of length n. Then clearly p,(o) - p,(o + 1) is the proba-
bility that the largest carry sequence is of length exactly o and
the weighted average

5.5.

5.6.

n

a, = 1 o [p n (4 - p,(o + 111
L'=o

is the average length of such carry. Note that

r , = O

since p,(o) = 0 if o > n. From these it is easily inferred that

n

a, = 2 p,(o)
u = l

We now proceed to show that p,(v) 5 min[l, (n - o + 1)/2"+l].
Observe first that

Indeed, p,(o) is the probability that the sum of two n-digit numbers
contains a carry sequence of length 20. This probability obtains
by adding the probabilities of two mutually exclusive alternatives:
First: Either the n - 1 first digits of the two numbers by them-
selves contain a carry sequence of length zo. This has the proba-
bility P,-~(G). Second: The n - 1 first digits of the two numbers
by themselves do not contain a carry sequence of length 20. In
this case any carry sequence of length 20 in the total numbers
(of length n) must end with the last digits of the total sequence.
Hence these must form the combination 1, 1. The next v - 1 digits
must propagate the carry, hence each of these must form the
combination 1, 0 or 0, 1. (The combinations 1, 1 and 0, 0 do not
propagate a carry.) The probability of the combination 1, 1 is x,
that one of the alternative combinations 1, 0 or 0, 1 is '/. The
total probability of this sequence is therefore y4('/2)"-' = (%)"+l.

The remaining n - o digits must not contain a carry sequence
of length 20. This has the probability 1 -p,-"(o). Thus the
probability of the second case is [l - p , - , (~)] / 2 " + ~ . Combining
these two cases, the desired relation

obtains. The observation that p,(u) = 0 if II > n is trivial.

We see with the help of the formulas proved above that
p,(v) - p,-,(v) is always S 1 / Z v + l , and hence that the sum

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 99

is not in excess of (n - o + l)/2v+1 since there are n - o + 1
terms in the sum; since, moreover, each p,(o) is a probability, it
is not greater than 1. Hence we have

Finally we turn to the question of getting an upper bound on
a, = ~ ; = ~ p , (v) . Choose K so that 2K 5 n 5 eK+l. Then

This last expression is clearly linear in 1~ in the interval
2K 5 n 5 2 K + 1 , and it is = K for n = Z K and = K + 1 for
n = 2K+1, i.e. it is Z21og n at both ends of this interval. Since
the function 210g n is everywhere concave from below, it follows
that our expression is s210g n throughout this interval. Thus
a, 5 210g n. This holds for all K , i.e. for all n, and it is the in-
equality which we wanted to prove.

For our case n = 40 we have a, 5 log,40 - 5.3, i.e. an average
length of about 5 for the longest carry sequence. (The actual value
of u4(, is 4.62.)

Having discussed the addition, we can now go on to the
subtraction. It is convenient to discuss at this point our treatment
of negative numbers, and in order to do that right, it is desirable
to make some observations about the treatment of numbers in
general.

Our numbers are 40 digit aggregates, the left-most digit being
the sign digit, and the other digits genuine binary digits, with
positional values 2-l, 2-*, . . . , 2-39 (going from left to right). Our
accumulator will, however, treat the sign digit, too, as a binary
digit with the positional value 2O-at least when it functions as
an adder. For numbers between 0 and 1 this is clearly all right:
The left-most digit will then be 0, and if 0 at this place is taken
to represent a + sign, then the number is correctly expressed with
its sign and 39 binary digits.

Let us now consider one or more unrestricted 40 binary digit
numbers. The accumulator will add them, with the digit-adding
and the carrying mechanisms functioning normally and identically
in all 40 positions. There is one reservation, however: If a carry
originates in the left-most position, then it has nowhere to go from
there (there being no further positions to the left) and is “lost”.
This means, of course, that the addend and the augend, both
numbers between 0 and 2, produced a sum exceeding 2, and the
accumulator, being unable to express a digit with a positional
value 2l, which would now be necessary, omitted 2. That is, the

5.7.

sum was formed correctly, excepting a possible error 2. If several
such additions are performed in succession, then the ultimate error
may be any integer multiple of 2. That is, the accumulator is an
adder which allows errors that are integer multiples of 2-it is
an adder modulo 2.

It should be noted that our convention of placing the binary
point immediately to the right of the left-most digit has nothing
to do with the structure of the adder. In order to make this point
clearer we proceed to discuss the possibilities of positioning the
binary point in somewhat more detail.

We begin by enumerating the 40 digits of our numbers (words)
from left to right. In doing this we use an index h = 1, . . . , 40.
Now we might have placed the binary point just as well between
digits j and i + 1, i = 0, . . . , 40. Note, that i = .0 corresponds
to the position at the extreme left (there is no digit h = i = 0);
j = 40 corresponds to the position at the extreme right (there is
no position h = i + 1 = 41); and j = 1 corresponds to our above
choice. Whatever our choice of j , it does not affect the correctness
of the accumulator’s addition. (This is equally true for subtraction,
cf. below, but not for multiplication and division, cf. 5.8.) Indeed,
we have merely multiplied all numbers by 2i-I (as against our
previous convention), and such a “change of scale” has no effect
on addition (and subtraction). However, now the accumulator is
an adder which allows errors that are integer multiples of 2i it
is an adder modulo 2j. We mention this because it is occasionally
convenient to think in terms of a convention which places the
binary point at the right end of the digital aggregate. Then j = 40,
our numbers are integers, and the accumulator is an adder modulo
24”. We must emphasize, however, that all of this, i.e. all attribu-
tions of values to j , are purely convention-Le. it is solely the
mathematician’s interpretation of the functioning of the machine
and not a physical feature of the machine. This convention will
necessitate measures that have to be made effective by actual
physical features of the machine-i.e. the convention will become
a physical and engineering reality only when we come to the
organs of multiplication.

We will use the convention i = 1, i.e. our numbers lie in 0 and
2 and the accumulator adds modulo 2.

This being so, these numbers between 0 and 2 can be used to
represent all numbers modulo 2. Any real number x agrees modulo
2 with one and only one number X between 0 and 2-0r, to be
quite precise: 0 5 X < 2. Since our addition functions modulo 2,
we see that the accumulator may be used to represent and to add
numbers modulo 2.

This determines the representation of negative numbers: If
x < 0, then we have to find the unique integer multiple of 2, 2s

100 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

(s = 1, 2 , . . .) such that 0 5 T < 2 for F = x + 2s (Le. - 2s 5
x < 2(1 - s)), and represent x by the digitalization of X

In this way, however, the sign digit character of the left-most
digit is lost: It can be 0 or 1 for both x 2 0 and x < 0, hence
0 in the left-most position can no longer be associated with the
+ sign of x. This may seem a bad deficiency of the system, but
it is easy to remedy-at least to an extent which suffices for our
purposes. This is done as follows:

We usually work with numbers x between - I and 1-or, to
be quite precise: - 1 x < 1. Now the X with 0 5 X < 2, which
differs from x by an integer multiple of 2, behaves as follows: If
x 2 0, then 0 x < 1, hence X = x, and so 0 s X < 1, the left-
most digit of X is 0. If x < 0, then - 1 s x < 0, hence Z = x + 2,
and so 1 5 X < 2, the left-most digit of li: is 1. Thus the left-most
digit (of 3 is now a precise equivalent of the sign (of x): 0 corre-
sponds to + and 1 to - .

Summing up:
The accumulator may be taken to represent all real numbers

modulo 2, and it adds them modulo 2. If x lies between - 1 and
1 (precisely: -1 5 x < 1)-as it will in almost all of our uses of
the machine-then the left-most digit represents the sign: 0 is +
and 1 is - .

Consider now a negative number x with -1 5 x < 0. Put
x = - y , 0 < y 1. Then we digitalize x by representing it as
x + 2 = 2 - y = 1 + (1 - y). That is, the left-most (sign) digit
of x = -y is, as it should be, 1; and the remaining 39 digits are
those of the complement of y = -x = 1x1, i.e. those of 1 - y.
Thus we have been led to the familiar representation of negative
numbers by complementation.

The connection between the digits of x and those of -x is now
easily formulated, for any x 5 0. Indeed, -x is equivalent to

2 - x = ((21 - 2-39) -
39

i = O
x} + 2-39 = (2: 2-i - + 2-39)

(This digit index i = 1, . . . , 39 is related to our previous digit
index h = 1, . . . , 40 by i = h - 1. Actually it is best to treat
i as if its domain included the additional value i = 0-indeed
i = 0 then corresponds to h = 1, i.e. to the sign digit. In any case
i expresses the positional value of the digit to which it refers more
simply than h does: This positional value is 2-i = 2-‘h-1’. Note
that if we had positioned the binary point more generally between
i and i + 1, as discussed further above, this positional value would
have been 2-(h-j). We now have, as pointed out previously, j = 1.)
Hence its digits obtain by subtracting every digit of x from 1-by
complementing each digit, i.e. by replacing 0 by 1 and 1 by

0-and then adding 1 in the right-most position (and effecting
all the carries that this may cause). (Note how the left-most
digit, interpreted as a sign digit, gets inverted by this procedure
as it should be.)

A subtraction x - y is therefore performed by the accumulator,
Ac, as follows: Form x + y’, where y’ has a digit 0 or 1 where
y has a digit 1 or 0, respectively, and then add 1 in the right-most
position. The last operation can be performed by injecting a carry
into the right-most stage of Ac-since this stage can never receive
a carry from any other source (there being no further positions
to the right).

In the light of 5.7 multiplication requires special care,
because here the entire modulo 2 procedure breaks down. Indeed,
assume that we want to compute a product xy, and that we had
to change one of the factors, say x, by an integer multiple of 2,
say by 2. Then the product (x + 2)y obtains, and this differs from
the desired xy by 2y. 214, however, will not in general be an integer
multiple of 2, since y is not in general an integer.

We will therefore begin our discussion of the multiplication
by eliminating all such difficulties, and assume that both factors
x, y lie between 0 and 1. Or, to be quite precise: 0 5 x < 1,

To effect such a multiplication we first send the multiplier x
into a register AR, the Arithmetic Register, which is essentially just
a set of 40 flip-flops whose characteristics will be discussed below.
We place the multiplicand y in the Selectron Register, SR (cf. 4.9)
and use the accumulator, Ac, to form and store the partial prod-
ucts. We propose to multiply the entire multiplicand by the
successive digits of the multiplier in a serial fashion. There are,
of course, two possible ways this can be done: We can either start
with the digit in the lowest position-position 2-39-0r in the
highest position-position 2-1-and proceed successively to the
left or right, respectively. There are a few advantages from our
point of view in starting with the right-most digit of the multiplier.
We therefore describe that scheme.

The multiplication takes place in 39 steps, which correspond
to the 39 (non-sign) digits of the multiplier x = 0, El,&, . . . ,
[39 = (0&c2, . . . , &9), enumerated backwards: (39, . . . , &&.
Assume that the k - 1 first steps (k = 1, . . . , 39) have already
taken place, involving multiplication of the multiplicand y with
the k - 1 last digits of the multiplier: [39, . . . , &,; and that we
are now at the kth step, involving multiplication with the kth last
digit: [40-k. Assume furthermore, that Ac now contains the quantity
p,-,, the result of the k - 1 first steps. [This is the (k - 1)st partial
product. For k = 1 clearly p , = 0.1 We now form 2p, = pk-l +

5.8.

0 5 y < l 1 .

&-,y, i.e.

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 101

That is, we do nothing or add y, according to whether .$40--k = 0
or 1. We can then form p , by halving 2p,.

Note that the addition of (1) produces no carry beyond the 2"
position, i.e. the sign digit: 0 5 p , < 1 is true for h = 0, and if
it is true for h = k - 1, then (1) extends it to h = k also, since
0 y, < 1. Hence the sum in (1) is 2 0 and <2, and no carries
beyond the 2" position arise.

Hence p , obtains from 2p, by a simple right shift, which is
combined with filling in the sign digit (that is freed by this shift)
with a 0. This right shift is effected by an electronic shifter that
is part of Ac.

Now

Thus this process produces the product xy, as desired. Note that
this xy is the exact product of x and y.

Since x and y are 39 digit binaries, their exact product xy is
a 78 digit binary (we disregard the sign digit throughout). How-
ever, Ac will only hold 39 of these. These are clearly the left 39
digits of xy. The right 39 digits of xy are dropped from Ac one
by one in the course of the 39 steps, or to be more specific, of
the 39 right shifts. We will see later that these right 39 digits of
xy should and will also be conserved (cf. the end of this section
and the end of 5.12, as well as 6.6.3). The left 39 digits, which
remain in Ac, should also be rounded off, but we will not discuss
this matter here (cf. loc. cit. above and 9.9, Part 11).

To complete the general picture of our multiplication tech-
nique we must consider how we sense the respective digits of our
multiplier. There are two schemes which come to one's mind in
this connection. One is to have a gate tube associated with each
flip-flop of AR in such a fashion that this gate is open if a digit
is 1 and closed if it is null. We would then need a 39-stage counter
to act as a switch which would successively stimulate these gate
tubes to react. A more efficient scheme is to build into AR a shifter
circuit which enables AR to be shifted one stage to the right each
time Ac is shifted and to sense the value of the digit in the right-
most flip-flop of AR. The shifter itself requires one gate tube per
stage. We need in addition a counter to count out the 39 steps
of the multiplication, but this can be achieved by a six stage binary
counter. Thus the latter is more economical of tubes and has one
additional virtue from our point of view which we discuss in the
next paragraph.

The choice of 40 digits to a word (including the sign) is prob-
ably adequate for most computational problems but situations
certainly might arise when we desire higher precision, i.e. words
of greater length. A trivial illustration of this would be the com-
putation of T to more places than are now known (about 700
decimals, i.e. about 2,300 binaries). More important instances are
the solutions of N linear equations in N variables for large values
of N . The extra precision becomes probably necessary when N
exceeds a limit somewhere between 20 and 40. A justification of
this estimate has to be based on a detailed theory of numerical
matrix inversion which will be given in a subsequent report. It
is therefore desirable to be able to handle numbers of 39k digits
and signs by means of program instructions. One way to achieve
this end is to use k words to represent a 39k digit number with
signs. (In this way 39 digits in each 40 digit word are used, but
all sign digits excepting the first one, are apparently wasted; cf.
however the treatment of double precision numbers in Chapter
9, Part 11.) It is, of course, necessary in this case to instruct the
machine to perform the elementary operations of arithmetic in
a manner that conforms with this interpretation of k-word com-
plexes as single numbers. (Cf. 9.8-9.10, Part IT.) In order to be
able to treat numbers in this manner, it is desirable to keep not
39 digits in a product, but 78; this is discussed in more detail in
6.6.3 below. To accomplish this end (conserving 78 product digits)
we connect, via our shifter circuit, the right-most digit of Ac with
the left-most non-sign digit of AR. Thus, when in the process of
multiplication a shift is ordered, the last digit of Ac is transferred
into the place in AR made vacant when the multiplier was shifted.

5.9. To conclude our discussion of the multiplication of posi-
tive numbers, we note this:

As described thus far, the multiplier forms the 78 digit product,
xy, for a 39 digit multipler x and a 39 digit multiplicand y. We
assumed x 2 0, y 2 0 and therefore had xy 2 0, and we will only
depart from these assumptions in 5.10. In addition to these, how-
ever, we also assumed x < l, y < l, i.e. the x, y have their binary
points both immediately right of the sign digit, which implied the
same for xy. One might question the necessity of these additional
assumptions.

Prima facie they may seem mere conventions, which affect only
the mathematician's interpretation of the functioning of the ma-
chine, and not a physical feature of the machine. (Cf. the cor-
responding situation in addition and subtraction, in 5.7.) Indeed,
if r had its binary point between digits and i + 1 from the left
(cf. the discussion of 5.7 dealing with this j ; it also applies to k
below), and y between k and k + 1, then our above method of
multiplication would still give the correct result xy, provided that

102 Part 2 1 The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

the position of the binary point in xy is appropriately assigned.
Specifically: Let the binary point of xy be between digits 1 and
I + 1. x has the binary point between digits i and i + 1, and its
sign digit is 0, hence its range is 0 5 x < 2i-l. Similarly y has the
range 0 5 y < ek-l, and xy has the range 0 5 xy < 2z-1. Now the
ranges of x and y imply that the range of xy is necessarily
0 I - xy < 21-l ek-l = 21+k-2. Hcnce 1 = i + k - 1. Thus it might
seem that our actual positioning of the binary point-immediately
right of the sign digit, i.e. i = k = 1-is still a mere convention.

It is therefore important to realize that this is not so: The
choices of i and k actually correspond to very real, physical, engi-
neering decisions. The reason for this is as follows: It is desirable
to base the running of the machine on a sole, consistent mathe-
matical interpretation. It is therefore desirable that all arithmeti-
cal operations be performed with an identically conceived posi-
tioning of the binary point in Ac. Applying this principle to x and
y gives i = k. Hence the position of the binary point for xy is given
by j + k - 1 = 2j - 1. If this is to be the same as for x, and y,
then 21 - 1 = 1, i.e. i = 1 ensues-that is, our above positioning
of the binary point immediately right of the sign digit.

There is one possible escape: To place into Ac not the left 39
digits of xy (not counting the sign digit 0), but the digits i to i + 38
from the left. Indeed, in this way the position of the binary point
of xy will be (2j - 1) - (j - 1) = j , the same as for x and y.

This procedure means that we drop the left i - 1 and right
40 + i digits of xy and hold the middle 39 in- Ac. Note- that posi-
tioning of the binary point-means that x < 2i-l, y < 2i-l and xy
can only be used if xy < 21-l. Now the assumptions secure only
xy < 223-2. Hence xy must be 2j-l times smaller than it might be.
This is just the thing which would be secured by the vanishing
of the left i - 1 digits that we had to drop from Ac, as shown
above.

If we wanted to use such a procedure, with those dropped left
i - 1 digits really existing, i.e. with j # 1, then we would have
to make physical arrangements for their conservation elsewhere.
Also the general mathematical planning for the machine would
be definitely complicated, due to the physical fact that Ac now
holds a rather arbitrarily picked middle stretch of 39 digits from
among the 78 digits of xy. Alternatively, we might fail to make
such arrangements, but this would necessitate to see to it in the
mathematical planning of each problem, that all products turn
out to be 2i-l times smaller than their a priori maxima. Such an
observance is not at all impossible; indeed similar things are un-
avoidable for the other operations. [For example, with a factor
2 in addition (of positives) or subtraction (of opposite sign quanti-
ties). Cf. also the remarks in the first part of 5.12, dealing with

keeping “within range”.] However, it involves a loss of significant
digits, and the choice i = 1 makes it unnecessary in multiplication.

We will therefore make our choice i = 1, i.e. the positioning
of the binary point immediately right of the sign digit, binding
for all that follows.

We now pass to the case where the multiplier x and
the multiplicand y may have either sign + or -, i.e. any combi-
nation of these signs.

It would not do simply to extend the method of 5.8 to include
the sign digits of x and y also. Indeed, we assume - 1 5 x < 1,
- 1 s y < 1, and the multiplication procedure in question is defi-
nitely based on the 2 0 interpretations of x and y. Hence if x < 0,
then it is really using x + 2, and if y < 0, then it is really using
y + 2. Hence for x < 0, y 2 0 it forms

5.10.

(x + 2)y = xy + 2y

for x 2 0, y < 0 it forms

x(y + 2) = xy + 2x

(x + 2)(y + 2) = xy + 2x + 2y + 4

for x < 0, x < 0, it forms

or since things may be taken modulo 2, xy + 21 + 214. Hence
correction terms -2y, -2x would be needed for x < 0, y < 0,
respectively (either or both).

This would be a possible procedure, but there is one difficulty:
As xy is formed, the 39 digits of the multiplier x are gradually
lost from AR, to be replaced by the right 39 digits of xy. (Cf. the
discussion at the end of 5.8.) Unless we are willing to build an
additional 40 stage register to hold x, therefore, x will not be
available at the end of the multiplication. Hence we cannot use
it in the correction 2x of xy, which becomes necessary for y < 0.

Thus the case x < 0 can be handled along the above lines, but
not the case y < 0.

It is nevertheless possible to develop an adequate procedure,
and we now proceed to do this. Throughout this procedure we
will maintain the assumptions - 1 5 x < 1, - 1 5 y < 1. We
proceed in several successive steps

First: Assume that the corrections necessitated by the possi-
bility of y < 0 have been taken care of. We permit therefore
y $ 0. We will consider the corrections necessitated by the possi-
bility of x < 0.

Let us disregard the sign digit of x, which is 1, i.e. replace it
by 0. Then x goes over into x’ = x - 1 and as - 1 x < 0, this
d will actually behave like (x - 1) + 2 = x + 1. Hence our
multiplication procedure will produce x‘y = (x + l) y = xy + y,

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 103

and therefore a correction - y is needed at the end. (Note that
we did not use the sign digit of x in the conventional way. Had
we done so, then a correction -2y would have been necessary,
as seen above.)

We see therefore: Consider x 5 0. Perform first all necessary
steps for forming x'y(y 5 0), without yet reaching the sign digit
of x (i.e. treating x as if it were 20) . When the time arrives at
which the digit to of x has to become effective-Le. immediately
after became effective, after 39 shifts (cf. the discussion near
the end of 5.8)-at which time Ac contains, say, jZl (this corresponds
to the p, , of 5.8), then form

This is xy. (Note the difference between this last step, forming
p , and the 39 preceding steps in 5.8, forming p,, p, , . . . , p39.)

Second: Having disposed of the possibility x < 0, we may now
assume x 2 0. With this assumption we have to treat all y 0.
Since y 2 0 brings us back entirely to the familiar case of 5.8, we
need to consider the case y < 0 only.

Let y' be the number that obtains by disregarding the sign digit
of y' which is 1, i.e. by replacing it by 0. Again y' acts not like
y - 1, but like (y - 1) + 2 = y + 1. Hence the multiplication
procedure of 5.8 will produce xy' = x(y + 1) = xy + x, and there-
fore a correction x is needed. (Note that, quite similarly to what
we saw in the first case above, the suppression of the sign digit
of y replaced the previously recognized correction -2x by the
present one - x.) As we observed earlier, this correction - x cannot
be applied at the end to the completed xy' since at that time x
is no longer available. Hence we must apply the correction - x
digitwise, subtracting every digit at the time when it is last found
in AR, and in a way that makes it effective with the proper posi-
tional value.

Third: Consider then x = 0, tl, t,, . . . , t39 = (E1, t2 . . . t3J.
The 39 digits c1 . . . t39 of x are lost in the course of the 39 shifts
of the multiplication procedure of 5.8, going from right to left.
Thus the operation No. k + 1 (k = 0, 1, . . . , 38, cf. 5.8) finds
t39-k in the right-most stage of AR, uses it, and then loses it
through its concluding right shift (of both Ac and AR). After this
step 39 - (k + 1) = 38 - k further steps, i.e. shifts follow, hence
before its own concluding shift there are still 39 - k shifts to come.
Hence the positional values are 23y-k times higher than they will
be at the end. <39-k should appear at the end, in the correcting
term -x , with the sign - and the positional value 2--(39-k3. Hence
we may inject it during the step k + 1 (before its shift) with the

- -

sign - and the positional value 1. That is to say, -t3,-k in the
sign digit.

This, however, is inadmissible. Indeed, <39-k might cause carries
(if t39-k = l), which would have nowhere to go from the sign digit
(there being no further positions to the left). This error is at its
origin an integer multiple of 2, but the 39 - k subsequent shifts
reduce its positional value 239-k times. Hence it might contribute
to the end result any integer multiple of 2-(38-kJ-and this is a
genuine error.

Let us therefore add 1 - &-, to the sign digit, i.e. 0 or 1 if
& - k is 1 or 0, respectively. We will show further below, that with
this procedure there arise no carries of the inadmissible kind.
Taking this momentarily for granted, let us see what the total
effect is. We are correcting not by - x but by cz?l
2-i - x = 1 - - x. Hence a final correction by - 1 + 2-39 is
needed. Since this is done at the end (after all shifts), it may be
taken modulo 2. That is to say, we must add 1 + 2-39, i.e. 1 in
each of the two extreme positions. Adding 1 in the right-most
position has the same effect as in the discussion at the end of 5.7
(dealing with the subtraction). It is equivalent to injecting a carry
into the right-most stage of Ac. Adding 1 in the left-most position,
i.e. to the sign digit, produces a 1, since that digit was necessarily
0. (Indeed, the last operation ended in a shift, thus freeing the
sign digit, cf. below.)

Fourth: Let us now consider the question of the carries that
may arise in the 39 steps of the process described above. In order
to do this, let us describe the kth step (k = 1, . . . , 39), which
is a variant of the kth step described for a positive multiplication
in 5.8, in the same way in which we described the original kth
step loc. cit. That is to say, let us see what the formula (1) of 5.8
has become. It is clearly 2p, = p , - , + (1 - (4 0 - k) + t4"-,y', i.e.

That is, we add 1 (y's sign digit) or y' (y without its sign digit),
according to whether <4n-k = 0 or 1. Then p , should obtain from
2p, again by halving.

Now the addition of (2) produces no carries beyond the 2"
position, as we asserted earlier, for the same reason as the addition
of (1) in 5.8. We can argue in the same way as there: 0 5 p , < 1
is true for h = 0, and if it is true for h = k - 1, then (1) extends
it to h = k also, since 0 5 Y ' ~ 5 1. Hence the sum in (2) is 2 0
and <2, and no carries beyond the 2" position arise.

Fifth: In the three last observations we assumed y < 0. Let
us now restore the full generality of y 5 0. We can then describe

104 Part 2 1 The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

the equations (1) of 5.8 (valid for y 2 0) and (2) above (valid for
y < 0) by a single formula,

2 p k = pk-1 + Yp

(3)
= y’s sign digit for 540-k = 0
= y without its sign digit for 540-k = 1 YL [

Thus our verbal formulation of (2) applies here, too: We add y’s
sign digit or y without its sign, according to whether <40-k = 0
or 1. All p k are 2 0 and < 1, and the addition of (3) never originates
a carry beyond the 2 O position. p k obtains from 2 p , by a right
shift, filling the sign digit with a 0. (Cf. however, Part 11, Table
2 for another sort of right shift that is desirable in explicit form,
i.e. as an order.)

For y 2 0, xy is p,,, for y < 0, xy obtains from p,, by injecting
a carry into the right-most stage of Ac and by placing a 1 into
the sign digit in Ac.

Sixth: This procedure applies for x 2 0. For x < 0 it should
also be applied, since it makes use of x’s non-sign digits only, but
at the end y must be subtracted from the result.

This method of binary multiplication will be illustrated in some
examples in 5.15.

5.11. To complete our discussion of the multiplicative organs
of our machine we must return to a consideration of the types
of accumulators mentioned in 5.5. The static accumulator operates
as an adder by simultaneously applying static voltages to its two
inputs-one for each of the two numbers being added. When
steady-state operation is reached the total sum is formed complete
with all carries. For such an accumulator the above discussion is
substantially complete, except that it should be remarked that such
a circuit requires at most 39 rise times to complete a carry.
Actually it is possible that the duration of these successive rises
is proportional to a lower power of 39 than the first one.

Each stage of a dynamic accumulator consists of a binary
counter for registering the digit and a flip-flop for temporary
storage of the carry. The counter receives a pulse if a 1 is to be
added in at that place; if this causes the counter to go from 1
to 0 a carry has occurred and hence the carry flip-flop will be
set. It then remains to perform the carries. Each flip-flop has
associated with it a gate, the output of which is connected to the
next binary counter to the left. The carry is begun by pulsing all
carry gates. Now a carry may produce a carry, so that the process
needs to be repeated until all carry flip-flops register 0. This can
be detected by means of a circuit involving a sensing tube con-
nected to each carry flip-flop. It was shown in 5.6 that, on the
average, five pulse times (flip-flop reaction times) are required for
the complete carry. An alternative scheme is to connect a gate

tube to each binary counter which will detect whether an incom-
ing carry pulse would produce a carry and will, under this cir-
cumstance, pass the incoming carry pulse directly to the next
stage. This circuit would require at most 39 rise times for the
completion of the carry. (Actually less, cf. above.)

At the present time the development of a static accumulator
is being concluded. From preliminary tests it seems that it will
add two numbers in about 5 psec and will shift right or left in
about 1 psec.

We return now to the multiplication operation. In a static
accumulator we order simultaneously an addition of the multi-
plicand with sign deleted or the sign of the multiplicand (cf. 5.10)
and a complete carry and then a shift for each of the 39 steps.
In a dynamic accumulator of the second kind just described we
order in succession an addition of the multiplicand with sign
deleted or the sign of the multiplicand, a complete carry, and a
shift for each of the 39 steps. In a dynamic accumulator of the
first kind we can avoid losing the time required for completing
the carry (in this case an average of 5 pulse times, cf. above) at
each of the 39 steps. We order an addition by the multiplicand
with sign deleted or the sign of the multiplicand, then order one
pulsing of the carry gates, and finally shift the contents of both
the digit counters and the carry flip-flops. This process is repeated
39 times. A simple arithmetical analysis which may be carried out
in a later report, shows that at each one of these intermediate
stages a single carry is adequate, and that a complete set of carries
is needed at the end only. We then carry out the complement
corrections, still without ever ordering a complete set of carry
operations. When all these corrections are completed and after
round-off, described below, we then order the complete carry
mentioned above.

It is desirable at this point in the discussion to consider
rules for rounding-off to n-digits. In order to assess the charac-
teristics of alternative possibilities for such properly, and in par-
ticular the role of the concept of “unbiasedness”, it is necessary
to visualize the conditions under which rounding-off is needed.

Every number x that appears in the computing machine is an
approximation of another number x’, which would have appeared
if the calculation had been performed absolutely rigorously. The
approximations to which we refer here are not those that are
caused by the explicitly introduced approximations of the numeri-
cal-mathematical set-up, e.g. the replacement of a (continuous)
differential equation by a (discrete) difference equation. The effect
of such approximations should be evaluated mathematically by the
person who plans the problem for the machine, and should not
be a direct concern of the machine. Indeed, it has to be handled

5.12.

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 105

by a mathematician and cannot be handled by the machine, since
its nature, complexity, and difficulty may be of any kind, depend-
ing upon the problem under consideration. The approximations
which concern us here are these: Even the elementary operations
of arithmetic, to which the mathematical approximation-formula-
tion for the machine has to reduce the true (possibly transcenden-
tal) problem, are not rigorously executed by the machine. The
machine deals with numbers of n digits, where n, no matter how
large, has to be a fixed quantity. (We assumed for our machine
40 digits, including the sign, i.e. n = 39.) Now the sum and differ-
ence of two n-digit numbers are again n-digit numbers, but their
product and quotient (in general) are not. (They have, in general,
2n or w-digits, respectively.) Consequently, multiplication and
division must unavoidably be replaced by the machine by two
different operations which must produce n-digits under all condi-
tions, and which, subject to this limitation, should lie as close as
possible to the results of the true multiplication and division. One
might call them pseudo-multiplication and pseudo-division; how-
ever, the accepted nomenclature terms them as multiplication and
division with round-off. (We are now creating the impression that
addition and subtraction are entirely free of such shortcomings.
This is only true inasmuch as they do not create new digits to
the right, as multiplication and division do. However, they can
create new digits to the left, i.e. cause the numbers to “grow out
of range”. This complication, which is, of course, well known, is
normally met by the planner, by mathematical arrangements and
estimates to keep the numbers “within range”. Since we propose
to have our machine deal with numbers between - 1 and 1,
multiplication can never cause them to “grow out of range”.
Division, of course, might cause this complication, too. The plan-
ner must therefore see to it that in every division the absolute
value of the divisor exceeds that of the dividend.)

Thus the round-off is intended to produce satisfactory n-digit
approximations for the product xy and the quotient x/y of two
n-digit numbers. Two things are wanted of the round-off: (1) The
approximation should be good, i.e. its variance from the “true”
xy or x/y should be as small as practicable; (2) The approximation
should be unbiased, i.e. its mean should be equal to the “true”
xy or x/y.

These desiderata must, however, be considered in conjunction
with some further comments. Specifically: (a) x and y themselves
are likely to be the results of similar round-offs, directly or in-
directly inherent, i.e. x and y themselves should be viewed as
unbiased n-digit approximations of “true” x’ and y’ values; (b) by
talking of “variances” and “means” we are introducing statistical
concepts. Now the approximations which we are here considering

are not really of a statistical nature, but are due to the peculiarities
(from our point of view, inadequacies) of arithmetic and of digital
representation, and are therefore actually rigorously and uniquely
determined. It seems, however, in the present state of mathe-
matical science, rather hopeless to try to deal with these matters
rigorously. Furthermore, a certain statistical approach, while not
truly justified, has always given adequate practical results. This
consists of treating those digits which one does not wish to use
individually in subsequent calculations as random variables with
equiprobable digital values, and of treating any two such digits
as statistically independent (unless this is patently false).

These things being understood, we can now undertake to dis-
cuss round-off procedures, realizing that we will have to apply
them to the multiplication and to the division.

Let x = (.t1 . . . t,) and y = (.ql . . . q,) be unbiased approxi-
mations of x’ and y’. Then the “true” xy = (.tl t2,)
and the “true” x/y = (.a1 . . . W,W,+~W,+~ . . .) (this goes on ad
infinitum!) are approximations of x’y’ and x’/y’. Before we discuss
how to round them off, we must know whether the “true” xy and
x/y are themselves unbiased approximations of x’y’ and x’/y’. xy
is indeed an unbiased approximation of x’y’, i.e. the mean of xy
is the mean of x(= x’) times the mean of y(= y’), owing to the
independence assumption which we made above. However, if x
and y are closely correlated, e.g. for x = y, i.e. for squaring, there
is a bias. It is of the order of the mean square of x - x’, i.e. of
the variance of x. Since x has n digits, this variance is about 1/22n
(If the digits of x’, beyond n are entirely unknown, then our original
assumptions give the variance 1/12.22n.) Next, x/y can be written
as x.y-l, and since we have already discussed the bias of the
product, it suffices now to consider the reciprocal y-’. Now if
y is an unbiased estimate of y’, then y-l is not an unbiased estimate
of y’-’, i.e. the mean of y’s reciprocal is not the reciprocal of y’s
mean. The difference is - Y - ~ times the variance of y, i.e. it is
of essentially the same order as the bias found above in the case
of squaring.

It follows from all this that it is futile to attempt to avoid biases
of the order of magnitude 1/22n or less. (The factor Y12 above may
seem to be changing the order of magnitude in question. However,
it is really the square root of the variance which matters and
d(Y12 - 0.3 is a moderate factor.) Since we propose to use n = 39,
therefore 1/278(-3 x is the critical case. Note that this
possible bias level is l/23y(-2 x 10-12) times our last significant
digit. Hence we will look for round-off rules to n digits for
the “true” xy = (.tl . . . t,[,+l . . . t2,) and x/y = (.wl . . .
W,W,+~W,+~ . . .). The desideratum (1) which we formulated
previously, that the variance should be small, is still valid. The

106 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

desideratum (2), however, that the bias should be zero, need,
according to the above, only be enforced up to terms of the order

The round-off procedures, which we can use in this connection,
fall into two broad classes. The first class is characterized by its
ignoring all digits beyond the nth, and even the nth digit itself,
which it replaces by a 1. The second class is characterized by the
procedure of adding one unit in the (n + 1)st digit, performing
the carries which this may induce, and then keeping only the n
first digits.

When applied to a number of the form (.vl . . . V , V , + ~ U , + ~ . . .)
(ad infinitum!), the effects of either procedure are easily estimated.
In the first case we may say we are dealing with (.vl , . . . , u,-’)

plus a random number of the form (.O . . . , O v , ~ , + ~ v , + ~ . . .),
i.e. random in the interval 0, 1/2%-’. Comparing with the rounded
off (.v1v2 . . . z~,-~l), we therefore have a difference random in the
interval - l/2%, 1/2,. Hence its mean is 0 and its variance y3 22n.
In the second case we are dealing with (. v l . . . v,) plus a random
number of the form (.O . . . 0 0 ~ , + ~ v , + ~ . . .), i.e. random in the
interval 0, 1/2,. The “rounded-off” value will be (.v, . . . v,) in-
creased by 0 or by 1/2,, according to whether the random number
in question lies in the interval 0, 1/2,+’, or in the interval 1/2,+l,
1/2,. Hence comparing with the “rounded-off” value, we have
a difference random in the intervals 0, 1/2,+’, and 0, --1/2,+l,
i.e. in the interval - 1/2,+l, 1/2,+’. Hence its mean is 0 and its
variance (y12)22n.

If the number to be rounded-off has the form (.vl . . .
V , V , + ~ V , + ~ . . . v,,,) (p finite), then these results are somewhat
affected. The order of magnitude of the variance remains the same;
indeed for large p even its relative change is negligible. The mean
difference may deviate from 0 by amounts which are easily esti-
mated to be of the order 1/2, * 1 / 2 P = 1/2”+P.

In division we have the first situation, x/y = (.wl . . .
W ~ W , + ~ W , + ~ . . .), i.e. p is infinite. In multiplication we have the

second one, xy = (.& . . . [n.$n+l . . . &,), i.e. p = n. Hence for the
division both methods are applicable without modification. In
multiplication a bias of the order of 1/22n may be introduced. We
have seen that it is pointless to insist on removing biases of this
size. We will therefore use the unmodified methods in this case,
too.

It should be noted that the bias in the case of multiplication
can be removed in various ways. However, for the reasons set forth
above, we shall not complicate the machine by introducing such
corrections.

Thus we have two standard “round-off ” methods, both unbiased
to the extent to which we need this, and with the variances

1/22,,

1/3 - 22n, and (1/2)22n, that is, with the dispersions (1 /~ ‘3) (1 /2~)
= 0.58 times the last digit and (1/2~‘3)(1/2,) = 0.29 times the
last digit. The first one requires no carry facilities, the second one
requires them.

Inasmuch as we propose to form the product x’y’ in the accu-
mulator, which has carry facilities, there is no reason why we
should not adopt the rounding scheme described above which has
the smaller dispersion, i.e. the one which may induce carries. In
the case, however, of division we wish to avoid schemes leading
to carries since we expect to form the quotient in the arithmetic
register, which does not permit of carry operations. The scheme
which we accordingly adopt is the one in which w, is replaced
by 1. This method has the decided advantage that it enables us
to write down the approximate quotient as soon as we know its
first (n - 1) digits. It will be seen in 5.14 and 6.6.4 below that
our procedure for forming the quotient of two numbers will always
lead to a result that is correctly rounded in accordance with the
decisions just made. We do not consider as serious the fact that
our rounding scheme in the case of division has a dispersion twice
as large as that in multiplication since division is a far less frequent
operation.

A final remark should be made in connection with the possible,
occasional need of carrying more than n = 39 digits. Our logical
control is sufficiently flexible to permit treating k (=2 , 3, . . .)
words as one number, and thus effecting n = 3%. In this case the
round-off has to be handled differently, cf. Chapter 9, Part 11. The
multiplier produces all 78 digits of the basic 39 by 39 digit multi-
plication: The first 39 in the Ac, the last 39 in the AR. These must
then be manipulated in an appropriate manner. (For details, cf.
6.6.3 and 9.9-9.10, Part 11.) The divider works for 39 digits only:
In forming x/y, it is necessary, even if x and y are available to
39k digits, to use only 39 digits of each, and a 39 digit result will
appear. It seems most convenient to use this result as the first step
of a series of successive approximations. The successive improve-
ments can then be obtained by various means. One way consists
of using the well known iteration formula (cf. 5.4). For k = 2 one
such step will be needed, for k = 3, 4, two steps, for k = 5, 6,
7, 8 three steps, etc. An alternative procedure is this: Calculate
the remainder, using the approximate, 39 digit, quotient and the
complete, 39k digit, divisor and dividend. Divide this again by
the approximate, 39 digit, divisor, thus obtaining essentially the
next 39 digits of the quotient. Repeat this procedure until the full
39k desired digits of the quotient have been obtained.

We might mention at this time a complication which
arises when a floating binary point is introduced into the machine.
The operation of addition which usually takes at most ylo of a

5.13.

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 107

multiplication time becomes much longer in a machine with
floating binary since one must perform shifts and round-offs as well
as additions. It would seem reasonable in this case to place the
time of an addition as about y3 to '/z of a multiplication. At this
rate it is clear that the number of additions in a problem is as
important a factor in the total solution time as are the number
of multiplications. (For further details concerning the floating
binary point, cf. 6.6.7.)

We conclude our discussion of the arithmetic unit with
a description of our method for handling the division operation.
To perform a division we wish to store the dividend in SR, the
partial remainder in Ac and the partial quotient in AR. Before
proceeding further let us consider the so-called restoring and
non-restoring methods of division. In order to be able to make
certain comparisons, we will do this for a general base m = 2,
3,

Assume for the moment that divisor and dividend are both
positive. The ordinary process of division consists of subtracting
from the partial remainder (at the very beginning of the process
this is, of course, the dividend) the divisor, repeating this until
the former becomes smaller than the latter. For any fixed positional
value in the quotient in a well-conducted division this need be
done at most m - 1 times. If, after precisely k = 0,1, . . . , m - 1
repetitions of this step, the partial remainder has indeed become
less than the divisor, then the digit k is put in the quotient (at
the position under consideration), the partial remainder is shifted
one place to the left, and the whole process is repeated for the
next position, etc. Note that the above comparison of sizes is only
needed at k = 0, 1, . . . , m - 2, i.e. before step 1 and after steps
1, . . . , m - 2. If the value k = m - 1, Le. the point after step
m - I , is at all reached in a well-conducted division, then it may
be taken for granted without any test, that the partial remainder
has become smaller than the divisor, and the operations on the
position under consideration can therefore be concluded. (In the
binary system, m = 2, there is thus only one step, and only one
comparison of sizes, before this step.) In this way this scheme,
known as the restoring scheme, requires a maximum of m - 1 com-
parisons and utilizes the digits 0, 1, . . . , m - 1 in each place in the
quotient. The difficulty of this scheme for machine purposes is that
usually the only economical method for comparing two numbers
as to size is to subtract one from the other. If the partial remainder
r, were less than the dividend d, one would then have to add d
back into r, - d in order to restore the remainder. Thus at every
stage an unnecessary operation would be performed. A more sym-
metrical scheme is obtained by not restoring. In this method (from
here on we need not assume the positivity of divisor and dividend)

5.14.

one compares the signs of rn and d; if they are of the same sign,
the dividend is repeatedly subtracted from the remainder until
the signs become opposite; if they are opposite, the dividend is
repeatedly added to the remainder until the signs again become
like. In this scheme the digits that may occur in a given place
in the quotient are evidently kl, k 2 , . . . , k (m - l), the posi-
tive digits corresponding to subtractions and the negative ones to
additions of the dividend to the remainder.

Thus we have 2(m - 1) digits instead of the usual m digits.
In the decimal system this would mean 18 digits instead of 10.
This is a redundant notation. The standard form of the quotient
must therefore be restored by subtracting from the aggregate of
its positive digits the aggregate of its negative digits. This requires
carry facilities in the place where the quotient is stored.

We propose to store the quotient in AR, which has no carry
facilities. Hence we could not use this scheme if we were to
operate in the decimal system.

The same objection applies to any base m for which the digital
representation in question is redundant-i.e. when 2(m - 1) > m.
Now 2(m - 1) > m whenever m > 2, but 2(m - 1) = m for
m = 2. Hence, with the use of a register which we have so far
contemplated, this division scheme is certainly excluded from the
start unless the binary system is used.

Let us now investigate the situation in the binary system. We
inquire if it is possible to obtain a quasi-quotient by using the
non-restoring scheme and by using the digits 1, 0 instead of 1,
-1. Or rather we have to ask this question: Does this quasi-
quotient bear a simple relationship to the true quotient?

Let us momentarily assume this question can be answered
affirmatively and describe the division procedure. We store the
divisor initially in Ac, the dividend in SR and wish to form the
quotient in AR. We now either add or subtract the contents of
SR into Ac, according to whether the signs in Ac and SR are
opposite or the same, and insert correspondingly a 0 or 1 in the
right-hand place of AR. We then shift both Ac and AR one place
left, with electronic shifters that are parts of these two aggregates.

At this point we interrupt the discussion to note this: multipli-
cation required an ability to shift right in'both Ac and AR (cf.
5.8). We have now found that division similarly requires an ability
to shift left in both Ac and AR. Hence both organs must be able to
shift both ways electronically. Since these abilities have to be
present for the implicit needs of multiplication and division, it is just
as well to make use of them explicitly in the form of explicit orders.
These are the orders 20,21 of Table 1, and of Table 2, Part 11. It will,
however, turn out to be convenient to arrange some details in the
shifts, when they occur explicitly under the control of those orders,

108 Pari 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

differently from when they occur implicitly under the control of a
multiplication or a division. (For these things, cf. the discussion of
the shifts near the end of 5.8 and in the third remark below on one
hand, and in the third remark in 7.2, Part 11, on the other hand.)

Let us now resume the discussion of the division. The process
described above will have to be repeated as many times as the
number of quotient digits that we consider appropriate to produce
in this way. This is likely to be 39 or 40; we will determine the
exact number further below.

In this process we formed digits .$ = 0 or 1 for the quotient, when
the digit should actually have been ti = - 1 or 1, with 5; = 2[: - 1.
Thus we have a difference between the true quotient z (based on
the digits t i) and the quasi-quotient z' (based on the digits ti), but
at the same time a one-to-one connection. It would be easy to
establish the algebraical expression for this connection between z'
and z directly, but it seems better to do this as part of a discussion
which clarifies all other questions connected with the process of
division at the same time.

We first make some general remarks:
First: Let x be the dividend and y the divisor. We assume, of

course, - 1 x < 1, - 1 5 y < 1. It will be found that our pres-
ent process of division is entirely unaffected by the signs of x and
y, hence no further restrictions on that score are required.

On the other hand, the quotient z = x/y must also fulfil
- 1 5 z < 1. It seems somewhat simpler although this is by no
means necessary, to exclude for the purposes of this discussion
z = - 1, and to demand I z I < 1. This means in terms of the
dividend x and the divisor y that we exclude x = - y and assume

Second: The division takes place in n steps, which correspond
to the n digits ti, . . . , .$; of the pseudo-quotient z', n being yet to
be determined (presumably 39 or 40). Assume that the k - 1 first
steps (k = 1, . . . , n) have already taken place, having produced
the k - 1 first digits: ti, . . . , ek-l; and that we are now at the
kth step, involving production of the kth digit; &. Assume
furthermore, that Ac now contains the quantity rk-l , the result
of the k - 1 first steps. (This is the (k - 1)st partial remainder.
For k = 1 clearly r,, = x.) We then form rk = 2rk-1 7 y, accord-
ing to whether the signs of rk-l and y do or do not agree, i.e.

rk = 2rk-,By
is - if the signs of rk-l and y do agree ' [is + if the signs of rk-, and y do not agree

1x1 < Y.

Let us now see what carries may originate in this procedure.
We can argue as follows: lrhl < / y l is true for h = 0(Ir,l =

I x I < I y I), and if it is true for h = k - 1, then (4) extends it to
h = k also, since rk-l and 0 y have opposite signs. The last point
may be elaborated a little further: because of the opposite signs

Hence we have always I rk 1 < I y I ,and therefore afortiori I rk I < 1,
i.e. -1 < rk < 1.

Consequently in equation (4) one summand is necessarily > - 2 ,
<2, the other is 21, <1, and the sum is >-1, <l. Hence we
may carry out the operations of (4) modulo 2, disregarding any
possibilities of carries beyond the 2 O position, and the resulting
rk will be automatically correct (in the range >-1, <1).

Third: Note however that the sign of rk- l , which plays an
important role in (4) above, is only then correctly determinable
from the sign digit, if the number from which it is derived is 2 - 1,
<l. (Cf. the discussion in 5.7.) This requirement however is met,
as we saw above, by rk-l, but not necessarily by 2rkpI . Hence the
sign of rk-l (Le. its sign digit) as required by (4), must be sensed
before rk-l is doubled.

This being understood, the doubling of rk-l may be performed
as a simple left shift, in which the left-most digit (the sign digit)
is allowed to be lost-this corresponds to the disregarding of
carries beyond the 2 O position, which we recognized above as being
permissible in (4). (Cf. however, Part 11, Table 2, for another sort
of left shift that is desirable in explicit form, i.e. as an order.)

Fourth: Consider now the precise implication of (4) above.
5; = 1 or 0 corresponds to LE = - or +, respectively. Hence
(4) may be written

rk = 2rk-1 + (1 - 2t;)y

i.e.

l)rk-l + (2 - k - 2-(k-1)[!) 2 - k r - 2 - (k -
k y k -

Summing over k = 1, . . . , n gives

i.e.

This makes it clear, that Z = - 1 + + 2-" corre-
sponds to true quotient z = x/y and 2-"rn, with an absolute value
<2-" I y I 5 2-", to the remainder. Hence, if we disregard the term
-1 for a moment <i&, . . . , <A, 1 are the n + 1 first digits of
what may be used as a true quotient, the sign digit being part
of this sequence.

Chapter 4 1 Preliminary discussion of the logical design of an electronic computing instrument 109

Fifth: If we do not wish to get involved in more complicated
round-off procedures which exceed the immediate capacity of the
only available adder Ac, then the above result suggests that we
should put n + 1 = 40, n = 39. The ti, . . . , ti9 are then 39 digits
of the quotient, including the sign digit, but not including the
right-most digit.

The right-most digit is taken care of by placing a 1 into the
right-most stage of Ac.

At this point an additional argument in favor of the procedure
that we have adopted here becomes apparent. The procedure
coincides (without a need for any further corrections) with the
second round-off procedure that we discussed in 5.12.

There remains the term -1. Since this applies to the final
result, and no right shifts are to follow, carries which might go
beyond the 2O position may be disregarded. Hence this amounts
simply to changing the sign digit of the quotient 3: replacing 0
or 1 by 1 or 0, respectively.

This concludes our discussion of the division scheme. We wish,

however, to re-emphasize two very distinctive features which it
possesses:

First: This division scheme applies equally for any combina-
tions of signs of divisor and dividend. This is a characteristic of
the non-restoring division schemes, but it is not the case for any
simple known multiplication scheme. It will be remembered, in
particular, that our multiplication procedure of 5.9 had to contain
special correcting steps for the cases where either or both factors
are negative.

Second: This division scheme is practicable in the binary sys-
tem only; it has no analog for any other base.

This method of binary division will be illustrated on some
examples in 5.15.

5.15. We give below some illustrative examples of the opera-
tions of binary arithmetic which were discussed in the preceding
sections.

Although it presented no difficulties or ambiguities, it seems
best to begin with an example of addition.

Binary notation Decimal notation (fractional form)
Augend 0010110011 179/5 12
Addend 0011010111 215/512

Sum 0110001010 394/512
(Carries) 1111 111

In what follows we will not show the carnes any more.
We form the negative of a number (cf. 5 7).

Complement:

Binary notation
0.101 110100
1.010001011

1

A subtraction (cf. 5.7):

1.01000 1 100

Binary notation
Subtrahend 0011010111
Minuend 0110001010

Decimal notation (fractional form)
372/512

-1 +140/512

Decimal notation (fractional form)
21 5/51 2
394/5 12

Complement of subtrahend 1.1001 01000
I -1 +297/512

Difference 0.0101 1001 1 179/512

110 Pari 2 I The instruction-set processor: main-line computers

Some multiplications (cf. 5.8 and 5.9):

Binary notation

Mu It i pl icand
Multiplier 0.011

0.101

Section 1 I Processors with one address per instruction

Decimal notation (fractional form)

5/8
3/8

0101
0101

0

Product 0001111

Binary notation

Mu It i pl icand 1.101
Multiplier 1011

0101
0101
1

101111
Correction lt 1 1

1.1 10111
Correction 2$ (Complement of the multiplicand). 0.010

1
0.001 11 1

A division (cf. 5.14):

Binary notation

Divisor 1011000
Dividend 0001111

0011110
1011000
1.1 101 10
1.101 100
0.100111

1
0.010100
0.101000
1.01 1000
0.000000
0.000000
1.011000
1.011000
0.110000
0.1001 11

1
1.01 1000

Quotient (uncorrected) 0 10011
” (corrected) 1100111

Q.D.3

0

1

~

15/64

Decimal notation (fractional form)

- 3/8
- 5/8

Decimal notation (fractional form)

15/64
- 5/8

1

-1 + 39/64 = -25/64

t For the sign of the multiplicand $ For the sign of the multiplier. 5 Quotient digit

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 111

Note that this deviates by YG4, i.e. by one unit of the right-most
position, from the correct result -"/. This is a consequence of
our round-off rule, which forces the right-most digit to be 1 under
all conditions. This occasionally produces results with unfamiliar
and even annoying aspects (e.g. when quotients like 0:y or y:y
are formed), but it is nevertheless unobjectionable and self-
consistent on the basis of our general principles.

6. The control

6.1. It has already been stated that the computer will contain
an organ, called the control, which can automatically execute the
orders stored in the Selectrons. Actually, for a reason stated in
6.3, the orders for this computer are less than half as long as a
forty binary digit number, and hence the orders are stored in the
Selectron memory in pairs.

Let us consider the routine that the control performs in direct-
ing a computation. The control must know the location in the
Selectron memory of the pair of orders to be executed. It must
direct the Selectrons to transmit this pair of orders to the Selectron
register and then to itself. It must then direct the execution of
the operation specified in the first of the two orders. Among these
orders we can immediately describe two major types: An order
of the first type begins by causing the transfer of the number,
which is stored at a specified memory location, from the Selectrons
to the Selectron register. Next, it causes the arithmetical unit to
perform some arithmetical operations on this number (usually in
conjunction with another number which is already in the arith-
metical unit), and to retain the resulting number in the arith-
metical unit. The second type order causes the transfer of the
number, which is held in the arithmetical unit, into the Selectron
register, and from there to a specified memory location in the
Selectrons. (It may also be that this latter operation will permit
a direct transfer from the arithmetical unit into the Selectrons.)
An additional type of order consists of the transfer orders of 3.5.
Further orders control the inputs and the outputs of the machine.
The process described at the beginning of this paragraph must
then be repeated with the second order of the order pair. This
entire routine is repeated until the end of the problem.

It is clear from what has just been stated that the control
must have a means of switching to a specified location in the
Selectron memory, for withdrawing both numbers for the compu-
tation and pairs of orders. Since the Selectron memory (as tenta-
tively planned) will hold 212 = 4,096 forty-digit words (a word is
either a number or a pair of orders), a twelve-digit binary number
suffices to identify a memory location. Hence a switching mecha-

6.2.

nism is required which will, on receiving a twelve-digit binary
number, select the corresponding memory location.

The type of circuit we propose to use for this purpose is known
as a decoding or many-one function table. It has been developed
in various forms independently by J. Rajchman [Rajchman, 19431
and P. Crawford [Crawford, Is??]. It consists of n flip-flops which
register an n-digit binary number. It also has a maximum of 2n
output wires. The flip-flops activate a matrix in which the inter-
connections between input and output wires are made in such a
way that one and only one of 2" output wires is selected (Le. has
a positive voltage applied to it). These interconnections may be
established by means of resistors or by means of non-linear ele-
ments (such as diodes or rectifiers); all these various methods are
under investigation. The Selectron is so designed that four such
function table switches are required, each with a three digit entry
and eight (23) outputs. Four sets of eight wires each are brought
out of the Selectron for switching purposes, and a particular loca-
tion is selected by making one wire positive with respect to the
remainder. Since all forty Selectrons are switched in parallel, these
four sets of wires may be connected directly to the four function
table outputs.

Since most computer operations involve at least one
number located in the Selectron memory, it is reasonable to adopt
a code in which twelve binary digits of every order are assigned
to the specification of a Selectron location. In those orders which
do not require a number to be taken out of or into the Selectrons
these digit positions will not be used.

Though it has not been definitely decided how many operations
will be built into the computer (Le. how many different orders
the control must be able to understand), it will be seen presently
that there will probably be more than Z5 but certainly less than
26. For this reason it is feasible to assign 6 binary digits for the
order code. It thus turns out that each order must contain eighteen
binary digits, the first twelve identifying a memory location and
the remaining six specifying an operation. It can now be explained
why orders are stored in the memory in pairs. Since the same
memory organ is to be used in this computer for both orders and
numbers, it is efficient to make the length of each about equivalent.
But numbers of eighteen binary digits would not be sufficiently
accurate for problems which this machine will solve. Rather, an
accuracy of at least or 2 F 3 is required. Hence it is preferable
to make the numbers long enough to accommodate two orders.

As we pointed out in 2.3, and used in 4.2 et seq. and 5.7 et
seq., our numbers will actually have 40 binary digits each. This
allows 20 binary digits for each order, i.e. the 12 digits that specify
a memory location, and 8 more digits specifying the nature of the

6.3.

112 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

operation (instead of the minimum of 6 referred to above). It is
convenient, as will be seen in 6.8.2. and Chapter 9, Part 11, to
group these binary digits into tetrads, groups of 4 binary digits.
Hence a whole word consists of 10 tetrads, a half word or order
of 5 tetrads, and of these 3 specify a memory location and the
remaining 2 specify the nature of the operation. Outside the
machine each tetrad can be expressed by a base 16 digit. (The
base 16 digits are best designated by symbols of the 10 decimal
digits 0 to 9, and 6 additional symbols, e.g. the letters a to f. Cf.
Chapter 9, Part 11.) These 16 characters should appear in the
typing for and the printing from the machine. (For further details
of these arrangements, cf. Zoc. cit. above.)

The specification of the nature of the operation that is involved
in an order occurs in binary form, so that another many-one or
decoding function is required to decode the order. This function
table will have six input flip-flops (the two remaining digits of the
order are not needed). Since there will not be 64 different orders,
not all 64 outputs need be provided. However, it is perhaps
worthwhile to connect the outputs corresponding to unused order
possibilities to a checking circuit which will give an indication
whenever a code word unintelligible to the control is received
in the input flip-flops.

The function table just described energizes a different output
wire for each different code operation. As will be shown later,
many of the steps involved in executing different orders overlap.
(For example, addition, multiplication, division, and going from
the Selectrons to the register all include transferring a number from
the Selectrons to the Selectron register.) For this reason it is
perhaps desirable to have an additional set of control wires, each
of which is activated by any particular combination of different
code digits. These may be obtained by taking the output wires
of the many-one function table and using them to operate tubes
which will in turn operate a one-many (or coding) function table.
Such a function table consists of a matrix as before, but in this
case only one of the input wires are activated. This particular table
may be referred to as the recoding function table.

The twelve flip-flops operating the four function tables used
in selecting a Selectron position, and the six flip-flops operating
the function table used for decoding the order, are referred to as
the Function Table Register, FR.

Let us consider next the process of transferring a pair
of orders from the Selectrons to the control. These orders first go
into SR. The order which is to be used next may be transferred
directly into FR. The second order of the pair must be removed
from SR (since SR may be used when the first order is executed),
but cannot as yet be placed in FR. Hence a temporary storage

6.4.

is provided for it. The storage means is called the Control Register,
CR, and consists of 20 (or possibly 18) flip-flops, capable of re-
ceiving a number from SR and transmitting a number to FR.

As already stated (til), the control must know the location of
the pair of orders it is to get from the Selectron memory. Normally
this location will be the one following the location of the two
orders just executed. That is, until it receives an order to do
otherwise, the control will take its orders from the Selectrons in
sequence. Hence the order location may be remembered in a
twelve stage binary counter (one capable of counting 212) to which
one unit is added whenever a pair of orders is executed. This
counter is called the Control Counter, CC.

The details of the process of obtaining a pair of orders from
the Selectron are thus as follows: The contents of CC are copied
into FR, the proper Selectron location is selected, and the contents
of the Selectrons are transferred to SR. FR is then cleared, and
the contents of SR are transferred to it and CR. CC is advanced
by one unit so the control will be prepared to select the next pair
of orders from the memory. (There is, however, an exception from
this last rule for the so-called transfer orders, cf. 3.5. This may
feed CC in a different manner, cf. the next paragraph below.) First
the order in FR is executed and then the order in CR is transferred
to FR and executed. It should be noted that all these operations
are directed by the control itself-not only the operations specified
in the control words sent to FR, but also the automatic operations
required to get the correct orders there.

Since the method by means of which the control takes order
pairs in sequence from the memory has been described, it only
remains to consider how the control shifts itself from one sequence
of control orders to another in accordance with the operations
described in 3.5. The execution of these operations is relatively
simple. An order calling for one of these operations contains the
twelve digit specification of the position to which the control is
to be switched, and these digits will appear in the left-hand twelve
flip-flops of FR. All that is required to shift the control is to transfer
the contents of these flip-flops to CC. When the control goes to
the Selectrons for the next pair of orders it will then go to the
location specified by the number so transferred. In the case of the
unconditional transfer, the transfer is made automatically; in the
case of the conditional transfer it is made only if the sign counter
of the Accumulator registers zero.

In this report we will discuss only the general method
by means of which the control will execute specific orders, leaving
the details until later. It has already been explained (5.5) that when
a circuit is to be designed to accomplish a particular elementary
operation (such as addition), a choice must be made between a

6.5.

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 113

static type and a dynamic type circuit. When the design of the
control is considered, this same choice arises. The function of the
control is to direct a sequence of operations which take place in
the various circuits of the computer (including the circuits of the
control itself). Consider what is involved in directing an operation.
The control must signal for the operation to begin, it must supply
whatever signals are required to specify that particular operation,
and it must in some way know when the operation has been
completed so that it may start the succeeding operation. Hence
the control circuits must be capable of timing the operations. It
should be noted that timing is required whether the circuit per-
forming the operation is static or dynamic. In the case of a static
type circuit the control must supply static control signals for a
period of time sufficient to allow the output voltages to reach the
steady-state condition. In the case of a dynamic type circuit the
control must send various pulses at proper intervals to this circuit.

If all circuits of a computer are static in character, the control
timing circuits may likewise be static, and no pulses are needed
in the system. However, though some of the circuits of the com-
puter we are planning will be static, they will probably not all
be so, and hence pulses as well as static signals must be supplied
by the control to the rest of the computer. There are many advan-
tages in deriving these pulses from a central source, called the
clock. The timing may then be done either by means of counters
counting clock pulses or by means of electrical delay lines (an RC
circuit is here regarded as a simple delay line). Since the timing
of the entire computer is governed by a single pulse source, the
computer circuits will be said to operate as a synchronized system.

The clock plays an important role both in detecting and in
localizing the errors made by the computer. One method of check-
ing which is under consideration is that of having two identical
computers which operate in parallel and automatically compare
each other’s results. Both machines would be controlled by the
same clock, so they would operate in absolute synchronism. It is
not necessary to compare every flip-flop of one machine with the
corresponding flip-flop of the other. Since all numbers and control
words pass through either the Selectron register or the accumu-
lator soon before or soon after they are used, it suffices to check
the flip-flops of the Selectron register and the flip-flops of the
accumulator which hold the number registered there; in fact, it
seems possible to check the accumulator only (cf. the end of 6.6.2).
The checking circuit would stop the clock whenever a difference
appeared, or stop the machine in a more direct manner if an
asynchronous system is used. Every flip-flop of each computer will
be located at a convenient place. In fact, all neons will be located
on one panel, the corresponding neons of the two machines being

placed in parallel rows so that one can tell a t a glance (after the
machine has been stopped) where the discrepancies are.

The merits of any checking system must be weighed against
its cost. Building two machines may appear to be expensive, but
since most of the cost of a scientific computer lies in development
rather than production, this consideration is not so important as
it might seem. Experience may show that for most problems the
two machines need not be operated in parallel. Indeed, in most
cases purely mathematical, external checks are possible: Smooth-
ness of the results, behavior of differences of various types, validity
of suitable identities, redundant calculations, etc. All of these
methods are usually adequate to disclose the presence or absence
of error in toto; their drawback is only that they may not allow
the detailed diagnosing and locating of errors at all or with ease.
When a problem is run for the first time, so that it requires special
care, or when an error is known to be present, and has to be
located-only then will it be necessary as a rule, to use both
machines in parallel. Thus they can be used as separate machines
most of the time. The essential feature of such a method of check-
ing lies in the fact that it checks the computation at every point
(and hence detects transient errors as well as steady-state ones)
and stops the machine when the error occurs so that the process
of localizing the fault is greatly simplified. These advantages are
only partially gained by duplicating the arithmetic part of the
computer, or by following one operation with the complement
operation (multiplication by division, etc.), since this fails to check
either the memory or the control (which is the most complicated,
though not the largest, part of the machine).

The method of localizing errors, either with or without a dupli-
cate machine, needs further discussion. It is planned to design all
the circuits (including those of the control) of the computer so
that if the clock is stopped between pulses the computer will
retain all its information in flip-flops so that the computation may
proceed unaltered when the clock is started again. This principle
has already demonstrated its usefulness in the ENIAC. This makes
it possible for the machine to compute with the clock operating
at any speed below a certain maximum, as long as the clock gives
out pulses of constant shape regardless of the spacing between
pulses. In particular, the spacing between pulses may be made
indefinitely large. The clock will be provided with a mode of
operation in which it will emit a single pulse whenever instructed
to do so by the operator. 13y means of this, the operator can cause
the machine to go through an operation step by step, checking
the results by means of the indicating-lamps connected to the
flip-flops. It will be noted that this design principle does not
exclude the use of delay lines to obtain delays as long as these

114 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

are only used to time the constituent operations of a single step,
and have no part in determining the machine’s operating repeti-
tion rate. Timing coincidences by means of delay lines is excluded
since this requires a constant pulse rate.

The orders which the control understands may be divided
into two groups: Those that specify operations which are per-
formed within the computer and those that specify operations
involved in getting data into and out of the computer. At the
present time the internal operations are more completely planned
than the input and output operations, and hence they will be
discussed more in detail than the latter (which are treated briefly
in 6.8). The internal operations which have been tentatively
adopted are listed in Table 1. It has already been pointed out that
not all of these operations are logically basic, but that many can
be programmed by means of others. In the case of some of these
operations the reasons for building them into the control have
already been given. In this section we will give reasons for building
the other operations into the control and will explain in the case
of each operation what the control must do in order to exe-
cute it.

In order to have the precise mathematical meaning of the
symbols which are introduced in what follows clearly in mind,
the reader should consult the table at the end of the report for
each new symbol, in addition to the explanations given in the text.

Throughout what follows S(x) will denote the memory
location No. x in the Selectron. Accordingly the x which appears
in S(x) is a 12-digit binary, in the sense of 6.2. The eight addition
operations [S(x)+ Ac+, S(x)+ Ac--, S(x)+ Ah+, S(x)-t Ah-,

involves the following possible four steps:

6.6.

6.6.1.

S(X)+ Ac + M, S(X)-+ Ac - M, S(X) + Ah + M, S(X)+ Ah - MI

First: Clear SR and transfer into it the number at S(x).
Second: Clear Ac if the order contains the symbol c; do not

clear Ac if the order contains the symbol h.
Third: Add the number in SR or its negative (Le. in our present

system its complement with respect to 2l) into Ac. If the order does
not contain the symbol M, use the number in SR or its negative
according to whether the order contains the symbol + or - . If the
order contains the symbol M, use the number in SR or its negative
according to whether the sign of the number in SR and the symbol
+ or - in the order do or do not agree.

Fourth: Perform a complete carry. Building the last four addi-
tion operations (those containing the symbol M) into the control
is fairly simple: It calls only for one extra comparison (of the sign
in SR and the + or - in the order, cf. the third step above), and
it requires, therefore, only a few tubes more than required for the
first four addition operations (those not containing the symbol M).

These facts would seem of themselves to justify adding the opera-
tions in question: plus and minus the absolute value. But it should
be noted that these operations can be programmed out of the other
operations of Table 1 with correspondingly few orders (three for
absolute value and five for minus absolute value), so that some
further justification for building them in is required. The absolute
value order is frequently in connection with the orders L and R
(see 6.6.7), while the minus absolute value order makes the detec-
tion of a zero very simple by merely detecting the sign of - J N J .
(If - JNI 2 0, then N = 0.)

The operation of S(x) .+ R involves the following two
steps:

6.6.2.

First: Clear SR, and transfer S(x) to it.
Second: Clear AR and add the number in the Selectron register

into it. The operation of R + Ac merits more detailed discussion,
since there are alternative ways of removing numbers from AR.
Such numbers could be taken directly to the Selectrons as well
as into Ac, and they could be transferred to Ac in parallel, in
sequence, or in sequence parallel. It should be recalled that while
most of the numbers that go into AR have come from the Selec-
trons and thus need not be returned to them, the result of a
division and the right-hand 39 digits of a product appear in AR.
Hence while an operation for withdrawing a number from AR is
required, it is relatively infrequent and therefore need not be
particularly fast. We are therefore considering the possibility of
transferring at least partially in sequence and of using the shifting
properties of Ac and of AR for this. Transferring the number to
the Selectron via the accumulator is also desirable if the dual
machine method of checking is employed, for it means that even
if numbers are only checked in their transit through the accumu-
lator, nevertheless every number going into the Selectron is
checked before being placed there.

6.6.3. The operation S(x) x R --f Ac involves the following six
steps:

First: Clear SR and transfer S(x) (the multiplicand) into it.
Second: Thirty-nine steps, each of which consist of the two

following parts: (a) Add (or rather shift) the sign digit of SR into
the partial product in Ac, or add all but the sign digit of SR into
the partial product in Ac-depending upon whether the right-most
digit in AR is 0 or 1-and effect the appropriate carries. (b) Shift
Ac and AR to the right, fill the sign digit of Ac with a 0 and the
digit of AR immediately right of the sign digit (positional value
2-l) with the previously right-most digit of Ac. (There are ways
to save time by merging these two operations when the right-most
digit in Ar is 0, but we will not discuss them here more fully.)

Third: If the sign digit in SR is 1 (Le. -), then inject a carry

Chapter 4 I Preliminary discussion of the logical design of an electronic computing instrument 115

into the right-most stage of Ac and place a 1 into the sign digit
of Ac.

Fourth: If the original sign digit of AR is 1 (Le. -), then sub-
tract the contents of SR from Ac.

Fifth: If a partial carry system was employed in the main
process, then a complete carry is necessary at the end.

Sixth: The appropriate round-off must be effected. (Cf. Chapter
9, Part 11, for details, where it is also explained how the sign digit
of the Arithmetic register is treated as part of the round-off
process.)

It will be noted that since any number held in Ac at the begin-
ning of the process is gradually shifted into AR, it is impossible
to accumulate sums of products in Ac without storing the various
products temporarily in the Selectrons. While this is undoubtedly
a disadvantage, it cannot be eliminated without constructing a.n
extra register, and this does not at this moment seem worthwhile.

On the other hand, saving the right-hand 39 digits of the answer
is accomplished with very little extra equipment, since it means
connecting the 2-39 stage of Ac to the 2-1 stage of AR during the
shift operation. The advantage of saving these digits is that it
simplifies the handling of numbers of any number of digits in the
computer (cf. the last part of 5.12). Any number of 39k binary
digits (where k is an integer) and sign can be divided into k parts,
each part being placed in a separate Selectron position. Addition
and subtraction of such numbers may be programmed out of a
series of additions or subtractions of the 39-digit parts, the carry-
over being programmed by means of Cc+ S(x) and Cc'+ S(x)
operations. (If the 2" stage of Ac registers negative after the addi-
tion of two 39-digit parts, a carry-over has taken place and hence
2-39 must be added to the sum of the next parts.) A similar proce-
dure may be followed in multiplication if all 78 digits of the
product of the two 39-digit parts are kept, as is planned. (For the
details, cf. Chapter 9, Part 11.) Since it would greatly complicate
the computer to make provision for holding and using a 78 digit
dividend, it is planned to program 39k digit division in one of the
ways described at the end of 5.12.

The operation of division Ac i S(x) + R involves the
following four steps:

6.6.4.

First: Clear SR and transfer S(x) (the divisor) into it.
Second: Clear AR.
Third: Thirty-nine steps, each of which consists of the following

three parts: (a) Sense the signs of the contents of Ac (the partial
remainder) and of SR, and sense whether they agree or not. (b)
Shift Ac and AR left. In this process the previous sign digit of
Ac is lost. Fill the right-most digit of Ac (after the shift) with a
0, and the right-most digit of AR (before the shift) with 0 or 1,

depending on whether there was disagreement or agreement in
(a). (c) Add or subtract the contents of SR into Ac, depending on
the same alternative as above.

Fourth: Fill the right-most digit of AR with a 1, and change
its sign digit.

For the purpose of timing the 39 steps involved in division a
six-stage counter (capable of counting to 26 = 64) will be built
into the control. This same counter will also be used for timing
the 39 steps of multiplication, and possibly for controlling Ac when
a number is being transferred between it and a tape in either
direction (see 6.8.).

The three substitution operations [At -+ S(x), Ap -+ S(x),
and Ap' + S(x)] involve transferring all or part of the number held
in Ac into the Selectrons. This will be done by means of gate tubes
connected to the registering flip-flops of Ac. Forty such tubes are
needed for the total substitutions, At + S(x). The partial substitu-
tion Ap -+ S(x) and Ap' -+ S(x) requires that the left-hand twelve
digits of the number held in Ac be substituted in the proper places
in the left-hand and right-hand orders, respectively. This may be
done by means of extra gate tubes, or by shifting the number in
Ac and using the gate tubes required for At -+ S(x). (This scheme
needs some additional elaboration, when the order directing and
the order suffering the substitution are the two successive halves
of the same word; i.e. when the latter is already in FR at the time
when the former becomes operative in CR, so that the substitution
effected in the Selectrons comes too late to alter the order which
has already reached CR, to become operative at the next step in
FR. There are various ways to take care of this complication, either
by some additional equipment or by appropriate prescriptions in
coding. We will not discuss them here in more detail, since the
decisions in this respect are still open.)

The importance of the partial substitution operations can
hardly be overestimated. It has already been pointed out (3.3) that
they allow the computer to perform operations it could not other-
wise conveniently perform, such as making use of a function table
stored in the Selectron memory. Furthermore, these operations
remove a very sizeable burden from the person coding problems,
for they make possible the coding of classes of problems in contrast
to coding each individual problem separately. Because Ap -+ S (x)
and Ap' + S(x) are available, any program sequence may be stated
in general form (that is, without Selectron location designations
for the numbers being operated on) and the Selectron locations
of the numbers to be operated on substituted whenever that se-
quence is used. As an example, consider a general code for nth
order integration of m total differential equations for p steps of
independent variable t, formulated in advance. Whenever a prob-

6.6.5.

116 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

lem requiring this rule is coded for the computer, the general
integration sequence can be inserted into the statement of the
problem along with coded instructions for telling the sequence
where it will be located in the memory [so that the proper S(x)
designations will be inserted into such orders as Cu + S(x), etc.].
Whenever this sequence is to be used by the computer it will
automatically substitute the correct values of m, n, p and At, as
well as the locations of the boundary conditions and the descrip-
tions of the differential equations, into the general sequence. (For
the details of this particular procedure, cf. Chapter 13, Part 11.)
A library of such general sequences will be built up, and facilities
provided for convenient insertion of any of these into the coded
statement of a problem (cf. 6.8.4). When such a scheme is used,
only the distinctive features of a problem need be coded.

The manner in which the control shift operations
[Cu + S(x), Cu' + S(x), Cc -+ S(x), and Cc' + S(x)] are realized has
been discussed in 6.4 and needs no further comment.

One basic question which must be decided before a
computer is built is whether the machine is to have a so-called
floating binary (or decimal) point. While a floating binary point
is undoubtedly very convenient in coding problems, building it
into the computer adds greatly to its complexity and hence a
choice in this matter should receive very careful attention. How-
ever, it should first be noted that the alternatives ordinarily con-
sidered (building a machine with a floating binary point vs. doing
all computation with a fixed binary point) are not exhaustive and
hence that the arguments generally advanced for the floating
binary point are only of limited validity. Such arguments overlook
the fact that the choice with respect to any particular operation
(except for certain basic ones) is not between building it into the
computer and not using it at all, but rather between building it
into the computer and programming it out of operations built into
the computer. (One short reference to the floating binary point
was made in 5.13.)

Building a floating binary point into the computer will not only
complicate the control but will also increase the length of a num-
ber and hence increase the size of the memory and the arithmetic
unit. Every number is effectively increased in size, even though
the floating binary point is not needed in many instances. Further-
more, there is considerable redundancy in a floating binary point
type of notation, for each number carries with it a scale factor,
while generally speaking a single scale factor will suffice for a
possibly extensive set of numbers. By means of the operations
already described in the report a floating binary point can be
programmed. While additional memory capacity is needed for this,
it is probably less than that required by a built-in floating binary

6.6.6.

6.6.7.

point since a different scale factor does not need to be remembered
for each number.

To program a floating binary point involves detecting where
the first zero occurs in a number in Ac. Since Ac has shifting
facilities this can best be done by means of them. In terms of the
operations previously described this would require taking the given
number out of Ac and performing a suitable arithmetical operation
on it: For a (multiple) right shift a multiplication, for a (multiple)
left shift either one division, or as many doublings (Le. additions)
as the shift has stages. However, these operations are inconvenient
and time-consuming, so we propose to introduce two operations
(L and R) in order that this (i.e. the single left and right shift)
can be accomplished directly. These operations make use of facili-
ties already present in Ac and hence add very little equipment
to the computer. It should be noted that in many instances a single
use of L and possibly of R will suffice in programming a floating
binary point. For if the two factors in a multiplication have no
superfluous zeros, the product will have at most one superfluous
zero (if '/z Y < 1, then y4 5 XY < 1). This is
similarly true in division (if '/4 5 X < y2 and y2 _I Y < 1, then
y4 < X/Y < 1). in addition and subtraction any numbers growing
out of range can be treated similarly. Numbers which decrease
in these cases, i.e. develop a sequence of zeros at the beginning,
are really (mathematically) losing precision. Hence it is perfectly
proper to omit formal readjustments in this event. (indeed, such
a true loss of precision cannot be obviated by any formal proce-
dure, but, if at all, only by a different mathematical formulation
of the problem.)

Table 1 shows that many of the operations which the
control is to execute have common elements. Thus addition, sub-
traction, multiplication and division all involve transferring a
number from the Selectrons to SR. Hence the control may be
simplified by breaking some of the operations up into more basic
ones. A timing circuit will be provided for each basic operation,
and one or more such circuits will be involved in the execution
of an order. The exact choice of basic Operations will depend upon
how the arithmetic unit is built.

In addition to the timing circuits needed for executing the
orders of Table 1, two such circuits are needed for the automatic
operations of transferring orders from the Selectron register to CR
and FR, and for transferring an order from CR to FR. In normal
computer operation these two circuits are used alternately, so a
binary counter is needed to remember which is to be used next.
in the operations Cu' -+ S(x) and Cc + S(x) the first order of a pair
is ignored, so the binary counter must be altered accordingly.

The execution of a sequence of orders involves using the various

X < 1 and '/z

6.7.

Chapter 4 1 Preliminary discussion of the logical design of an electronic computing instrument 117

Table 1

Symbolization

Complete Abbreviated Operation

1
2
3

4

5
6
7

9
10
11

a

12

13
14
15
16
17
la

19

20
21

S(x) 4 Ac+
S(x) 4 Ac-
S(x) + AcM

S(x) 4 Ac - M

S (x) 4 Ah+
S(x) + Ah-
S (x) 4 AhM
S(x)-t Ah - M
S(x) 4 R
R + A
S(x) x R + A

A i S(x) + R

cu + S(X)
Cu’ + S(X)
cc + S(x)
CC’ + S(X)
At -+ S(x)
Ap + S(x)

Ap’ + S(x)

L
R

X

X-

xM

x - M

xh
xh -
xhM
x - hM
xR
A
xx

X i

xc
X C

XCC
XCC‘
XS

XSP

xSp’

L
R

Clear accumulator and add number located at position x in the Selectrons into it.
Clear accumulator and subtract number located at position x in the Selectrons into it.
Clear accumulator and add absolute value of number located at position x in the Selectrons

Clear accumulator and subtract absolute value of number located at position x i n the Selec-

Add number located at position x in the Selectrons into the accumulator.
Subtract number located at position x in the Selectrons into the accumulator.
Add absolute value of number located at position x in the Selectrons into the accumulator.
Subtract absolute value of number located at position x in the Selectrons into the accumulator.
Clear register? and add number located at position x in the Selectrons into it.
Clear accumulator and shift number held in register into it.
Clear accumulator and multiply the number located at position x in the Selectrons by the num-

ber in the register, placing the left-hand 39 digits of the answer in the accumulator and the
right-hand 39 digits of the answer in the register.

Clear register and divide the number in the accumulator by the number located in position x
of the Selectrons, leaving the remainder in the accumulator and placing the quotient in the
register.

Shift the control to the left-hand order of the order pair located at position x in the Selectrons.
Shift the control to the right-hand order of the order pair located at position x in the Selectrons.
If the number in the accumulator is 2 0, shift the control as in Cu 4 S(x).
If the number in the accumulator is 2 0, shift the control as in Cu’ 4 S(x).
Transfer the number in the accumulator to position x in the Selectrons.
Replace the left-hand 12 digits of the left-hand order located at position x in the Selectrons by

Replace the left-hand 12 digits of the right-hand order located at position x in the Selectrons

Multiply the number in the accumulator by 2, leaving it there.
Divide the number in the accumulator by 2, leaving it there.

into it.

trons into it.

the left-hand 12 digits in the accumulator.

by the left-hand 12 digits in the accumulator.

t Register means arithmetic register.

timing circui ts in sequence. W h e n a given timing c i rcu i t has

completed i t s operation, it emits a pulse w h i c h should go t o the
timing c i rcu i t t o b e used next. Since this depends u p o n the part ic-
u la r operation be ing executed, these pulses are rou ted according
t o the signals received f rom the decoding and recoding funct ion

tables act ivated by the six b inary digits specifying a n order.
In this section we wil l consider what must b e added t o

the control so tha t it can direct the mechanisms for gett ing data

i n t o and ou t o f the computer and also describe the mechanisms

themselves. Three different kinds of input-output mechanisms are

planned.

First: Several magnetic w i re storage units operated by servo-
mechanisms control led by the computer.

6.8.

Second: Some v iewing tubes fo r graphical portrayal o f results.
Third: A typewr i te r for feeding data direct ly i n to the com-

puter, no t t o b e confused with the equipment used for prepar ing
and printing f rom magnetic wires. As presently planned the la t te r

will consist o f modif ied Teletypewri ter equipment, cf. 6.8.2 and
6.8.4.

Since there already exists a way o f transferring numbers
between the Selectrons and Ac, therefore Ac may b e used for

transferring numbers f rom and t o a wire. The lat ter transfer wi l l
b e done serially and wil l make use o f the shi f t ing facil i t ies o f Ac.

Using A c fo r this purpose eliminates the possibil i ty o f comput ing

a n d reading f rom or writing o n the wires simultaneously. However,
simultaneous operation of the computer and the input-output

6.8.1.

118 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

organ requires additional temporary storage and introduces a syn-
chronizing problem, and hence it is not being considered for the
first model.

Since, at the beginning of the problem, the computer is empty,
facilities must be built into the control for reading a set of numbers
from a wire when the operator presses a manual switch. As each
number is read from a wire into Ac, the control must transfer it
to its proper location in the Selectrons. The CC may be used to
count off these positions in sequence, since it is capable of trans-
mitting its contents to FR. A detection circuit on CC will stop
the process when the specified number of numbers has been placed
in the memory, and the control will then be shifted to the orders
located in the first position of the Selectron memory.

It has already been stated that the entire memory facilities of
the wires should be available to the computer without human
intervention. This means that the control must be able to select
the proper set of numbers from those going by. Hence additional
orders are required for the code. Here, as before, we are faced
with two alternatives. We can make the control capable of exe-
cuting an order of the form: Take numbers from positions p to
p + s on wire No. k and place them in Selectron locations u to
0 + s. Or we can make the control capable of executing some less
complicated operations which, together with the already given
control orders, are sufficient for programming the transfer opera-
tion of the first alternative. Since the latter scheme is simpler we
adopt it tentatively.

The computer must have some way of finding a particular
number on a wire. One method of arranging for this is to have
each number carry with it its own location designation. A method
more economical of wire memory capacity is to use the Selectron
memory facilities to remember the position of each wire. For
example, the computer would hold the number t , specifying which
number on the wire is in position to be read. If the control is
instructed to read the number at position p , on this wire, it will
compare p , with t,; and if they differ, cause the wire to move
in the proper direction. As each number on the wire passes by,
one unit is added or subtracted to t , and the comparison repeated.
When p , = t, numbers will be transferred from the wire to the
accumulator and then to the proper location in the memory. Then
both t , and p , will be increased by 1, and the transfer from the
wire to accumulator to memory repeated. This will be iterated,
until t , + s and p , + s are reached, at which time the control
will direct the wire to stop.

Under this system the control must be able to execute the
following orders with regard to each wire: Start the wire forward,
start the wire in reverse, stop the wire, transfer from wire to Ac,

and transfer from Ac to wire. In addition, the wire must signal
the control as each digit is read and when the end of a number
has been reached. Conversely, when recording is done the control
must have a means of timing the signals sent from Ac to the wire,
and of counting off the digits. The 26 counter used for multiplica-
tion and division may be used for the latter purpose, but other
timing circuits will be required for the former.

If the method of checking by means of two computers operating
simultaneously is adopted, and each machine is built so that it
can operate independently of the other, then each will have a
separate input-output mechanism. The process of making wires
for the computer must then be duplicated, and in this way the
work of the person making a wire can be checked. Since the wire
servomechanisms cannot be synchronized by the central clock, a
problem of synchronizing the two computers when the wires are
being used arises. It is probably not practical to synchronize the
wire feeds to within a given digit, but this is unnecessary since
the numbers coming into the two organs Ac need not be checked
as the individual digits arrive, but only prior to being deposited
in the Selectron memory.

Since the computer operates in the binary system, some
means of decimal-binary and binary-decimal conversions is highly
desirable. Various alternative ways of handling this problem have
been considered. In general we recognize two broad classes of
solutions to this problem.

First: The conversion problems can be regarded as simple arith-
metic processes and programmed as sub-routines out of the orders
already incorporated in the machine. The details of these programs
together with a more complete discussion are given fully in Chap-
ter 9, Part 11, where it is shown, among other things, that the
conversion of a word takes about 5 msec. Thus the conversion time
is comparable to the reading or withdrawing time for a word-
about 2 msec-and is trivial as compared to the solution time for
problems to be handled by the computer. It should be noted that
the treatment proposed there presupposes only that the decimal
data presented to or received from the computer are in tetrads,
each tetrad being the binary coding of a decimal digit-the infor-
mation (precision) represented by a decimal digit being actually
equivalent to that represented by 3.3 binary digits. The coding
of decimal digits into tetrads of binary digits and the printing of
decimal digits from such tetrads can be accomplished quite simply
and automatically by slightly modified Teletype equipment, cf.
6.8.4 below.

Second: The conversion problems can be regarded as unique
problems and handled by separate conversion equipment incor-
porated either in the computer proper or associated with the

6.8.2.

Chapter 4 1 Preliminary discussion of the logical design of an electronic computing instrument 119

mechanisms for preparing and printing from magnetic wires. Such
converters are really nothing other than special purpose digital
computers. They would seem to be justified only for those com-
puters which are primarily intended for solving problems in which
the computation time is small compared to the input-output time,
to which class our computer does not belong.

It is possible to use various types of cathode ray tubes,
and in particular Selectrons for the viewing tubes, in which case
programming the viewing operation is quite simple. The viewing
Selectrons can be switched by the same function tables that switch
the memory Selectrons. By means of the substitution operation
Ap -+ S(x) and Ap' + S(x), six-digit numbers specifying the abscissa
and ordinate of the point (six binary digits represent a precision
of one part in 26 = 64, i.e. of about 1.5 per cent which seems
reasonable in such a component) can be substituted in this order,
which will specify that a particular one of the viewing Selectrons
is to be activated.

As was mentioned above, the mechanisms used for
preparing and printing from wire for the first model, at least, will
be modified Teletype equipment. We are quite fortunate in having
secured the full cooperation of the Ordnance Development Divi-
sion of the National Bureau of Standards in making these modifi-
cations and in designing and building some associated equipment.

By means of this modified Teletype equipment an operator first
prepares a checked paper tape and then directs the equipment
to transfer the information from the paper tape to the magnetic
wire. Similarly a magnetic wire can transfer its contents to a paper

6.8.3.

6.8.4.

tape which can be used to operate a teletypewriter. (Studies are
being undertaken to design equipment that will eliminate the
necessity for using paper tapes.)

As was shown in 6.6.5, the statement of a new problem on a
wire involves data unique to that problem interspersed with data
found on previously prepared paper tapes or magnetic wires. The
equipment discussed in the previous paragraph makes it possible
for the operator to combine conveniently these data on to a single
magnetic wire ready for insertion into the computer.

It is frequently very convenient to introduce data into a com-
putation without producing a new wire. Hence it is planned to
build one simple typewriter as an integral part of the computer.
By means of this typewriter the operator can stop the computation,
type in a memory location (which will go to the FR), type in a
number (which will go to Ac and then be placed in the first
mentioned location), and start the computation again.

There is one further order that the control needs to
execute. There should be some means by which the computer can
signal to the operator when a computation has been concluded,
or when the computation has reached a previously determined
point. Hence an order is needed which will tell the computer to
stop and to flash a light or ring a bell.

6.8.5.

References

BurkA62a, BurkA6Zb; Craw€'??; GoldHGSa, b, c, d; RajcJ43

The DEC PDP-8

Introduction'

The PDP-8 is a single-address, 12-bit-word computer of the second
generation. It is designed for task environments with minimum
arithmetic computing and small Mp requirements. For example,
it can be used to control laboratory devices, such as gas chromoto-
graphs or sampling oscilloscopes. Together with special T's, it is
programmed to be a laboratory instrument, such as a pulse height
analyzer or a spectrum analyzer. These applications are typical
of the laboratory and process control requirements for which the
machine was designed. As another example, it can serve as a
message concentrator by controlling telephone lines to which
typewriters and Teletypes are attached. The computer occasion-
ally stands alone as a small-scale general-purpose computer. Most
recently it was introduced as a small-scale general-purpose time-
sharing system, based on work at Carnegie-Mellon University and
DEC. It is used as a KT(disp1ay) when it has a P(disp1ay; '338);
this C is discussed in Chap. 25. The PDP-8 has achieved a produc-
tion status formerly reserved for ZBM computers; about 5,000 have
been constructed.

PDP-8 differs from the character-oriented 8-bit computer in
Chap. 10; it is not unlike the 16-bit computers, such as the IBM
1800 in Chap. 33. The PDP-8 is typical of several 12-bit computers:
the early CDC-160 series (1960), CDC-6600 Peripheral and Con-
trol Processor (Chap. 39), the SDS-92, M.I.T. Lincoln Laboratory's
Laboratory Instrument Computer LINC (1963), Washington Uni-
versity's Programmed Console (1967), and the SCC 650 (1966).

The PDP-5 (transistor, 1963), PDP-8 (l965), PDP-8/S (serial,
1966) and PDP-8/1 (integrated circuit, 1968), PDP-R/L (integrated
circuit, 1968) constitute a series of computers based on evolving
technology. All of these have identical ISP's. Their PMS structures
are nearly identical, and all components other than Pc and Mp
are compatible throughout the series. The LINC-8-338 PMS struc-
ture is presented in Fig. 1. A cost performance tradeoff took place
in the PDP-8 (parallel-by-word arithmetic) and PDP-8/S (serial-
by-bit arithmetic) implementations. A PDP-S/S is one-fifteenth of
a PDP-8 at one-half the cost. The performance factors can be
attributed to 8/1.5 or 5.3 for Mp speed and a factor of about 3
for logical organization, even though the same 2-megahertz logic
clock is used in both cases. The PDP-8 is about 6.7 times a PDP-5.

'The initials in the title stand for Digital Equipment Corporation Pro-
grammed Data Processor.

The ISP of the PDP-8 Pc is about the most trivial in the book.
It has only a few data operators, namely, +-, +, - (negate), 7,
A, / 2, x 2, (optional) x , /, and normalize. It operates on words,
integers, and boolean vectors. However, there are microcoded
instructions, which allow compound instructions to be formed in
a single instruction.

The computer is straightforward and illustrates the levels dis-
cussed in Chap. 1. We can easily look at it from the "top down."
The C in PMS notation is

C('PDP-8; techno1ogy:transistors; 12 b/w;
descendants:'PDP-8/S, 'PDP-8/1, 'PDP-8/L;
antecedents: 'PDP-5;
Mp(core; #0:7; 4096 w; tc:1.5 p /w) ;
Pc(Mps(2 - 4 w);

instruction length:lI2 w
address/instruction: 1;
operations on data/od:(t , +, 7, A, -(negate), x 2,
/ 2, +1)
optional operations:(x , /, normalize);
data-types:word, integer, boolean vector;
operations for data access:4);

P(disp1ay; '338);
P(c; 'LINC);
S('I/O BUS; 1 Pc; 64 K);
Ms(disk, 'DECtape, magnetic tape);
T(paper tape, card, analog, cathode-ray tube))

ISP

The ISP is presented in Appendix 1 of this chapter (including the
optional Extended Arithmetic Element/EAE). The 212-word Mp
is divided into 32 fixed-length pages of 128 words each. Address
calculation is based on references to the first page, Page-0, or to
the current page of the Program Counter/PC. The effective-
address calculation procedure provides for both direct and indirect
reference to either the current page or the first page. This scheme
allows a 7-bit address to specify local page addresses.

A 215-word Mp is available on the PDP-8, but addressing
greater than 212 words is comparatively inefficient. In the extended
range, two 3-bit registers, the Program Field and Data Field
Registers, select which of the eight 212-~ord blocks are being
actively addressed as program and data.

There is an array of eight registers, called the Auto-index
registers, which resides in Page-0. This array (Auto,index[O:
11](0:7): = M[108:178](O:11)) possesses the useful property that
whenever an indirect reference is made to it, a 1 is first added

120

Chapter 5 I The DEC PDP-8 121

K- S- K(#0:63; T e l e t y p e : 110, 180 b / s) -

(1 2 , l p a r i t y) b/w

T (# 0 : 3 ; CRT: d i s p l a y : a r e a : IO x I O i n z) -)

T (# 0 : 3 ; l i g h t : pen)>

T (# 0 : 3 ; push b u t t o n s ; c o n s o l e) +

T. conso I e

Ms #0:1; L INCdape : add ressab le magnet ic tape: -

-= P (d i s p l a y : ' 338)

T.consol e -
Mp fJ'0;7) !- S z - S - / c ~ S 4 10 cha r / s ; 8 b / cha r ; 64 c h a r) -

I
K-T paper tape ; (reader ; 300 c h a r / s)) (punch: -

100 cha r / s) : 8 b / cha r 3
3 c

"16b cha r / c o I 3
"1 30 u s / p o i n t : .01 1.005 i n / p o i n t 3

K-T inc remen ta l p o i n t p l o t : 300 p o i n t / s ; .01 + c i n / p o i n t

K-T(card; reader : 2001800 ca rd /m in) t

K-T(card; punch: 100 c a r d / m i n) +

l i n e : p r i n t e r ; 300 l i n e / m i n : 120 c o l / l i n e : +

CRT: d i s p l a y : a rea : I O x I O i n215 x 5 i n 2 ; +

K- T (1 i q h t : pen)>

K- T(Dataphone; I . 2 4 . 8 k b / s) -

~ (P ~ : ~ ~) - ~ (a n a l o g ; o u t p u t ; 0 - - 1 0 v o l t s) +

K-SS-L(#0:63; ana log : i n p u t : 0 - -10 v o l t s) +

'Mp(core; 1.5 p / w ; 4096 w: (1 2 + I)b)

S (' Memory Bus)

3Pc(1 - 2 w / i n s t r u c t i o n : d a t a : w, i , b v : 12 b/w: M . p r o w s s o r s t a t e f 2 i -11) w: t echno looy : t r a n s i s t o r s ;

4S('l/0 Bus; f rom: Pc: t o : 64 K)

"K I I - 4 i n s t r u c t i o n s ; M . b u f f e r (l c h a r - 2 w))

2
an teceden ts : PDP-5: descendants; PDP-BS, PDP-81, PDF-L)

Fig. 1. DEC LINC-8-338 PMS diagram.

122 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

to its contents. (That is, there is a side effect to referencing.) Thus,
address integers in the register can select the next member of a
vector or string for accessing.

The instruction-set-execution definition can also be presented
as a decoding diagram or tree (Fig. 2). Here, each block represents
an encoding of bits in the instruction word. A decoding diagram
allows one more descriptive dimension than the conventional,
linear ISP description, revealing the assignment of bits to the
instruction. Figure 2 still requires ISP descriptions for Mp, Mps,
the instruction execution, the effective-address calculation, and
the interpreter. Diagrams such as Fig. 2 are useful in the ISP

design to determine which instruction numbers are to be assigned
to names and operations and instructions which are free to be
assigned (or encoded).

There are eight basic instructions encoded by 3 bits, that is
op(O:2) : = i(0:2), where instruction/i(O:ll). Each of the first six
instructions (where 0 5 op < 6) have the 4 address operand deter-
mination modes (thus yielding essentially 24 instructions). The first
six instructions are:

data transmission: deposit and clear-accumulator/dca

tor/tad
two’s complement add to the accumula-

Principle oddressable
inst ruct ions

OP+ 0 ond -

I
Operate, opr

Operate microcoded instructions

o p r - 1 A i < j > A t ime 11,2,3,41
6 7 8 9 in 1 1

r t l - I K I - I Tal-

t ime 1 u f i q
~ 1 ; clo- sma- szo- snl-

invert
next

0%- h l t -

\ EAE A I <] > A t ime [1,2,31

instruction)

instruct ion i<O:ll> ! = op ib p page,oddress

Instruct ion word format

Extended arithmetic
element, E A E ,
inst ructions

i

Fig. 2. DEC PDP-8 instruction-decoding diagram.

Chapter 5 I The DEC PDP-8 123

binary arithmetic: two's complement add to the accumu-
lator/tad

binary boolean:

program control: jump/set program counter/jmp

and to the accumulator/and

jump to subroutine/jms
index memory and skip if results are
zero/isz

Note that the add instruction, tad, is used for both data trans-
mission and arithmetic.

The subroutine-calling instruction, jms, provides a method for
transferring a link to the beginning (or head) of the subroutine.
In this way arguments can be accessed indirectly, and a return
is executed by a jump indirect instruction to the location storing
the returned address. This straightforward subroutine-call mecha-
nism, although inexpensive to implement, requires reentrant and
recursive subroutine calls to be interpreted by software, rather
than by hardware. A stack, as in the DEC 338 (Chap. 25), would
be nicer.

The input-output instruction/iot (:= op = 6) uses the re-
maining 9 bits of the instruction to specify instructions to input/
output devices. The 6 io-select bits select 1 of 64 devices. The
3 bits, io-pl-bit, io-p&-bit, io,p4,bit, command the selected
device by conditionally providing three pulses in sequence. The
instructions to a typical io device are:

io-pl-bit -+ (IO,skip,flag[io select] + (PC t PC + 1))
testing a condition of an IO device output to a device input
from a device

io,p4,bit + (Output,data[io select] t AC)

io-p2,bit + (AC c Input,data[io select])

There are three microcoded instruction groups selected by
op = 7. The instruction decoding diagram (Fig. 2) and the ISP
description (Appendix 1 of this chapter) show the microinstruc-
tions which can be combined in a single instruction. These instruc-
tions are: operate group 1 (: = (op = 7) A 1 i(3)) for operating on
the processor state; operate group 2 (: = (op = 7) A (i(3,ll) =
10,)) for testing the processor state; and the extended arithmetic
element group (:= ((op = 7) A (i (3 , l l) = 11,))) for multiply,
divide, etc. Within each instruction the remaining bits, (4:lO) or
(4:11), are extended instruction (or opcode) bits; that is, the bits
are microcoded to select instructions. In this way an instruction
is actually programmed (or microcoded). For example, the instruc-

tion set-link +L t l is formed by coding the two microinstruc-
tions, clear link, next, complement link.

opr- 1 + (i(5) + L t 0; next
i(7) -+L t 1 L)

Thus, in operate group 1, the instructions clear link, complement
link, and set link are formed by coding instruction(5,7) = 10, 01,
and 11, respectively. The operate group 2 instruction is used for
testing the condition of the Pc state. This instruction uses bits 5,
6, and 8 to code tests for the accumulator. The AC skip conditions
are coded (0 - 7) as never, always, =0, #0, <0, 2 0 , 50, and >O.
If all the nonredundant and useful variations in the two operate
groups were available as separate instructions in the manner of
the first seven (dca, tad, etc.), there would be approximately
7 + 12(0pr-l) + lO(0pr-2) + 6(EAE) = 35 instructions in the

The optional Extended Arithmetic Element/EAE includes
additional Multiplier Quotient/MQ and Shift Counter/SC regis-
ters and provides the hardwired operations multiply, divide, logi-
cal shift left, arithmetic shift, and normalize. The EAE is defined
on the last page of Appendix 1.

The interrupt scheme

External conditions in the input/output devices can request that
Pc be interrupted. Interrupts are allowed if (Interrupt-state = 1).
A request to interrupt clears Interrupt-state (Interrupt-state
t 0), and Pc behaves as though a jump to subroutine 0 instruction,
jms 0, had been given. A special iot instruction (instruction =
6001,) followed by a jump to subroutine indirect to 0 instruction
(instruction = 5200,) returns Pc to the interruptable state with
Interrupt-state = 1. The program time to save M(processor
state/ps) is 6 Mp accesses (9 microseconds), and the time to restore
Mps is 9 Mp accesses (13.5 microseconds).

Only one interrupt level is provided in the hardware. If multi-
ple priority levels are desired, programmed polling is required.
Most io devices have to interrupt because they do not have a
program-controlled enable switch for the interrupt. For multiple
devices approximately 3 cycles (4.5 ps) are required to poll each
interrupter.

PDP-8.

PMS structure

The PMS structure of the LINC-8-338 consisting of a Pc('LlNC),
Pc('PDP-8), and P.display('338) is shown in Fig. 1. The PDP-8 is
just a single Pc. The Pc('L1NC) is a very capable Pc with more

124 Part 2 1 The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

instructions than the main Pc. It is available in the structure to
interpret programs written for the C('LINC), a computer devel-
oped by M.I.T.'s Lincoln Laboratory as a laboratory instrument
computer for biomedical and laboratory applications. Because of
the rather limited ISP in Pc, one would hardly expect to find all
the components present in Fig. 1 in an actual configuration.

The S between the Mp and the Pc allows eight Mp's. This S
is actually S('Memory Bus; 8 Mp; 1 Pc; (P requests); time-multi-
plexed; 1.5 ps/w). Thus the switch makes Mp logically equivalent
to a single Mp(32768 w). There are two other L's which are con-
nected to the Pc, excluding the T.console. They are L('I/O Bus)
and L('Data Break; Direct Memory Access). These links become
switches when we consider the physical structure. Associated with
each device is a switch, and the bus links all the devices; the
L('I/O Bus) is really an S('I/O Bus). Each time a K connects to
it, the S is included in the K. A simplified PMS diagram (Fig. 3)
shows the structure and the logical-physical transformation. Thus,
the 1/0 Bus is

S('I/O Bus; duplex; bus; time-multiplexed, 1 Pc; 64 K; Pc
controlled, K requests; t:4.5 ps/w)

The S('I/O Bus) is the same for the PDP-5, 8, 8/S, 8/I, and 8/L.
Hence, any K can be used on any of the above C's. The 1/0 Bus
is the link to the K's for Pc-controlled data transfers. Each word
transferred is designated by a Pc instruction. However, the 1/0
Bus allows a K to request Pc's attention via the interrupt request
signal. The Pc polls the K's to find the requesting K if multiple
interrupt requests occur. A detailed structure of the Pc-Mp
(Fig. 4) shows these L('I/O Bus, 'Data Break) connections to the
registers and control in the notation used by DEC. This diagram
is essentially a functional block diagram.

The S('I/O Bus) in Fig. 1 is only an abstract representation of

T.console-
I

I L (' D a t a Break) L
--PK- Mp(#O: core) - S- L-Pc-L (I I/O BUS)

I

L
I .

MP (k'71-S 2 1 . u
S('Mernory Bus)

L
L S - K -

U
S('I/O Bus)

Fig. 3. DEC PDP-8 PMS diagram (simplified).

the structure. Since it is a bus structure, the S can be expanded
into L's and simple S's as shown in Fig. 3. The termination of the
L in Pc is given in Fig. 3. The corresponding logic at a K is given
in Fig. 5 in terms of logic design elements (AND's and OR's).
(Fig. 5 also shows the S('I/O Bus) structure of Figs. 1 and 3). The
operation of S('I/O Bus) shown in Fig. 5 starts when Pc sends
a signal to select (or address) a particular K, using the IO-select
(O:5) signals to form a 6-bit code to which K responds. Each
K is hardwired to respond to a unique code. The local control,
Kb], select signal is then used to form three local commands when
ANDed with the three iot command lines from Pc, io-pl-bit,
io,p2,bit, and io,p4,bit. Twelve data bits are transmitted either
to or from Pc, indirectly under K s control. This is accomplished
by using the AND-OR gates in K for data input to Pc, and the
AND gate for data input to K. The data lines are connected to AC
as shown in Fig. 4. A single skip input is used so that Pc can
test a status bit in K. A K communicates to Pc via the interrupt
request line. Any K wanting attention simply ORs its request signal
into the interrupt request signal. Program polling in Pc then selects
the specific interrupter. Normally, the K signal causing an inter-
rupt is also connected to the skip input.

The L('Data Break; Direct Memory Access) provides a direct
access path for a P or K to Mp via Pc. The number of access ports
to memory can be expanded to eight by using the S('DMO1 Data
Multiplexer). The S is requested from a P or K. The P or K supplies
an Mp address, a read or write access request, and then either
accepts or supplies data for the Mp accessed word. In the config-
uration (Fig. l), P('L1NC) and P('338) are connected to S('DMO1)
and make requests to Mp for both their instructions and data in
the same way as the Pc. The global control of these processor
programs is via the S('I/O Bus). The Pc issues start and stop com-
mands, initializes their state, and examines their final state when
a program in the other P halts or requires assistance.

When a K is connected to L('Data Break) or to S('DMO1 Data
Multiplexer), the K only accesses Mp for data. The most complex
function these K's carry out is the transfer of a complete block
of data between the Mp and an Ms or a T, for example,
K('DECtape, disk). A special mode, the three-cycle data break,
is controlled by Pc so that a K may request the next word from
a queue in Mp. In this mode the next word is taken from the queue
(block) in Mp, and a counter is reduced each time K makes a
request. With this scheme, a word transfer takes three Mp cycles:
one to add one to the block count, one to add one to the address
pointer, and one to transmit the word.

The DECtape was derived from M.I.T.'s Lincoln Laboratory
LINCtape unit. Data are explicitly addressed by blocks (variable

Chapter 5 I The DEC PDP-8 125

Skip
Peripherol
equipment C
I /O Bus

Da ta Address
Switches =.

I/O Bus AC k-24 Doto
peripheral data (12)
equipment - 4
using
programmed t---
fronsfers Select

c

code O u t p d Link

(6) - Teletype drivers * 1

* ASR
4

bus

model 33

-
Accumulator Teletype

control Ooto (a)
0 - 1

{ *m Memory
Peripheral
equipment

buffer
control register

I /O

Peripherol
equipment
using t h e
Da ta Break
fac i l i t ies

Peripheral
equipment-
1/0 Bus

Program
counter
contro I

Progrom
counter

* 12

4

register

Inh ib i t current address count

Transfer direction control
ME

Word count overflow

Major
s to te

Breok s tote generotor

C
Address oaepted I.

Memory
address
register

1;

MA
contro l

Flow direction
4 DEC stondord positive pulse (-3 volts t o ground 1
4 DEC standard negotive pulse (ground t o -3 volt-)

P o r t of ISP
Transfer direction is in to POP-8
when -3 vol ts , ou t of PDP - 8
when around DEC standard ground level signal

DEC standard --3 volt level signal Oota break request is for three-
cycle breok when ground or one-
cycle break when -3 volts

Fig. 4. DEC PDP-8 timing and control-element block diagram.
(Courtesy of Digital Equipment Corporation.)

126 Part 2 I The instruction-set processor: main-line computers

iiiiii

Section 1 1 Processors with one address per instruction

- ~('10,pulse~pl,p2.~4; pulse; ou tpu t) -
L (~ I o , s ~ I ~ c ~ < o : ~ > ; o u ~ P u ~)-

~ ~ = l O O l O l = k _ _ _ _ _ ~

kuselect.= (IO-select= k 1

M:%4G".e I I

IO,pulae,pP A k-select
(used fo r AC-Input-dot0 [k])
I0,pulseYp4 A h-select
(used f o r ou tpu tudo to [k]-ACl

To next K

- 5s i
A c t u a l B u s S t r u c t u r e L o g i c a l S t r u c t u r e

Fig. 5. DEC PDP-8 S('I/O Bus) logic and PMS diagrams.

but by convention 128 w). Thus information in a block can be
replaced or rewritten at random. This operation is unlike queue-
accessed tape (conventional IBM format magnetic tape) in which
data can be appended only to the end of a file.

The control for the T(te1ephone) links 64 Teletypes or type-
writers to the Pc. The final K which connects to a line is on a
bit-serial basis. Since a telephone line sends and receives informa-

tion serially by bit, there are special input/output instructions in
the Pc to sample the line and to convert the sampled bits to coded
characters. There are 11 bits transmitted per character (although
other codings use 7 , 7.42, 7.5, and 10 bits per character). Of the
11 bits, there are 3 control, 1 parity, and 7 information bits. The
action of the Pc instruction, which is issued 5 x 11 (55) times for
every character, is to control the line by forming the 7-bit charac-
ters. The instruction is a good example of tradeoff in the hard-
ware/software domain toward almost pure software; the only
hardware state associated with a telephone line is a I-bit register
to hold the state of the outgoing line, and a single AND gate to
sample the incoming line state. This sampling process requires
about 0.3 per cent of Pc-Mp capacity per active line (each of
10 - 15 char/s). In general, the PDP-8 hardware controls are
minimal-in turn fairly elaborate control programs must be used
as part of them.

Computer levels

In this section we describe all the systems levels in the PDP-8
computer from the top down. The reader should already have a
sketchy knowledge of the PDP-8 because the registers and ISP
have been exposed. Here, we wish to clarify how it operates. A
map of the hierarchy is given in Fig. 6, starting from PMS to ISP
and down through logic design to circuit electronics. These de-
scription levels are subdivided to provide more organizational
detail. For example, the register-transfer level has the more de-
tailed registers, data operators, functional units, and macro logic
of the processor, whereas the next logic level below has sequential
and combinational networks, and the sequential and combinatorial
elements.

It should be apparent that the relationship of the various de-
scription levels constitutes a tree structure where the organiza-
tionally complex computer is the top node and each descending
description level represents increasing detail (or smaller com-
ponent size), until the final circuit element level is reached. For
simplicity, only a few of the many possible paths through the
structural description tree are illustrated. For example, the path
showing mechanical parts is missing. The path shown proceeds
from the PDP-8 computer to the processor and from there to the
arithmetic unit or, more specifically, to the AC register of the
arithmetic unit. Next, the macro logic implementing the register-
transfer operations and functions for the jth bit of the AC is given;
the flip-flops and gates needed for this particular implementation
are shown. Finally, on the last segment of the path, come the
electronic circuits and components of which flip-flops and NAND
gates are constructed.

Chapter 5 1 The DEC PDP-8 127

R lpassive component)
1

[X I indicates figure number of instonce

I

Fig. 6. DEC PDP-8 hierarchy of descriptions.

Abstract representations

Figure 6 also lists some of the methods used to represent the
physical computer abstractly at the different description levels.
As mentioned previously, only a small part of the PDP-8 descrip-
tion tree is represented here. The many documents, schematics,
diagrams, etc., which constitute the complete representation of
even this small computer include logic diagrams, wiring lists,
circuit schematics and printed-circuit board layout masks, pro-
duction description diagrams, production parts lists, testing speci-
fications, programs for testing and diagnosing faults, and manuals
for modification, production, maintenance, and use. As the discus-
sion continues down the abstract description tree, the reader will
observe that the tree conveniently represents the constituent ob-
jects of each level and their interconnection at the next highest
level. Each level in the abstract-description tree will be described
in order.

The PMS level

The simplified PMS structure in Fig. 3 has been reduced from
Fig. 1. The computer is small enough so that the physical delinea-
tion of the PMS components, such as K s and S’s, is less pro-
nounced than in larger systems. In fact, in the case of the
S(’Memory Bus, II/O Bus), the S’s are actually within the K and

Mp, as shown in Fig. 5. The implementation of these switches
within the K and Mp was shown in Fig. 5. In Fig. 7 we present
a more conventional functional diagram and the equivalent PMS
diagram of the computer, with Pc decomposed into K, processor
state (Mps), and D. The functional diagram has the same compo-
nents of the characteristic elementary computer model, namely,
K, D, M, and T(input, output). These figures give a somewhat
general idea of what processes can occur in the computer, and
how information flows, but it is apparent that at least another
level is needed to describe the internal structure and behavior of
the Mp and Pc. We should look at these primitives (although still
together as a C) at the register-transfer level.

Programming level (ZSP)

The ISP interpretation is given in Appendix 1 of this chapter and
is the specification of the programming machine. In addition, it
constrains the physical machine’s behavior to have a particular
ISP. The ISP has been discussed earlier in the chapter.

Register-transfer level

The C can also be represented at the register-transfer level by
using PMS. Figure 4 (by DEC) shows the register-transfer level;

Console

Processor state

Doto operations
(arithmetic and Input-output, and

memory logical) secondary memory

I
I I
L - - - - - - -

Fig. 7. DEC PDP-8 function block and PMS diagrams. (a) Processor
functional block diagram. (b) Pc PMS diagram.

128 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

L ('Memory Bus):=

-L MB<O 11) data
[w tpu i broddms;;lZ b r

rTl'Senseuarnplifier <O'lD

M ('Coreustack ;12b;40%w
i I -

7---------

To MpIXl :71

I
I pc:= 1

1
I

- 1 D r 'L ink/L. operotions'll-0: L-1 1

I- I
buffer/MB<O:ll>;flip f lop1 ___

&M('Mernorv address/MA<O:ll> I I

I / +blnstruct ion register decode) I

ILOAC- LOAC x 4 (rotate),
~ ~ A c - L O A C xz (rotate).
'LOAC- LOAC x 4 [rotate).
'AC-ACeMB,AC-ACAMB,
'AC-Carry lAC,MEI.
'AC-ACV D a t ~ ~ s w i t c h e r l

[
1
!

1 , I I

I
1 -
I

I
I MpsVProgrorn caunter/PC<O Il>; f l ip f lop1

(lInstructlon regster /IR<O:Z> ., f lip f lop 1

D ('IR; operations: ?IR-O:IR-M[MA] <O:Z> 11
I '
t - J
I

L"0 Bus1 :=
-L('AC; input,output, 1ZbI-

--cL I'IOuselect<O:5>1:=
[' M E h . E >

-
IOuskipl , (output;
IO-pulre-pl,pP.p4 I

I
K (ISP,Mp.S('I/O bus1.T.console 'Data

T (clock)

I
Inputs t m ~ } ~ [break; M (working;IStoteuregister,l

I T console ('Datauswitchesl-

~ L('requert;direction,cycle-select<0:1> 1- I
-+ifaddress -occepted:word-oount_w: break-statel- 1
- - C L l ' M E ~ O ' l l ~ ; o u t p u t l - I
- Ll'DB-address<O.ll>; inputl- I

I
I T. console I lightsl-

- L('DB-dato <0.11>; input)-

Fig. 8. DEC PDP-8 register-transfer-level PMS diagram.

only registers, operations, and L's are important at this level. We
still lack information about the conditions under which operations
are evoked. Figure 8 is a PMS diagram of Pc-Mp registers. Here
we show considerably more detail (although we do not bother with
electrical pulse voltages and polarities) than in Fig. 4. We declare
the Pc state (including the temporary register) within Pc. The
figure also gives the permissible data operations, D, which are
permitted on the registers. It should be clear from this that the
logical design level for the registers and the operators can easily be
reached. The K logic design cannot be reached until we use the
programming level constraints (ISP), thus defining the conditions
for evoking the data operators.

The core memory. The Mp structure is given in Fig. 8. A more
detailed block diagram which shows the core stack with its twelve

64 x 64 1-bit core planes is needed. Such a diagram, though still
a functional block diagram, takes on some of the aspects of a
circuit diagram because a core memory is largely circuit-level
details. The Mp (Fig. 9) consists of the component units: the two
address decoders (which select 1 each of 64 outputs in the X and
Y axis directions of the coincident current memory); selection
switches (which transform a coincident logic address into a high-
current path to switch the magnetic cores); the 12 inhibit drivers
(which switch a high current or no current into a plane when
either a 0 or 1 is rewritten); 12 sense amplifiers (which take the
induced low sense voltage from a selected core from a plane being
switched or not switched and transform it into a 1 or 0); and the
core stack, an array M[0:7777,](0:11). Since this is the only time
the Mp is mentioned, Fig. 9 also includes the associated circuit-
level hardware needed in the core-memory operation, such as

Chapter 5 I The DEC PDP-8 129

power supplies, timing, and logic signal level conversion amplifiers.
The timing signals are generated within Pc(K) and are shown
together with Pc’s clock in Fig. 10.

The process of reading a word from memory is:

1 A 12-bit selection address is established on the MA(0:ll)
address lines, which is 1 of 10000, (or 4096,,) unique num-
bers. The upper 6 bits, (0:5) , select 1 of 64 groups of Y
addresses and the lower 6 bits, (6:11), select 1 of 64 groups
of X addresses.

The read logic signal is made a 1.

A high-current path flows via the X and Y selection
switches. In each of the X and Y directions 64 x 12 cores

2

3

have selection current. Only one core in each plane is
selected since Ix = Iy = Iswitching/2, and the current at
the selected intersection = Ix + Iy = Iswitching.

4 If a core is switched to 0 (by having Iswitching amperes
through it), then a 1 was present and is read at the output
of the plane (bit) sense amplifiers. A sense amplifier receives
an input from a winding that threads every core of every
bit within a core plane [0:7777,]. All 12 cores of the selected
word are reset to 0. The sense time at which the sense
amplifier is observed is tms (memory strobe), and the strobe
in effect creates hlB t M[MA].

5 The read current is turned off.

- X = Select - High c u r r e n t signals

I
I

I

(01 t I s / 2 1 - 1 5 / 2) 1
Low level winding
(Sense signals) 1

L - - - - - - - - - _ _ _ _ _ - - 2
C u r r e n t direct ion c o n t r o l s F~~~

To
MB data
inputsC0 112

Fig. 9. DEC PDP-8 four-wire coincident current (three dimensions) core-memory-logic block diagram.

130 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

Clock
pulses l(t2), I I (t m $, , I 1 (t l) I , , I (tmd) I (t 2)

Read 1 I (p)
0 .5 1.0 1.5 t ime

Write I I

Inhibit I 1

Memory I (ME- M [M A])
strobe b- Memory cycle -4

Fig. 10. DEC PDP-8 clock and memory timing diagram.

6 The write and inhibit logic signals are turned on. The bit
inhibit signal is present or not, depending on whether a 0
or 1, respectively, is written into a bit.

A high-current path flows via the X and Y selection
switches, but in an opposite direction to the read case (2
above). If a 1 is written, no inhibit current is present, and
the net current in the selected core is --switching. If a
0 is written, the current is -1switching + (Iswitching/2)
and the core remains reset.

The inhibit and write logic signals are turned off, and the
memory cycle is completed.

7

8

Registers and operations. As Fig. 8 shows, the registers in the Pc
cannot be uniquely assigned to a single function. In a minimal
machine such as the PDP-8, functional separation is not economi-
cal. Thus there are not completely distinct registers and transfer
paths for memory, arithmetic, and program and instruction flow.
(This sharing complicates understanding of the machine.) How-
ever, Fig. 8 clarifies the structure considerably by defining all the
registers in Pc (including temporaries). For example, the Memory
Buffer/MB is used to hold the word being read from or written to
Mp. MB also holds one of the operands for binary operations (for
example, AC c AC A MB). MB is also used as an extension of
the Instruction Register/IR during the instruction interpretation.

The additional registers, not in the ISP, are:

Memory Buffer/MB(O:ll) holds memory data,
instruction, and oper-
ands

holds address of word
in Mp being accessed

Instruction Register/IR(O:2) holds the value of
current instruction
being performed

Memory Address/MA(O:ll)

State-register,

Fetch/F : = (State-register = 0)

Defer/D/Indirect
:= (State-register = 1)

Execute/E
:= (State-register = 2)

a ternary state register
holding the major
state of memory cycle
being performed

memory cycle to
fetch instruction

memory cycle to get
address of operand

memory cycle to fetch
(store) operand and
execute the instruc-
tion

Figure 8 has been concerned with the static definition (or
declaration) of the information paths, the operations, and state.
The ISP interpretation (Appendix 1) is the specification for the
physical machine’s behavior. As the temporary hardware registers
are added, a more detailed ISP definition could be given in terms
of time and temporary registers. Instead, we give a state diagram
(Fig. 11) to define the actual Pc which is constrained by both the
ISP registers, the temporary registers implied by the implementa-
tion, and time. The relationship among the state diagram, the ISP
description, and the logic is shown in the hierarchy of Fig. 6. In
the relationships of the figures, we observe that the ISP definition
does not have all the necessary detail for fully defining a physical
Pc. The physical Pc is constrained by actual hardware logic and
lower-level details even at the circuit level. For example, a core
memory is read by a destructive process and requires a temporary
register (MB) to hold the value being rewritten. This is not repre-
sentable within a single ISP language statement since we define
only the nondestructive transfer t, but it can be considered as
the two parallel operations MB t M[MA]; M[MA] c 0. The
problem of explaining rewriting of core using ISP is also difficult,
because explicit time is not in the ISP language (although we can
define clock events, or at least relative time).

The state diagram (Fig. 11) describes the implementation be-
havior using the registers and register operations (Fig. 8) and the
temporary registers declared above.

The implementation is fundamentally Mp-timing-based, as we
see from both the state diagram and the times when the four clock
signals are generated (Fig. 10). Thus there are three (State-regis-
ter = O,1,2) x 4 (clock), that is, 12 major states, in the implemen-
tation. We use the IR to obtain two more states, F2b and F3b,

Chapter 5 I The DEC PDP-8 131

"Fetch" instruction memory

ms-I ME- M [MA] ; IR-IR V M [MA] <0:2> 1 ;

l jmpvirnsl
(IR=lO'#'I-;

5:11>- MB<5:ll>;

E<4> -MA<0:4>-0 1 ;

Defer"lindirect1 nddress 8 xecut:;;; ememory
Memory cycle

tms-(MB-M[MA]1. (tms A I isz vtod v and))-I
ME- M [MA] 1 ',

t1-(t1-(

It05 MArl7)- I
ME-MB +'I 11 ;

t m d 4 I MA-ME);

d

AC-0)); , M B 9 7 7 7) 4
Pc-Pc+~lll;

Tjmp .MB<3> 1-1

irns-(
PC<S'lD-MB<5.1v;
ME-PC;
~MB<4>-PC<0.9-01:

state,

(t o EO1
O;Stote, register- 0

(t o EO1

Note: State diagram does not include
Doto Break, Interrupt, ond EA€

Fig. 11. DEC PDP-8 Pc state diagram.

for the description. The State-register values 0, 1, and 2 corre-
spond to fetching, deferring (indirect addressing, i.e., fetching an
operand address), and executing (fetching or storing data, then
executing) the instruction. The state diagram does not describe
the Extended Arithmetic Element/EAE operation, the interrupt
state, and the data break states (these add 12 more states). The
initialization procedure, including the T.console state diagram, is
also not given. One should observe that when t2 occurs at the
beginning of the memory cycle, a new State-register value is
selected. The State-register value is always held for the remainder
of the cycle; Le., only the sequences (FO + F1+ F2 + F3 or
DO + D1+ D2 -+ D3 or EO -+ E l + E2 -+ E3) are permitted.

Figure 8 alludes to Pc(K), that is, the sequential network used
for controlling Pc. The inputs and the present state (including
clocks) determine the operations to be issued on the registers.

Q
/tM2Bfb;IR-O;

Stoteuregister-Ol; (to FOI

p s v dco v
I S Z I - L I
M [MAI-MEN.

Logic design level (registers and data operations)

Proceeding from the register-transfer and ISP descriptions, the
next level of detail is the logic module. Typical of the level is the
1-bit logic module for an accumulator bit, AC(j), illustrated in
Fig. 12. The horizontal data inputs in the figure are to the logic
module from AC(j), MB(j), IO Bus(j), and Data,switch(j). The
vertical control signal inputs command the register operations (Le.,
the transfers); they are labeled by their respective ISP operations
(for example, AC c MB A AC, AC c AC x 2 {rotate}). The
sequential network Pc(K) (Fig. 8) generates these control signal
inputs.

Logic design level (Pc control, Pc(K) sequential network)

The output signals from the Pc(K) (Fig. 8) can be generated in
a straightforward fashion by formulating the boolean expressions

132 Pari 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

Bus t o each b i t of AC
r

-AC<J>
MB<J >

AC<J>

LAC-AC/2 (r o t a t e } ,
'AC- AC x 2 { r o t a + e) , LAC-Carry (AC,MB)

'AC-AC t 1 is formed by AC<12> carry input

Fig. 12. DEC PDP-8 AC(J) bit register-transfer logic diagram.

'AC-0 := (

(t l A (1R = 111) A (7 MB<3> A MB<4> A 7 MB<6>) A (State,register=O)) v
(t l A (I R = 111) A (MB<3> A _I MB<ll> A MB<4>) A (State-register=O)) v
(t l A (I R =111) A (MB<3> n MB<ll> A M B < ~ >) A (Stateuregis ter=O)) 'v
(t l A (I R =011) A (State-register. 2)))

(t l A (((State-register = 0) A (I R =111) A MB<4> A (MB<3> v M B < ~ >)) v
((State-register = 2) A (I R =OH))))

Logic equation for 'AC- 0

,IR<O>
IR<1>
R < 2 >

(State-register = 2)

Logic diagram for AC-0

'This term is derived from E A E and is not on the s t a t e diagram

Fig. 13. DEC PDP-8 Pc(K) 'AC t 0 signal-logic equations and diagram.

-15V

Direct Direct
clear DirectA set NOR ~ o u ~ p u t

Direct o u t p u t
clear - t l O V

Flip-f lop circuit Combinatorial logic equivalent
of f l ip-f lop

Table of circuit input-output

1 0 Direct Direct 1 0
s e t clear

o u t p u t s (a t t) Inputs Outputs (a t t+)'

0 -3 -3 -3 0 -3
-3 0 -3 -3 -3 0
-3 0 -3 0 - 3 0
0 -3 -3 0 -3 0

-3 0 0 -3 0 - 3
0 -3 0 -3 0 -3

set-clear
f l i p - f lop

Direct set-clear flip-flop
sequential logic element

Table of f l ip-f lop input-output

1 0 0 Direct Direct 1
s e t clear

1 0 0 0 1 0
0 1 0 0 0 1
0 1 0 1 0 1
1 0 0 1 0 1
0 1 1 0 1 0
1 0 1 0 4 0

Inputs o u t p u t s (a t t+1' outputs (a t f)

'Note; This is not an "ideal" sequential circuit element, because there IS no delay in the output.

Fig. 14. DEC PDP-8 sequential-element circuit and logic diagrams.

Chapter 5 1 The DEC PDP-8 133

-3 0 0 0
- 3 0 0 1
- 3 0 1 0
-3 0 1 1
-3 1 0 0
-3 1 0 1
-3 1 1 0
0 1 1 1

-15 VOI t S

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
0 0 0 0

- 3volts
-15vo1ts

i Inputs

lnoui

NAND logic element

Input

NOR logic element

Node

Multiple input inverter circuit

Table of circuit Table of NAND Table of NOR
behavior behavior behavior

Input 1 Output Input 1 Output Input I Output
1 2 3 1 2 3 1 2 3

0 0 0
0 0 - 3
0 - 3 0
0 -3 -3

-3 0 0
-3 0 - 3
-3 -3 0
-3 -3 -3

Fig. 15. DEC PDP-8 combinational element circuit and logic diagrams.

directly from the state diagram in Fig. 11. For example, the
AC t 0 control signal is expressed algebraically and with a com-
binatorial network in Fig. 13. Obviously these boolean output
control signals are functions which include the clock, the
State-register, and the states of the arithmetic registers (for
example, A = 0, L = 0, etc.). The expressions should be factored
and minimized so as to reduce the hardware cost of the con-
trol for the interpreter. Although we are rather cavalier about
Pc(K), it constitutes about one-half the logic within Pc.

Circuit level

The final level of description is the circuits which form the logic
functions of storage (flip-flops) and gating (NAND gates). Figures
14 and 15 illustrate some of these logic devices in detail.

In Fig. 14 a direct set and direct clear flip-flop, a sequential-
logic element, is described in terms of circuit implementation,
combinational logic equivalent, a table of its behavior, and its
algebraic behavior. Note that this is not an ideal element, be-
cause it has no delay and responds directly and immediately to
an input. Some idealized sequential logic elements are used in
the PDP-8 (but not illustrated), including the RS (Reset-Set),
T(Trigger), JK, and D(De1ay). A delay in the flip-flops makes them
behave in the same way as the ideal primitives in sequential-
circuit theory. The outputs require a series delay, At, such that,
if the inputs change at time t, the outputs will not change until
t + At. In fact, the PDP-8 uses capacitor-diode gates at the flip-
flop inputs to delay the inputs.

Figure 15 illustrates the combinatorial logic elements used in
the PDP-8. The circuit selection is limited to the inverter circuit
with single or multiple inputs. These are more familiarly called
NAND gates or NOR gates, depending on whether one uses posi-
tive and/or negative logic-level definitions.

Conclusion

We could continue to discuss the behavior of the transistor as it
is used in these switching-circuit primitives but will leave that
to books on semiconductor electronics and physics. It is hoped
that the student has gained a grasp of how to think about the
hierarchical decomposition of computers into particular levels of
analysis (and synthesis).

134 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION

Pr S t n t e

A C d : I I > ,

L

P C d : I I >

Run

I n t e r r u p t - s t a t e

Io -pu tse - l ; I O S u l s e J ; IO,pulse,4

A p p e n d i x 1

O E C P D P - 8 ISP D e s c r i p t i o n

Accnmulator

L i n k h i t / k C eriensioq ;'or overylcw and carry
Progr'an Counter

I i~hev. ?c I s i n t e m r e t i n g ins t rur t ions o r "runn:ng"

1 ohen fc can be i n t e r r u p t e d ; under programmed control

I3 pulses t o I O ?evi?es

I$ S t a t e
Es tended mernorg is not i r c l u d e j.

M[O:777i8l<0:ll>
Page,O[O: 17i81d: I I > := M [O : 177 Id: I I >

Auto,index[O: 7 l . a : I I > := Page-0 [IO , I 7 Id: I I > 8' 8

s m c i a l array of directlg addressed memory r e g i s t e r s

s-pecial arrap when a ldressed i n d i r e c t l y , i s incrernented bg
8

Fc ('o~soie YCtnte
Keys for start, step, coy,t-'nue, ezmiv;e (loa? frw memoc4), and deposii- (s t o r e i n merory! are not inc luded .

Data s w i t c h e s d : l l >

I n s t m e t i o n Format

i n s t r u c t i o n / i i 0 : l l >

o p 4 : 2;

i n d i rect,b i t / i b

page,O,bi t / p

page-add ress<O : 6>

t h i s,page<O: 4>
P C ' < O : I I >

IO,select<O:5>

io,pl,bit

i o,pZ,b i t

io,p4,b i t

s ma

s za

sn 1

data enterec' via console

:= i 4 : 2 ; op code
: = i<3; 0 , d i r e c t ; : ind irec t rnemcry redfererce
: = i<4> 0 se lec ts page 0; 1 s e l e c t s t h i s page
:= i<S:Il;
:= P C ' d : 4 >

: = (PC<O:II> - 1)

: = i<3:8> s e l e c t s a 1" or ?.'s dev ice
: = i

: = i < I O >

: = id>

:= i<5> w h i t for> ski? on m".yus A?, operate 2 g ~ o u p

:= i<6> h i t r o r s k i p on ze?o AC

: = i<7> b i t .+'or s k i p ox n m zero Link

t h e s e 3 bits con t ro l the s e l e c t i v e genera t ion o f - 3 v o l t s ,
0 . 4 1~s p u l s e s t o I/O devi.-es

F-'.'ectiue _ . Ai:.iress (' n l c ~ , Z a t l c n ,Process

z<O:II> := (

7i b -> z " ;

i b A (l o 8 c z" i 178) i (M[z"] +M[z"] + 1 ; n e x t) ;

i b 2 M[z"])
z'<O:ll; := (- i b i z " ; i b - iM [z "])

z"<O:Il> := (page,O,bit i this,pageopage,address;

,page,O,bi t -) Onpage-address)

p microcoded i n s t r u c t i o n or i n s t r u c t i o n b i t (s) wi th in an i n s t r u c t i o n

Chapter 5 1 The DEC PDP-8 135

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

n i .rterpri . tati(n P'rocess

Run A ((n ter rupt , request h I n t e r r u p t - s t a t e) -> (

i n s t r u c t i o n < - M [P C] ; PC <-PC + I ; n e x t

i ns t ruc t i on ,execu t ion) ;

Run I n t e r r u p t - r e q u e s t A I n t e r r u p t u s l a t e -> (

M[O] <-PC; I n t e r r u p t u s t a l e t o ; PC <- I)

ir ,stru. . t;o?. .;?t am/' ins t r . t c t ion E x e r ~ ~ t i o r . rrocess

I n s t r ~ c t i o n ~ e x e c u t i o n := (

and (:= op = 0) i (AC t AC A M [z]) ;

t a d (: = op = I) -) (LOAC c - LOAC + M [z l) ;

i s z (: = op = 2) -) (M [r '] <-M[r l + I ; n e x t

(M [z ' l = 0) + (PC t P C t I)) :
dca (:= op = 3) 4 (M l r l c AC; AC t 0) ;

jrns (:= op = 4) 4 (M[z] + P C ; next PC z + I) ;

jmp

i o t

(: = op = 5) -) (PC t 2) ;

(:= op = 6) 4 (
io,pl,bit - > IO,pulse,l c I ; n e x t

io42,b i t + IO,pulse,Z < - I ; nex t

io,pb,bit - > IO,pulse,b i- I) ;

opr (: = op = 7) -,Operate,execution

)

l o g i c a l a d

two Is complement aJd

ir.iiex and sk ip if zero

the operiitc i n s i r w e t i o n is k0.w I below
end I n s t r u c t i o n e w c u t i o n

r a t e insti.uc: ions: operate grour I , operaie g m u p 2, and csi e arit ,*met;c ure ric'ined as a separate

Operate,execution := (

c l a (:= i<4> = I) i (AC c- 0) ;

opr,l (: = i<3> = 0) + (operate groun I

c11 (:= i<C = 1) -> (L <. 0) ; n e x t p clear. l i n k

cma (: = id> = I) -> (AC <-7 AC): u complernmt A C

cml (: = i<7> = I) + (L < - ? L) ; nex t IL compZernent L
i a c (: = i<II> = I) -> (L W C r - L W C + I) ; n e x t u. ircrement PC

r a l (:= i<8:10> = 2) + (Ln4C + L m C x 2 { r o t a t e)) ; u r o t a t e left
r t l

rar (: = i < E : l O > = 4) --f (LOAC t L O A C / 2 (r o t a t e)) ; u. ro ta te r i g h t
r t r (: = i < 8 : l O > = 5) + (LOAC t L O A C / Z 2 { r o t a t e])) ;

clear Lr. (' o v ~ n LO a l l operate <ns truc t ions .

(: = i < B : l O > = 3) - ' (LoAC <-LOAC X 2' (r o t a t e ?) ; u r o t a t e t w i c e l e f t

u. r o t a t e tw ice raight

o p r d (:= i<3,11> = 10) + (operate g r o u p 2

li. PC',.- ship test 51.ip c o n d i t i o n C (i d > = 1) -, (PC t P C + 1) ; n e x t

s k i p c o n d i t i o n := ((m a A (AC < 0)) v' (s z a A (AC = 0)) \ I (s n l A L))

11 ''rrr" switche?
u h a l t or stop

n s r (: = i<9 = 1) + (AC t AC V Data s w i t c h e s) ;

h l t (: = i<IO:,= I) -> (Run e 0)) :

FAE (:= i<3,lI> = 1 1) + EAF,instruction,execution) optinvln7 FA

136 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

KT and W s Ztate
Fach K map have ariy or a l l of the following registers. There can he U P to 64 o p t i o n a l P I S .

I n p u t d a t a [O :77 8 1 4 : 1 1>

O ~ t p u t ~ a t a [O : 7 7 ~ 1 4 : 1 1 > 64 outpul hu.f.fws

I O d k i p f l a g LO: 7781
IO,interrupt,reques t [O: 77 1 1 s i p n i , f i e s a reauest . 1.f interrunt,qtate = 1 , then ai

64 innut b u f f e r s

64 t e s t conditions

in terrunt occurs. 8

o,f a l l reouests .from each IO device ''or ,! 1 n t e r rup t ,reques t : = (

max(I0 - i nterrupt,reques t [o : n 8 3))

Extended Ari thmetic Eiement, EAF (optional)
Provides additional ari thmetic ins t ruc t ions (or operators) inclucliw x, /, normalize, l op ica l .shi,Ct and ari thmet?c shi.ft,.

EAE S ta te

M Q Q : 11> ? Q l t i r l i e r Quotien i

SC<D:L> S h i f t rounter
Ins t ruc t ion Format and Data

m d s d : 11>

s a : & > := rnds<7: l l> shift count Darameter

Ins t ruc t ion Se t f o r t'AE

EAE,instruction&xecution := (n e x t

mqa (: = i<5>) + (AC t A C v M Q) ; P.0 i n t o P C

sca (:= i<6>) + (AC c A C V S C) : sc i n t o Pc
rnql (:= i<7;) 3 (MQ t A C ; AC t o) : n e x t AC into pdO, c lear I C

Note only one o f nmi, s h l , asr , l s r , muy, or &Vi can he p iven at a time.

i<8:10> = oom + ; IO ooerntion
7 nmi "(mds t M [P C] ; PC c P C + 1) ; n e x t

muy (:= i<8:10> = 2) --f (LOACOMQ t MQ x mds; S C t o) mu 2 t i p 7 !.I
d v i (:= i<8: l O > = 3) + (MQ t L o A C o M O / m d s ; d i v i r7e

L o A C c L o A C o M Q mod mds: SC c 0) :

nmi (:= i<8:10; = 4) + (ACoMQ t n o r m a l i z e (A C O M @) ; nomal iae (AC,M0) ?Y to .T

SC t normal i ze-exponent (ACOMQ)) ;

s h l (: = i<8: lO> = 5) + (L o A C o M Q t L o A C o M Q x Z S + l : SC t o) ;
a s r (:= i<8:10> = 6) - (L o A C o M Q t L o A C o M Q / 2'+l: SC <-O):
I s r (:= i<8:10> = 7) + (L o A C o M Q t L o A C o M Q / 2 s + 1 { l o q i c a l) ;

s h i , f t left
sh?:,ft r i g h t

loqical s h i , f t

sc +-0)
1 eniJ i n s t r u c t i o n execution

Chapter 6

The Whirlwind I computer1

R . R . Everett

Project Whirlwind is a high-speed computer activity sponsored
at the Digital Computer Laboratory, formerly a part of the Servo-
mechanisms Laboratory, of the Massachusetts Institute of Tech-
nology (M.I.T.) by the Office of Naval Research (O.N.R.) and the
United States Air Force. The project began in 1945 with the
assignment of building a high-quality real-time aircraft simulator.
Historically, the project has always been primarily interested in
the fields of real-time simulation and control; but since about the

7 most of its efforts have been devoted to the
design and construction of the digital computer known as Whirl-
wind I (WWI). This computer has been in operation for about
1 year and an increasing proportion of project effort now is going
into application studies.

Applications for digital computers are found in many branches
of science, engineering, and business. Although any modern gen-
eral-purpose digital computer can be applied to all these fields,
a machine is generally designed to be most suited to some particu-
lar area. Whirlwind I was designed for use in control and simula-
tion work such as air traffic control, industrial process control, and
aircraft simulation. This does not mean that Whirlwind will not
be used on applications other than control. About one-half the
available computing time for the next year will be assigned to
engineering and scientific calculation including research in such
uses supported by the O.N.R. through the M.I.T. Committee on
Machine Methods for Computation.

These control and simulation problems result in a specialized
emphasis on computer design.

Short register length

WWI has 16 binary digits and the control problems are usually
very simple mathematically. Furthermore, the computer is almost
always part of a feedback rather than an open-ended system.
Consequently, roundoff errors are seldom troublesome and the
register length can be shortened to something comparable to the
sensitivity of the physical quantities involved, perhaps five decimal
places or less.

WWI has a register length of 16 binary digits including sign
or about four and one-half decimals. The register length was
lAIEE-IRE Conf., 70-74 (1951)

chosen as the minimum that would provide a usable single-address
order, in this case five binary digits for instruction and 11 binary
digits for address. In a future machine we would probably increase
this register length to 20 or 24 binary digits to get additional order
flexibility; the increased numerical precision is less important.

For scientific and engineering calculation, greater than 16-digit
precision is often required. There is available a set of multiple-
length and floating point subroutines which make the use of
greater precision very easy. It is true that these subroutines are
slow, bringing effective machine speed down to about that ob-
tained by acoustic memory machines. It is much more efficient
occasionally to waste computing time this way than continuously
to waste a large part of the storage and computing equipment of
the machine by providing an unnecessarily long register.

High operating speed

WWI performs 20,000 single-address operations per second. Con-
trol and simulation problems require very high speeds. The neces-
sary calculations must be carried out in real time; the more com-
plex the controlled system is, the faster the computer must be.
There is no practical upper limit to the computing speed that
could be used if available.

Where the problems are large enough, and these problems are,
one high-speed machine is much better than two simpler machines
of half the speed. Communication between machines presents
many of the same problem that communication between human
beings presents.

Great effort was put into WWI to obtain high speed. The target
speed was 50,000 single-address operations per second, and all
parts of the machine except storage meet this requirement. The
actual WWI present operating speed of 20,000 single-address
operations per second is on the lower edge of the desired speed
range.

Large internal storage

WWI now has 1,280 registers. A large amount of high-speed in-
ternal storage is needed since it is not in general possible to use
slow auxiliary storage because of the time factor. In many cases
a magnetic drum can be useful since its access time is short com-

137

138 Part 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

Order type

Numbers

Basic pulse

repetition
frequency

pared to the response times of real systems. Even with a drum
there is considerable loss of computing and programming efficiency
due to shuffling information back and forth between drum and
computer.

WWI is designed for 2,048 registers of storage. Until recently
there has been available only about 300 registers. This number,
while small, has been adequate for much useful work. Very re-
cently a second bank of new-model storage tubes has been added.
These new tubes operate at 1,024 spots per tube bringing the total
WWI storage to 1,280 registers. These tubes have been in the
computer and under test for 2 months and in active use for about
2 weeks. In the next few months the tubes in the first bank will
be replaced by new-model storage tubes bringing the total storage
to 2,048. This number is on the lower end of what the project
considers desirable. What the computer business needs, has
needed, and will probably always need is a bigger, better, and
faster storage device.

Extreme reliability

In a system where much valuable property and perhaps many
human lives are dependent on the proper operation of the com-
puting equipment, failures must be very rare. Furthermore, check-
ing alone, however complete, is inadequate. It is not enough
merely to know that the equipment has made an error. It is very
unlikely that a man, presumably not too well suited to the work
during normal conditions, can handle the situation in an emer-
gency. Multiple machines with majority rule seem to be the best
answer. Self-correcting machines are a possibility but appear to
be too complicated to compete, especially as they provide no
standby protection.

The characteristics of the Whirlwind I computer may be re-
capitulated as follows:

Register length

Speed 20,000 single-address operations per

16 binary digits, parallel

second

Storage capacity Originally 256 registers
Recently 320 registers
Presently 1,280 registers
Target 2,048 registers

Single-address, one order per word

Fixed point, 9’s complement

1 megacycle

2 megacycles (arithmetic element only)

Tube count 5,000, mostly single pentodes

Crystal count 11,000

There are 32 possible operations, of which about 27 are as-
signed. They are of the usual types: addition, subtraction, multi-
plication, division, shifting by an arbitrary number of columns,
transfer of all or parts of words, subprogram, and conditional
subprogram. There are terminal equipment control orders and
there are some special orders for facilitating double-length and
floating-point operations.

One way to increase the effective speed of a machine is to
provide built-in facilities for operations that occur frequently in
the problems of interest. An example is an automatic co-ordinate
transformation order. The addition of such facilities does not affect
the general-purpose nature of the machine. The machine retains
its old flexibility but becomes faster and more suited to a certain
class of problems.

From March 14, 1951, at which time we began to keep detailed
records, until November 22, 1951 a total of 950 hours of computer
time were scheduled for applications use. The machine has been
running on two shifts or a total of about 3,000 hours during this
interval. The two-thirds time not used for applications has been
used for machine improvement, adding equipment, and preventive
maintenance.

Of the 950 hours available, 500 have been used by the scientific
and engineering calculation group, the rest for control studies. The
limited storage available until recently has been admittedly a
serious handicap to the scientific and engineering applications
people. There has not been room in storage for the lengthy sub-
routines necessary for convenient use of the machine. The largest
part of their time has been spent in training, in setting up pro-
cedures, and in preparing a library of subroutines.

A partial list of the actual problems carried out by the group
includes:

An industrial production problem for the Harvard Eco-
nomics School

Magnetic flux density study for our magnetic storage work

Oil reservoir depletion studies

Ultra-high frequency television channel allocation investi-
gation for Dumont

Optical constants of thin metal films

Computation of autocorrelation coefficients

Tape generation for a digitally-controlled milling machine

Chapter 6 1 The Whirlwind I computer 139

A 1h

\I I, I1 \I

The scientific and engineering applications time on Whirlwind
I has been organized in a manner patterned after that originated
by Dr. Wilkes at EDSAC. The group of programmers and mathe-
maticians assigned to WWI assist users in setting up their own
problems. Small problems requiring only a few seconds or minutes
of computer time are encouraged. Applications time is assigned
in 1-hour pieces two or three times a day. No program debugging
is allowed on the machine. Program errors are deduced by the
programmer from printed lists of results, storage contents, or order
sequences as previously requested from the machine operator. The
programmer then corrects his program which is rerun for him
within a day or perhaps within a few hours.

Every effort is made to reduce the time-consuming job of print-
ing tabulated results. In many cases a user desires large amounts
of tabulated data only because he doesn’t really know what an-
swers he wants and so asks for everything. Such users are encour-
aged to ask only for pertinent results in the form of numbers or
curves plotted by the machine on a cathode-ray tube and auto-
matically photographed. If these results prove inadequate or the
user gets a better idea of his needs, he is allowed to rerun his
program, again asking only for what appear to be significant re-
sults. Figure 1 shows a sample curve plotted by the computing
machine showing calibrated axes and decimal intercepts.

*’ DIGIT TRAWFER BUS

Fig. 1. Sample computer output.

\I

INPUT

~ ~

Fig. 2. Simplified computer block diagram. - d bLi c13 v1 6

OUTPUT

WWI system layout

Figure 2 shows the major parts of any computer such as WWI.
The major elements of the computer communicate with each other
via a central bus system.

WWI is basically a simple, straightforward, standard machine
of the all-parallel type. Unfortunately, the simple concept often
becomes complicated in execution, and this is true here. WW’s
control has been complicated by the decision to keep it completely
flexible, the arithmetic element by the need for high speed, the
storage by the use of electrostatic storage tubes, the terminal
equipment by the diversity of input and output media needed.

Control

The WW control is divided into several parts, as shown in Fig. 3.

Central control

The central control of the machine is the master source of control
pulses. When necessary the central control allows one of the other
controls to function. In general there is no overlapping of control
operation; except for terminal equipment control, only one of the
controls is in operation at any one time.

Storage control

Storage control generates the sequence of pulses and gates that
operate the storage tubes. Central control instructs the storage
control either to read or to write.

Arithmetic control

Arithmetic control carries out the details of the more complex
arithmetic operations such as multiplication and division. The

140 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

CONTROL

r--------I
I CENTRAL CONTROL I
I

ARITHMETIC

TERMINAL
EOUIP.

Fig. 3. Control.

setup of these operations plus the complete controlling of the
simpler operations such as addition are carried out by central
control.

Terminal equipment control

Terminal equipment control generates the necessary control
pulses, delay times, and interlocks for the various terminal equip-
ment units.

Program counter

The program counter which keeps track of the address of the next
order to be carried out is considered as part of control. This is
an 11-binary counter with provision for reading to the bus.

Most of the functions of these subsidiary controls could be
combined with the central control. The major reason they are not
is that they were designed at different times. The arithmetic ele-
ment and its control came first, followed by central control. At
the time central control was designed, the necessary characteristics
of storage control were unknown. In fact, the machine was de-
signed so that any parallel high-speed storage could be used. The
form of terminal equipment control was also unknown at this time.
Since flexibility was a prime specification, it was felt preferable
to build separate flexible controls for the various parts of the
computer than to try to combine all the needed flexibility in one
central control.

In a new machine we would attempt to combine control func-
tions where possible, hoping to have enough prior knowledge

about component needs to eliminate subsidiary controls com-
pletely. We would still insist on a large degree of control flexibility.

Muster clock

The master clock consists of an oscillator, pulse shaper and divider
that generate 1- and 2-megacycle clock pulses, and a clock pulse
control that distributes these clock pulses to the various controls
in the machine. It is this unit that determines which of the sub-
sidiary controls actually is controlling the machine. This unit also
stops and starts the machine and provides for push-button opera-
tion.

Operation control

The operation control, see Fig. 4, was designed for maximum
flexibility and minimum number of operationdigits, and, conse-
quently, minimum register length. It is of the completely decoding

type.
The operation switch is a 32-position crystal matrix switch that

receives the 5-bit instruction from the bus and in turn selects one
of 32 output lines corresponding to the 32 built-in operations.

There are 120 gate tubes on the output of the operation control.
Pulses on the 120 output lines go to the gate drivers, pulse drivers,
and control flip-flops all over the machine; 120 is a generous
number. The suppressors of these gate tubes are connected to
vertical wires that cross the 32 output lines from the operation
switch. Crystals are inserted at the desired junctions to turn on
those gate tubes that are to be used for any operation.

I 32-P:TlON

SWITCH

I I I I

Fig. 4. Operation control.

Chapter 6 1 The Whirlwind I computer 141

The time pulse distributor consists of an 8-position switch
driven from a three binary-digit counter. Clock pulses at the input
are distributed in sequence on the eight output lines. The control
grids of the output gate tubes are connected to these timing lines.
The output of the operation control is thus 120 control lines on
each of which can appear a sequence of pulses for any combination
of orders at any combination of times.

Central control

The Central Control of the machine is shown in Fig. 5 . The control
switch is in the foreground with the operation matrix to the right.

Electrostatic storage

The electrostatic storage shown in Fig. 6 consists of two banks
of 16 storage tubes each. There is a pair of 32-position decoders

Fig. 6. View of electrostatic storage.

set up by address digits read in from the bus. There is a storage
control that generates the sequence of pulses needed to operate
the gate generators, et cetera. A radio frequency pulser generates
a high power 10-megacycle pulse for readout.

Each digit column contains, besides the storage tubes, write
plus and write minus gate generators and a signal plate gate
generator for each tube. Ten-megacycle grid pulses are used for
readout in order to get the required discrimination between the
fractional volt readout pulses and the 100-volt signal plate gates.
For each storage tube there is a 10-megacycle amplifier, phase-
sensitive detector and gate tube, feeding into the program register.
The program register is used for communicating with the storage
tubes. Information read out of the tubes appears in the program
register. Information to be written into the tubes must be placed

Fig. 5. View of central control. LJ h, r \ (.L, \-v 4 in the program register.

142 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

m MULTIPLICAND

w CLOCK I PULSE s

Fig. 7. Arithmetic element.

Arithmetic element

The arithmetic element, see Fig. 7 , consists of three registers, a
counter, and a control.

The first register is an accumulator (AC) which actually consists
of a partial-sum or adding register and a carry register. The accu-
mulator holds the product during multiplication.

The second or A-register holds the multiplicand during multi-
plication. All numbers entering the arithmetic element do so
through AR.

The third or B-register holds the multiplier during multiplica-
tion. The accnmulator and B-register shift right or left. A high-speed
carry is provided for addition. Subtraction is by 9’s complement
and end-around-carry. Multiplication is by successive additions,
division by successive subtractions, and shift orders provide for
shifting right or left by an arbitrary number of steps, with or
without roundoff.

The arithmetic element is straightforward except for a few
special orders and the high speed at which it operates. Addition
takes 3 microseconds complete with carry; multiplication, 16
microseconds average including sign correction.

In Fig. 8 are shown several digits of the arithmetic element.
The large panels are accumulator digits. Above the accumulator
is the B-register, below it the A-register.

Test control

Test control, shown in Fig. 9, is used at present both for operating
and for trouble shooting the computer. The control includes:

Power supply control and meters.

Neon indicators for all flip-flops in the machine.

Switches for setting up special conditions.

Manual intervention switches.

Oscilloscopes for viewing wave forms. A probe and amplifier
system allows viewing any wave form in the computer on
one scope at test control.

Test equipment to provide synchronizing, stop, or delay
pulses at any step of any order of a program, allowing
viewing wave forms on the fly anywhere in the machine.

An important part of the test facilities is the test storage, a
group of 32 toggle-switch registers plus five flip-flop registers that
can be inserted in place of any five of the toggle-switch registers.
This storage has proved invaluable not only for testing control and

Fig. 8. View of arithmetic element. . i d ~\L.-I[r c(

Chapter 6 I The Whirlwind I computer 143

Fig. 9. View of test control. - L r w w \ p G

arithmetic element before electrostatic storage was available but
also for testing electrostatic storage itself. When not in use for
test purposes test storage earns its keep as part of the terminal
equipment system. The toggle-switches hold a standard read-in
program; the flip-flop registers are used as in-out registers for
special purposes.

Checking

Logical checking facilities built into WWI are rather inconsistent.
A complete bus transfer checking system has been provided, dupli-
cate checking of some terminal equipment is permitted, but little
else is thoroughly checked. We felt that it was worthwhile to
thoroughly check some substantial portion of the machine. This
portion would then serve as a prototype for studying the tube
circuitry used throughout the machine. We did not feel it was
worthwhile to check all the machine, a procedure that requires
a great deal of added equipment and logical complexity plus a
substantial loss in computing speed.

Operating experience has shown us that it is not worthwhile
to provide detailed logical checking of a machine. In a new
machine we would leave out the transfer checking. The amount of
information and security given by the detailed checking system is
not enough to warrant the expense of building and maintaining it.

This decision is based on the expectation that a computing
machine should operate 95 per cent of total time or better and
that the average time between random failures should be of the
order of 5 to 10 hours or approximately IO9 operations.

In our opinion the way to achieve the extremely high reliability
needed in some real-time control problems is to provide three or
more identical but distinct machines, thus obtaining error correc-
tion as well as detection, plus such features as standby, safety, and
damage control. Even so the failure probability of each machine
must be kept low by proper design, marginal checking, and pre-
ventive maintenance.

Extremely high reliability means a reliability far beyond that
achieved in existing machines and not conveniently represented
as a per cent. Consider a system consisting of three machines, each
operable 98 per cent of the time and each averaging 10 hours
between random errors.

One machine will be out of operation y2 hour per day.
Two machines will be out of operation '/4 hour per month.
All three machines will be out of operation 4 minutes per year.

Furthermore undetected random errors might occur on the aver-
age of once a year. Such reliability is needed in some systems.

Our decision to omit detailed checking does not extend to
checking devices intended to detect programming errors. Devices
to check for overflow from the arithmetic element or for non-
existent order configurations are necessary. Programmers make
many mistakes. Techniques for dealing with programming errors
are very important and need future development.

Terminal equipment

At the present time, Whirlwind is using the following terminal
equipment:

A photoelectric paper tape reader

Mechanical paper tape readers and punches

Mechanical typewriters

Oscilloscope displays 5 to 16 inches in diameter with phos-
phors of various persistencies including a computer-con-
trolled scope camera

Inputs from various analogue equipments needed for control
studies

Outputs to analogue equipment

To be added during the next year:

1 Magnetic Tape (units by Raytheon). One such unit is now
being integrated with machine.

Magnetic drums (units by Engineering Research Associates,
Inc.).

Many more analogue inputs and outputs.

2

3

144 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

This great complexity of terminal equipment requires a flexible
switching system. There is a single in-out register (IOR) through
which most of the data passes.

There is a switch which is set up by an order to select the
desired piece of terminal equipment. Other orders put data into
IOR or remove data from IOR. The in-out control provides the
necessary control pulses to go with each type of equipment. In

general the computer continues to run during terminal equipment
wait times; suitable interlocks are provided to prevent trouble.
This complete equipment has not yet been fully installed.

References

whirlwind: EverR51; SerrR62; TaylN51.
EdSAC: SamuA57; WilkM56.

Chapter 6 I The Whirlwind I computer 145

APPENDIX 1 WHIRLWIND I INSTRUCTION CODE'

Note: In operations mr, mh, dv, sir, srr, srh, sf, the C(BR) is assumed to be
the magnitude of the least significant part of AC + BR. For the ab and dm oper-
ations, the BR is treated just as any storage register.

Whirlwind I Instruction Code came from "Comprehensive System Manual, A
System of Automatic Coding for the Whirlwind Computer," published by Massa.
chusetts Institute of Technology, Digital Computer Laboratory, Cambridge, Mass.

Some aspects of the logical design of
a control computer: a case study1

R. L. Alonso / H. Blair-Smith / A. L. Hopkins

Summary Some logical aspects of a digital computer for a space vehicle
are described, and the evolution of its logical design is traced. The intended
application and the characteristics of the computer’s ancestry form a frame-
work for the design, which is filled in by accumulation of the many decisions
made by its designers. This paper deals with the choice of word length,
number system, instruction set, memory addressing, and problems of multi-
ple precision arithmetic.

The computer is a parallel, single address machine with more than
10,000 words of 16 bits. Such a short word length yields advantages of
efficient storage and speed, but at a cost of logical complexity in connection
with addressing, instriiction selection, and multiple-precision arithmetic.

1. Introduction

In this paper we attempt to record the reasoning that led us to
certain choices in the logical design of the Apollo Guidance Com-
puter (AGC). The AGC is an onboard computer for one of the
forthcoming manned space projects, a fact which is relevant pri-
marily because it puts a high premium on economy and modularity
of equipment, and results in much specialized input and output
circuitry. The AGC, however, was designed in the tradition of
parallel, single-address general-purpose computers, and thus has
many properties familiar to computer designers [Richards, 1955J,
[Beckman et al., 19611. We will describe some of the problems
of designing a short word length computer, and the way in which
the word length influenced some of its characteristics. These
characteristics are number system, addressing system, order code,
and multiple precision arithmetic.

A secondary purpose for this paper is t o indicate the role of
evolution in the AGC’s design. Several smaller computers with
about the same structure had been designed previously. One of
these, MOD 3C, was to have been the Apollo Guidance Computer,
but a decision to change the means of electrical implementation
(from core-transistors to integrated circuits) afforded the logical
designers an unusual second chance.

It is our belief, as practitioners of logical design, that designers,
computers and their applications evolve in time; that a frequent

‘ I E E E Trans., EC-12 (6), 687-697 (December, 1963)

reason for a given choice is that it is the same as, or the logical
next step to, a choice that was made once before.

A recent conference on airborne computers [Proc. Con.. Space-
borne Computer Eng., Anaheim, Calif., Oct. 30-31, 19621 affords
a view of how other designers treated two specific problems: word
length and number system. All of these computers have word
lengths of the order of 22 to 28 bits, and use a two’s complement
system. The AGC stands in contrast in these two respects, and
our reasons for choosing as we did may therefore be of interest
as a minority view.

2. Description of the AGC

The AGC has three principal sections. The first is a memory, the
fixed (read only) portion of which has 24,576 words, and the
erasable portion of which has 1024 words. The next section may
be called the central section; it includes, besides an adder and a
parity computing register, an instruction decoder (So), a memory
address decoder (S), and a number of addressable registers with
either special features or special use. The third section is the
sequence generator which includes a portion for generating various
microprograms and a portion for processing various interrupting
requests.

The backbone of the AGC is the set of 16 write busses; these
are the means for transferring information between the various
registers shown in Fig. 1. The arrowheads to and from the various
registers show the possible directions of information flow.

In Fig. 1, the data paths are shown as solid lines; the control
paths are shown as broken lines.

M ~ ~ o T Y : fired and erasable

The Fixed Memory is made of wired-in “ropes” [Alonso and
Laning, 19601, which are compact and reliable devices. The num-
ber of bits so wired is about 4 x lo5. The cycle time is 12 p e c .

The erasable memory is a coincident current system with the
same cycle time as the fixed memory. Instructions can address
registers in either memory, and can be stored in either memory.

146

Chapter 7 I Some aspects of the logical design of a control computer: a case study 147

T1

4

OUT - SEQUENCE
GENERATOR -Lysy

INSTRUCTION I
MICROPROGRAM - -, I ARITHMETIC UNIT - I

ADDER U S E S

L - - _ - - - - - - _ _ _ _ _J

--- Control paths - Data paths

Fig. 1. AGC block diagram.

The only logical difference between the two memories is the
inability to change the contents of the fixed part by program steps.

Each word in memory is 16 bits long (15 data bits and an odd
parity bit). Data words are stored as signed 14 bit words using
a one’s complement convention. Instruction words consist of 3
order code bits and 12 address code bits.

The contents of the address register S uniquely determine the
address of the memory word only if the address lies between octal
0000 and octal 5777, inclusive. If the address lies between octal
6000 and octal 7777, inclusive, the address in S is modified by the
contents of the memory bank register M B . The modification con-
sists in adding some integral multiplies of octal 2000 to the address
in S before it is interpreted by the decoding circuitry. The memory
bank register M B is itself addressable; its address, however, is not
modified by its own contents.

Transfers in and out of memory are made by way of a memory
local register 6. For certain specific addresses, the word being
transferred into G is not sent directly, but is modified by a special
gating network. The transformations on the word sent to G are
right shift, left shift, right cycle, and left cycle.

Central section

The middle part of Fig. 1 shows the central section in block form.
It consists of the address register S and the memory bank register

M B both of which were mentioned above. There is also a block
of addressable registers called “central and special registers,”
which will be discussed later, an arithmetic unit, and an instruc-
tion decoder register SQ.

The arithmetic unit has a parity generating register and an
adder. These two registers are not explicitly addressable.

The SQ register bears the same relation to instructions as the
S register bears to memory locations; neither S nor SQ are ex-
plicitly addressable.

The central and special registers are A, Q, 2, LP, and a set of
input and output registers. Their properties are shown in Table 1.

Sequence generator

The sequence generator provides the basic memory timing, the
sequences of control pulses (microprograms) which constitute an
instruction, the priority interrupt circuitry, and a number of scal-
ing networks which provide various pulse frequencies used by the
computer and the rest of the navigation system.

Instructions are arranged so as to last an integral number of
memory cycles. The list of 11 instructions is treated in detail in
Sec. 6. In addition to these there are a number of “involuntary”
sequences, not under normal program control, which may break
into the normal sequence of instructions; these are triggered either
by external events, or by certain overflows within the AGC, and

148 Part 2 1 The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

Table 1 Special and central registers

Octal
Register (s) address Purpose and/or properties

A 0000 Central accumulator. Most instructions refer
to A.

0 0001 If a transfer of control (TC) occurred at L,
(Q) = L + 1.

Z 0002 Program counter. Contains L + 1, where L
is the address of the instruction presently
being executed.

LP 0003 Low product register. This register modifies
words written into it by shifting them in a
special way.

IN

OUT

Several registers which are used for sampling
either external lines, or internal computer
conditions such as time or alarms.

Several output registers whose bits control
switches, networks, and displays.

may be divided into two categories: counter incrementing and
program interruption.

Counter incrementing may take place between any two mem-
ory cycles. External requests for incrementing a counter are stored
in a counter priority circuit. At the end of every memory cycle
a test is made to see if any incrementing requests exist. If not,
the next normal memory cycle is executed directly, with no time
between cycles. If a request is present, an incrementing memory
cycle is executed. Each “counter” is a specific location in erasable
memory. The incrementing cycle consists of reading out the word
stored in the counter register, incrementing it (positively or nega-
tively), or shifting it, and storing the results back in the register
of origin. All outstanding counter incrementing requests are proc-
essed before proceeding to the next normal memory cycle. This
type of interrupt provides for asynchronous incremental or serial
entry of information into the working erasable memory. The pro-
gram steps may refer directly to a “counter” to obtain the desired
information and do not have to refer to input buffers. Overflows
from one counter may be used as the input to another. A further
property of this system is that the time available for normal pro-
gram steps is reduced linearly by the amount of counter activity
present a t any given time.

Program interruption occurs between normal program steps

rather than between memory cycles. An interruption consists of
storing the contents of the program counter and transferring con-
trol to a fixed location. Each interrupt line has a different location
associated with it. Interrupting programs may not be interrupted,
but interrupt requests are not lost, and are processed as soon as
the earlier interrupted program is resumed. Calling the resume
sequence, which restores the program counter, is initiated by
referencing a special address.

3. Word length

In an airborne computer, granted the initial choice of parallel
transfer of words within it, it is highly desirable to minimize the
word length. This is because memory sense amplifiers, being high-
gain class A amplifiers, are considerably harder to operate with
wide margins (of temperature, voltages, input signal) than, say,
the circuits made up of NOR gates. It is best to have as few of
these as possible. Furthermore, the number of ferrite-plane inhibit
drivers equals the number of bits in a word in this case. Similarly,
the time required for a carry to propagate in a parallel adder is
proportional to the word length, and in the present case, this factor
could be expected to affect the microprogramming of instructions.
The initial intent, then, was to have as short a word length as
possible.

Another initial choice is that the AGC should be a “common
storage” machine, which means that instructions may be executed
from erasable memory as well as from fixed memory, and that data
(obviously constants, in the case of fixed memory) may be stored
in either memory. This in turn means that the word sizes of both
types of memory must be compatible in some sense; for the AGC,
the easiest form of compatibility is to have equal word lengths.
So-called “separate storage” solutions which allow different word
lengths for instructions and data can be made to work [Walend-
ziewicz, 19621 but they have a drawback in that three memories
are then required: a data memory (erasable), and two fixed memo-
ries, one for instructions and one for constants. In addition, we
have found that separate storage machines are more awkward to
program, and use memory less efficiently, than common storage
machines.

There are three principal factors in the choice of word length.
These are:

1 Precision desired in the representation of navigational vari-
ables.

Range of the input variables which are entered serially and
counted.

2

Chapter 7 I Some aspects of the logical design of a control computer: a case study 149

3 Instruction word format. Division of instruction words into
two fields, one for operation code and one for address.

As a start, the choice of word length (15 bits) for two previous
machines in this series was kept in mind as a satisfactory word
length from the point of view of mechanization; i.e., the number
of sense amplifiers, inhibit drivers, the carry propagation time, etc.,
were all considered satisfactory. The act of “choosing” word length
really meant whether or not to alter the word length, at the time
of change from MOD 3C to the AGC, and in particular whether
to increase it. The influence of the three principal factors will be
taken up in turn.

Precision of data words

The data words used in the AGC may be divided roughly into
two classes: data words used in elaborate navigational computa-
tions, and data words used in the control of various appliances
in the system. Initial estimates of the precision required by the
first class ranged from 27 to 32 bits, 0(108”). The second class
of variables could almost always be represented with 15 bits. The
fact that navigational variables require about twice the desired
15-bit word length means that there is not much advantage to
word sizes between 15 and 28 bits, as far as precision of represen-
tation of variables is concerned, because double-precision numbers
must be used in any event. Because of the doubly signed number
representation for double-precision words, the equivalent word
length is 29 bits (including sign), rather than 30, for a basic word
length of 15 bits.

The initial estimates for the proportion of 15-bit vs 29-bit
quantities to be stored in both fixed and erasable memories indi-
cated the overwhelming preponderance of the former. It was also
estimated that a significant portion of the computing had to do
with control, telemetry and display activities, all of which can be
handled more economically with short words. A short word length
allows faster and more efficient use of erasable storage because
it reduces fractional word operations, such as packing and editing;
it also means a more efficient encoding of small integers.

Range of input variables

As a control computer, the AGC must make analog-to-digital
conversions, many of which are of shaft angles. Two principal
forms of conversion exist: one renders a whole number, the other
produces a train of pulses which must be counted to yield the
desired number. The latter type of conversion is employed by the
AGC, using the counter incrementing feature.

When the number of bits of precision required is greater than
the computer’s word length, the effective length of the counter

must be extended into a second register, either by programmed
scanning of the counter register, or by using a second counter
register to receive the overflows of the first. Whether programmed
scanning is feasible depends largely on how frequently this scan-
ning must be done. The cost of using an extra counter register
is directly measured in terms of the priority circuit associated
with it.

In the AGC, the equipment saved by reducing the word length
below 15 bits would probably not match the additional expense
incurred in double-precision extension of many input variables.
The question is academic, however, since a lower bound on the
word length is effectively placed by the format of the instruction
word.

Instruction word format

An initial decision was made that instructions would consist of
an operation code and a single address. The straightforward
choices of packing one or two such instructions per word were
the only ones seriously considered, although other schemes, such
as packing one and a half instructions per word, are possible
[England, 19621. The previous computers MOD 3s and MOD 3C
had a 3-bit field for operation codes and a 12-bit field for addresses,
to accommodate their 8 instruction order codes and 4096 words
of memory. In the initial core-transistor version of the AGC (i.e.,
MOD 3C), the 8 instruction order codes were in reality augmented
by the various special registers provided, such as shift right, cycle
left, edit, so that a transfer in and out of one of these registers
would accomplish actions normally specified by the order code
(see Sec. 6). These registers were considered to be more economical
than the corresponding instruction decoding and control pulse
sequence generation. Hence the 3 bits assigned to the order code
were considered adequate, albeit not generous. Furthermore, as
will be seen, it is possible to use an indexing instruction so as to
increase to eleven the number of explicit order codes provided
for.

The address field of 12 bits presented a different problem. At
the time of the design of MOD 3C we estimated that 4000 words
would satisfy the storage requirements. By the time of redesign
it was clear that the requirement was for lo5 words, or more, and
the question then became whether the proposed extension of the
address field by a bank register (see Sec. 7) was more economical
than the addition of 2 bits to the word length. For reasons of
modularity of equipment, adding 2 more bits to the word length
would result in adding 2 more bits to all the central and special
registers, which amounts to increasing the size of the nonmemory
portion of the AGC by 10 per cent.

150 Pari 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

In summary, the 15-bit word length seemed practical enough
so that the additional cost of extra bits in terms of size, weight,
and reliability did not seem warranted. A 14-bit word length was
thought impractical because of the problems with certain input
variables, and it would further restrict the already somewhat
cramped instruction word format. Word lengths of 17 or 18 bits
would result in certain conceptual simplicities in the decoding
of instructions and addresses, but would not help in the represen-
tation of navigational variables. These require 28 bits, and so they
must be represented to double precision in any event.

4. Number representation

Signed numbers

In the absence of the need to represent numbers of both signs,
the discussion of number representation would not extend beyond
the fact that numbers in AGC are expressed to base two. But the
accommodation of both positive and negative numbers requires
that the logical designer choose among at least three possible forms
of binary arithmetic. These three principal alternatives are: (1)
one’s complement, (2) two’s complement, and (3) sign and magni-
tude [Richards, 19551.

In one’s complement arithmetic, the sign of a number is re-
versed by complementing every digit, and “end around carry” is
required in addition of two numbers.

In two’s complement arithmetic, sign reversal is effected by
complementing each bit and adding a low order one, or some
equivalent operation.

Sign and magnitude representation is typically used where
direct human interrogation of memory is desired, as in “post-
mortem” memory dumps, for example. The addition of numbers
of opposite sign requires either one’s or two’s complementation
or comparison of magnitude, and sometimes may use both. No
advantage is offered in efficiency with the possible exception of
sign changing, which only requires changing the sign bit. A disad-
vantage is engendered in magnetic core logic machines by the
extra equipment needed for subtraction or conditional recomple-
mentation.

The one’s complement notation has the advantage of having
easy sign reversal, which is equivalent to Boolean complementa-
tion; hence a single machine instruction performs both functions.
Zero is ambiguously represented by all zero’s and by all one’s,
so that the number of numerical states in an n-bit word is 2” - 1.

Two’s complement arithmetic is advantageous where end
around carry is difficult to mechanize, as is particularly true in
serial computers. An n-bit word has 2” states, which is desirable

for input conversions from such devices as pattern generators,
geared encoders, or binary scalers. Sign reversal is awkward, how-
ever, since a full addition is required in the process.

The choice in the case of the AGC was to use one’s complement
arithmetic in general processing, and two’s complements for cer-
tain input angle conversions. Since the only arithmetic done in
the latter case is the addition of plus or minus one, the two’s
complement facility is provided simply by suppressing end around
carry and using the proper representation of minus one. The latter
is stored as a fixed constant, so that no sign reversal is required.

Modified one’s complement system

In a standard one’s complement adder, overflow is detected by
examining carries into and out of the sign position. These overflow
indications must be “caught on the fly” and stored separately if
they are to be acted upon later. The number system adopted in
the AGC has the advantage of being a one’s complement system
with the additional feature of having a static indication of over-
flow. The implementation of the method depends on the AGC’s
not using a parity bit in most central registers. Because of certain
modular advantages, 16, rather than 15, columns are available in
all of the central registers, including the adder. Where the parity
bit is not required, the extra bit position is used as an extra column.
The virtue of the 16-bit adder is that the overflow of a 15-bit sum
is readily detectable upon examination of the two high order bits
of the sum (see Fig. 2). If both of these bits are the same, there
is no overflow. If they are different, overflow has occurred with
the sign of the highest order bit.

The interface between the 16-bit adder and the 15-bit memory
is arranged so that the sign bit of a word coming from memory
enters both of the two high order adder columns. These are de-
noted S, and SI since they both have the significance of sign bits.
When a word is transferred from the accumulator A to memory,
only one of these two signs can be stored. Our choice was to store
the S, bit, which is the standard one’s complement sign except
in the event of overflow, in which case it is the sign of the two
operands. This preservation of sign on overflow is an important
asset in dealing with carries between component words of multi-
ple-precision numbers (see Sec. 5).

In a standard one’s complement system, a series of additions
may result in subtotals which overflow, yet still produce a valid
sum so long as the total does not exceed the capacity of one word.
In a modified one’s complement system, however, where sign is
preserved on overflow, this is no longer true; and the total may
depend on the order in which the numbers are added; this is not
a serious drawback, but it must be accounted for in all phases
of logical design and programming.

Chapter 7 I Some aspects of the logical design of a control computer: a case study 151

- ~-

MODIFIED S TANDAR D
-

S I 4 3 2 1 3 2 1

EXAMPLE 1: Both operands positive; Sum positive, no overflow. Identical results 0 0 0 0 1 0 0 0 0 0 1
in both systems. 0 0 0 1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 0 1 0 0

EXAMPLE 2: Both operands positive; positive overflow. Standard result is nega- 0 1 0 0 1
tive; Modified result is positive using Sz as sign of the answer. 0 1 0 1 1
Positive overflow indicated by SI Sz. 1 0 1 0 0

EXAMPLE 3: Both operands negative; Sum negative, no overflow. End around 1 1 1 1 0
carry occurs. Identical results in both systems using either SI or S p 1 1 1 0 0

1 1 0 1 0 as the sign of the answer.
1 carry

1 1 0 1 1

0 0 1 0 0 1
0 0 1 0 1 1
0 1 0 1 0 0

1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 0 1 0

1 1 1 0 1 1
1 carry

EXAMPLE 4: Both operands negative; negative overflow. Standard result is posi- 1 0 1 1 0 1 1 0 1 1 0
tive; modified result is negative using S2 as the sign of the answer. 1 0 1 0 0 1 1 0 1 0 0
Negative overflow indicated by SI . Sz. 0 1 0 1 0 1 0 1 0 1 0

1 carry 1 carry
0 1 0 1 1 1 0 1 0 1 1

EXAMPLE 5: Operands have opposite sign; Sum positive. Identical results i . 1 both 1 1 1 1 0 1 1 1 1 1 0
systems. 0 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0
1 carry 1 carry

EXAMPLE 6: Operands have opposite sign; sum negative. Identical results in 1 1 1 0 0 1 1 1 1 0 0
both systems. 0 0 0 0 1 0 0 0 0 0 1

1 1 1 0 1 1 1 1 1 0 1

Fig. 2. Illustrative example of properties of modified one’s complement system.

5. Multiple precision arithmetic

A short word computer can be effective only if the multiple-
precision routines are efficient corresponding to their share of the
computer’s word load. In the AGC’s application there is enough
use for multiple-precision arithmetic to warrant consideration in
the choice of number system and in the organization of the instruc-
tion set. Although the limited number of order codes prohibits
multiple-precision instructions, special features are associated with
the conventional instructions to expedite multiple-precision opera-
tions.

Independent sign representation

A variety of formats for multiple-precision representation are
possible; probably the most common of these is the identical sign

representation in which the sign bits of all component words agree.
The method used in the AGC allows the signs of the components
to be different.

Independent signs arise naturally in multiple-precision addition
and subtraction, and the identical sign representation is costly
because sign reconciliation is required after every operation. For
example, (+ 6, + 4) + (- 4, - 6) = (+ 2 , - 2) , a mixed sign repre-
sentation of (+ 1, + 8). Since addition and subtraction are the most
frequent operations, it is economical to store the result as it occurs
and reconcile signs only when necessary. When overflow occurs
in the addition of two components, a one with the sign of the
overflow is carried to the addition of the next higher components.
The sum that overflowed retains the sign of its operands. This
overflow is termed an interflow to distinguish it from an overflow

152 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

that arises when the maximum multiple-precision number is ex-
ceeded.

The independent sign method has a pitfall arising from the fact
that every number has two representations, either one of which
may occur as a sum. There are some numbers for which one of
the representations exceeds the capacity of the most significant
component. The overflow is false in the sense that the double-
precision capacity is not exceeded, only the single word capacity
of the upper component. Sign reconciliation can be used in this
case to yield an acceptable representation. This problem can be
avoided if all numbers are scaled so that none are large enough
to produce false overflows. Such a restriction is not necessary,
however, since the false overflow condition arises infrequently and
can be detected at no expense in time. The net cost of reconcilia-
tion is therefore very low.

Multiplication and division

For triple and higher orders of precision, multiplication and divi-
sion become excessively complex, unlike addition and subtraction
where the complexity is only linear with the order of precision.

The algorithm for double-precision multiplication is directly
applicable to numbers in the independent sign notation. False
overflow does not arise, and the treatment of interflow is simplified
by an automatic counter register which is incremented when
overflow occurs during an add instruction. The sign of the counter
increment is the same as the sign of the overflow; and the incre-
ment takes place while one of the product components of next
higher order is stored in that counter.

Double-precision division is exceptional in that the independ-
ent sign notation may not be used; both operands must be made
positive in identical sign form, and the divisor normalized so that
the left-most nonsign bit is one.

Triple precision

A few triple-precision quantities are used in the AGC. These are
added and subtracted using independent sign notation with inter-
flow and overflow features the same as those used for double-
precision arithmetic.

6. Instruction set

Basic design criteria

The implicit requirements for any von Neumann-type machine
demand that facilities exist for:

Storing in memory

Negating (complementing)

Combining two operands (e.g., addition)

Address modification (more generally, executing as an in-
struction the result of arithmetic processing)

Normal sequencing (to each location from which an instruc-
tion can be executed there corresponds one location whose
contents are the next instruction)

Conditional sequence changing, or transfer of control

Input

ou tput

An instruction can, of course, provide several of these facilities.
For instance, some computers have an instruction that subtracts
the contents of a memory location from an accumulator and leaves
the result in that memory location and in the accumulator; this
instruction fulfills all of requirements 1-4 above. Requirement 5
is met in a somewhat primitive manner if instructions can be
executed from erasable memory, and is met elegantly by the use
of index registers. Still another scheme, somewhat similar to one
used in the Bendix G-20, is employed in the AGC. Requirement
6 is usually fulfilled by having an instruction location counter
which contains the address of the next instruction to be executed,
and is incremented by one when an instruction is fetched. Alter-
natively, each instruction may include the address of the next
instruction, as is often done in machines having drum memories.
In the AGC, as in most short-word computers, the former method,
with one single-address instruction per word, is clearly the simplest
and cheapest. Requirement 7 is generally met by examining a
condition such as the s i p of an accumulator and, if the condition
is satisfied, either incrementing the instruction location counter
(skipping), or using an address included in the instruction as that
of the next instruction (conditional transfer of control). An uncon-
ditional transfer of control is usual but not necessary, since any
desired condition can be forced. Most machines have special
input-output instructions to satisfy requirements 8 and 9. In the
AGC, however, since input and output is through addressable
registers, input is subsumed under fetching from memory, and
output under storing in memory. Counter incrementing and pro-
gram interruption aid these functions also.

Further criteria

The major goals in the AGC were efficient use of memory, reason-
able speed of computing, potential for elegant programming, effi- 1 Fetching from memory

Chapter 7 I Some aspects of the logical design of a control computer: a case study 153

cient multiple precision arithmetic, efficient processing of input
and output, and reasonable simplicity of the sequence generator.
The constraints affecting the order code as a whole were the word
length, one’s complement notation, parallel data transfer, and the
characteristics of the editing registers. The ground rules governing
the choice of instructions arose from these goals and constraints.

a Three bits of an instruction word are devoted to operation
code.

b Address modification must be convenient and efficient.

c There should be a multiply instruction yielding a double
length product.

d Treatment of overflow on addition must be flexible.

e A Boolean combinatorial operation should be available.

f No instruction need be devoted to input, output, or shifting.

This list is by no means complete, but gives a good indication of
what kind of computer the AGC has to be. In the following para-
graphs the ways in which the instructions fulfill the above require-
ments are described.

Details of the instruction set

In the listing that follows, L denotes the location of the instruction;
K denotes the data address contained in the instruction. Paren-
theses mean “content of,” and the leftward arrow means that the
register named at the arrowhead is set to the quantity named to
the right.

L: TC K; Transfer Control
Q c L + 1; go to K .
This is the primary method of transferring control to any stated

location, and thus meets part of requirement 7 . The setting of the
return address register Q renders complex subroutines feasible. TC
Q may be used to return from a subroutine (with no other TC’s)
because the binary number “L + 1” is the same as the binary word
“TC L + 1,” by virtue of the TC code being all zeros. TC A
behaves like an “execute” instruction, executing whatever instruc-
tion is in A, because Q follows A in the address pattern, see
Table 1.

L: CCS K ; Count, Compare, and Skip
If (K) > +0, A c (K) - 1, no skip; if (K) = +0, A t +0, skip
to L + 2; if (K) < -0, A t 1 - (K), skip to L + 3; if (K) =
-0, A t +0, skip to L + 4.
This instruction fulfills the remainder of requirement 7 and

provides several features. It is clear that in a machine with a 3-bit

operation code there should be only one code devoted entirely to
branching, if at all possible. It is inefficient to program a zero test
using only a sigmtesting code; it is even more inefficient to pro-
gram a sign test using only a zero-testing code. This instruction
was therefore designed to test both types of conditions simultane-
ously. It has to be a four-way branch, and since there is only one
address per instruction, it follows that CCS must be a skipping-
type branch.

The function of (K) delivered to A is the diminished absolute
value (DABS). It serves two primary purposes: to do most of the
work in generating an absolute value, and to apply a negative
increment to the contents of a loop-counting register, so that CCS
has some of the properties of TIX in the IBM 704.

L: INDEX K ; Index using K
Use (L + 1) + (K) as the next instruction.
In a short-word machine where there is no room in the instruc-

tion word to specify indexing or indirect addressing, this code
meets requirement 5 in a way far superior to forming an instruction
and placing it in A or in erasable memory for execution. INDEX
operates on whole words, so that the operation code as well as
the address may be modified. It may be used recursively (consider
the implications of several INDEX’S in succession, assuming that
no operation codes are modified). Finally, it permits more than
8 operation codes to be specified in 3 bits, since overflow of the
indexing addition is detectable.

L: XCH K ; Exchange

This instruction meets requirements 1, 2, and 8. When K is
in fixed memory, it is simply a data-fetching (clear and add) code.
Its use with erasable memory aids efficiency by reducing the need
for temporary storage. XCH is also an important input instruction
in a machine where addressable counters, incremented in response
to external events, are an input medium, because a counter can
be read out and reset (to zero or any desired value) by XCH with
no chance of missing a count.

(A)*(K).

L: CS K ; Clear and Subtract

CS is the primary means of sign-changing and logical negation,
and so fulfills requirements 1 and 3. Since there is no clear and
add instruction, it is the usual operation for nondestructive readout
of erasable memory in simple data transfers, that is, when no
addition or other arithmetic is required. Usually the programming
can be arranged so that complementing during transfer is accept-
able; otherwise the CS can be followed by CS A before storing.

L: TS K ; Transfer to Storage
K +(A); if (A) includes ? overflow, A c 5 1 , skip to L + 2.

A c - (K) .

154 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

This instruction is the primary means of transfers to memory
and output, satisfying requirements 2 and 9. It is also the most
convenient method of testing for overflow. Since A and the other
central registers have two sign positions, overflow indication is
retained in a central register. TS always stores (A) and tests
whether overflow is present. If K is in erasable memory and is
not a central register, the lower-order sign bit SI is not transmitted;
this is the process or overflow correction. If positive overflow
indication is present in A, TS skips over the next instruction and
sets A t +1 (+1 denotes octal 000001); if negative overflow is
present, TS skips over the next instruction and sets A t - 1 (- 1
denotes octal 177776); otherwise (A) are unchanged. The sequence

TS K
XCH ZERO (ZERO in fixed memory)

suffices to store in K an overflow-corrected word of a multiple-
precision sum and leave in A the interflow to the next higher-order
part. TS A skips if either type of overflow is present, but leaves
all 16 bits of (A) unchanged.

Finally, a computed transfer of control may be achieved by
TS Z because Z is the program counter; only the low-order 12
bits of (A) are significant, being the address of the instruction to
which control is transferred. Overflow in (A) in this case does not
affect the transfer but sets A t 5 1 .

L: AD K; Add
A +(A) + (K) ; if the final (A) includes 2 overflow,
OVCTR t (OVCTR) t l .
Addition is the most frequently used combinatorial operation

(requirement 4). The property of OVCTR is used chiefly in devel-
oping double-precision products and quotients, partly because the
additions in these processes are less susceptible to false overflow
than are multiple-precision additions.

L: MASK K ; Mask

This is the only combinatorial Boolean instruction, and may
A t (A) n (K) .

be used with CS to generate any Boolean function.

Ex tracodes

The AGC instruction set was carried over in large part from its
ancestor, MOD 3C [Alonso et al., 19611. All instructions of MOD
3C were retained in the AGC, modifications and additions being
adopted where a substantial increase in computing power could
be obtained at small cost. The MOD 3C instruction set was like
the one described above for the AGC with two major exceptions:
first, instead of a mask instruction, MOD 3C had a multiply in-
struction. Second, the transfer to storage instruction did not in-

clude the property of skipping on overflow, although it did have
properties which aided masking.

After the design of MOD 3C was completed, it was discovered
that the INDEX instruction could be used to expand the instruc-
tion set beyond eight instructions by producing overflow in the
instruction word following the INDEX. For example, the addition
of octal 47777 to the instruction word “CS K” in the course of
an INDEX instruction will cause negative overflow, producing MP
K , a multiply instruction with operand address K .

In order to implement the extracodes in the AGC, it was
necessary to provide a path from the high-order 4 bits of the adder
to the unaddressable sequence selection register SQ. Part of this
path is the unaddressable buffer register B ; these requirements
helped to suggest the benefits of retaining two sign bit positions
in all the central registers.

In principle, eight additional instruction codes can be obtained
by causing overflow, but we did not feel obliged to use them all.
Because every extracode must be indexed, the instructions chosen
for this class had two properties to some degree: they are normally
indexed, or they take long enough so that the cost of indexing
without address modification is small. All the extracodes are com-
binatorial, and therefore relate to requirement 4.

L: M P K ; Mul t ip l y
A t upper part, LP t lower part, of (A) - (K) ; the two words

of the product agree in sign, which is determined strictly by the
sign bits of the operands.

Experience with MOD 3C showed that it was worthwhile
making a completely algebraic, self-contained multiply instruction,
especially in doing double-precision multiplication whose oper-
ands have independent signs. The AGC multiply is much faster
than that of MOD 3C, being limited by adder carry propagation
time rather than core-switching time.

L: DV K ; Div ide
A t quotient, Q t - 1 remainder 1 , of (A)/(K); LP t nonzero
number with the sign of the quotient.
Many facets of AGC design originally adopted for other reasons

combined to make a divide instruction inexpensive. The foremost
of these is the nature of the editing registers, which are in the
standard erasable memory and have no special wiring. The special
properties of these registers are supplied by a shift or cycle of the
word being written into the memory local register G, when the
address of an editing register is selected. The central loop of DV
selects such an address and inhibits memory operations, so that
all the left shifts required in division are accomplished in the G
register while the editing register itself remains unchanged. The
microprogrammed nature of order construction makes a restoring

Chapter 7 I Some aspects of the logical design of a control computer: a case study 155

algorithm more efficient than a nonrestoring one. The quotient
delivered to A has a sign determined according to normal algebraic
rules by the signs of (A) and (K) ; the same sign is available in LP
to aid in determining the correct sign of the remainder from those
of the divisor and quotient in case the quotient has been absorbed
by subsequent processing. DV is not usually indexed, but it pays
such large benefits in space and time, especially in double-pre-
cision division, that the cost of extracode indexing is negligible.
If the divisor is less in magnitude than the dividend, or is zero,
the quotient has correct sign and, in general, maximum magnitude.
No infinite loop results in any case.

L: SU K ; Subtract
A c (A) - (K) ; if the final (A) includes 2 overflow,
OVCTR t (OVCTR) 21.
The primary justification for this instruction is that it allows

multiple-precision addition subroutines to be changed into multi-
ple-precision subtract subroutines merely by changing the indexing
quantity. There are occasions in the middle of involved calcula-
tions where it is clumsy to construct a subtraction out of comple-
mentations and additions, especially when the sign of an overflow
is of interest. Since SU differs from AD only in that the operand
from memory is read out of the complement side of the buffer
register B rather than the direct side, its cost is virtually zero.
This last is not necessarily true when using core-transistor logic,
or two’s complement notation.

7. Expansion of memory addressing

The AGC’s 12-bit address field is insufficient for specifying directly
all the registers in its memory. This predicament seems increas-
ingly to afflict most computers, either because indirect addressing
is assumed as a necessary evil from the start or, as was our case,
because our earliest estimates of memory requirements were wrong
by a factor of two or three. The method of indirect addressing
we arrived at uses a bank register MB, but with an important
modification: the 5-bit number stored in M B has no effect unless
the address is in the range (octal) 6000 to 7777. The MB register
contents are not interpreted as higher-order bits of the address;
they are interpreted as integers which specify which bank of 1024
words is meant in the event of the address part of the instruction
being in the ambiguous range. The over-all map of memory is
shown in Table 2. The unambiguous, fixed memory addresses
domain has come to be known as “fixed-fixed.”

It is interesting that this method of extending the addressing
capability was not the result of trying to improve upon more
conventional methods, but was almost a consequence of the phys-

Table 2 Address part of an instruction word

(Decimal)

0-3071
3072-4095

Fixed and erasable memory: unambiguous addresses.
Fixed memory, ambiguous address. Contents of MB
used to resolve the ambiguity. Up to 32 such banks
are possible.

ical difference between fixed and erasable memory. Since all data
other than constants are concentrated in the erasable memory,
these had to be exempt from modification by the MB register. An
alternative arrangement, whereby only the addresses of instruc-
tions (as opposed to the addresses within an instruction word) are
modified, would be deficient in that it would allow only instruc-
tions to be stored in banks; there would be no way to refer to
constants stored in banks, or to use bank addresses to store argu-
ments of arithmetic operations. The possibility of using two bank
registers is worthy of serious consideration [Casale, 19621, but it
did not occur to us.

In addition to the addresses in erasable, it is necessary to
exempt the addresses of interrupting programs (i e . , the addresses
to which a program interrupt transfers control) from the influence
of the MB register. It was clear that it would be valuable to have
a large body of unambiguous addresses for use in executive and
dispatcher programs.

The most frequent and critical applications of bank changing
are in the AGC’s interpretive mode. Most of the programs relevant
to navigation are written in a parenthesis-free pseudocode notation
for economy of storage. An interpretive program executes these
pseudocode programs by performing the indicated data accesses
and subroutine linkages.

The format of the notation permits two macrooperators (e.g.,
“double-precision vector dot product”) or one data address to be
stored in one AGC word. Thus data addresses appear as full 15-bit
words, potentially capable of addressing up to 32,768 registers.
Each such address is examined in the interpreter and the contents
of the bank register are changed if necessary; preparation is also
made for subsequent return if a subroutine call is being made.

The structure of the interpretive program, and its relationship
to the computer characteristics discussed in this paper will not
be taken up here except to point out that parenthesis-free notation
is particularly valuable in a short-word computer such as the AGC.
It permits a very substantial expansion of the address and pseudo-
operation fields without sacrificing efficiency in program storage
[Muntz, 19621.

156 Part 2 I The instruction-set processor: rnain-line computers Section 1 I Processors with one address per instruction

The conversion of a 15-bit address into a bank number and an
ambiguous 12-bit address is as follows: the top 5 bits correspond
directly to the desired bank number. The remaining lower-order
10 bits, logically added to octal 6000, form the proper ambiguous
address. If the 15-bit address is less than octal 6000, however, the
address is in erasable or fixed-fixed memory. In this case the logical
addition of octal 6000 is suppressed.

It is possible to have a program in one bank call a closed
subroutine in another bank, and then have control returned to the
proper place in the bank of origin. This is done by means of a
short bank switching routine which is in fixed-fixed memory.

One potential awkwardness about this method of extending

memory addresses is the possible requirement for a routine in one
bank to have access to large amounts of data stored in another.
There are many programming solutions to this problem, obviously
at a cost in operating speed; a better solution would be to have
two bank registers. No problems of this nature have yet material-
ized, however.

References

AlonR63; AlonR6O; AlonR61; AlonR62; ReckF61; CasaC62; EnglW62;
HopkA63; MuntC62; RichR55; WaleW62; Proc. Conf. Spaceborne C m -
puter Eng.; Anaheim, Calif., Oct. 30-31, 1962.

APPENDIX 1

Name, Memory size
a’ute (F = $xed Number Number of Purpose Features incorporated
completed E = erasable) of hits instructions of design at this stage

MOD 1, F:448 11 and parity 4 plus involuntary Feasibllity Prototype Counter increments,
1960 E: 64 Interrupts,

BACKGROUND FOR AGC DESIGN

Core-Transistor Logic,
Pulse rate outputs,
Editing registers,
Wired-in fixed memory,
Interpretive programs.

23 and parity 16 plus indirect Unmanned Space Probe “Extended Operation” subroutine
linkages (only instance).

MOD 2, about 4000 total
not built

MOD 3S, F: 3584
1962 E: 512

15 and parity 8 Earth Satellite

MOD 3C, F: greater than 104 15 and parity 8 and involuntary Apollo Guidance
1962 E: greater than 103

AGC, F: greater than 104 15 and parity 11 and involuntary Apollo Guidance
1963 E: greater than 103

Modified one’s complement,
Parallel adder,
Addressable central registers.

CCS, INDEX, MULTIPLY in-
structions,

Overflow counter,
Bank switching.

DV, SU, MSK instructions,
Editing memory buffer,
All transistor NOR logic instead of

core-transistor logic,
Extracodes,
Parenthesis-free interpreter.

The UNIVAC system1

J . Presper Eckert, Jr. / Jumes R . Weiner
H . Frazer Welsh / Herbert F. Mitchell

Organization of the UNIVAC system

In March 1951, the first UNIVAC2 system formally passed its
acceptance tests and was put promptly into operation by the
Bureau of the Census. Since the UNIVAC is the first computer
which can handle both alphabetic and numerical data to reach
full-scale operation so far, its operating record and a review of
the types of problems to which it has been applied provide an
interesting milestone in the ever-widening field of electronic digi-
tal computers.

The organization of the UNIVAC is such that those functions
which do not directly require the main computer are performed
by separate auxiliary units each having its own power supply. Thus
the keyboard to magnetic tape, punched card to magnetic tape
and tape to typewritten copy operations are delegated to auxiliary
components.

The main computer assembly includes all of those units which
are directly concerned with the main or central computer opera-
tions. A block diagram of this arrangement is shown in Fig. 1. All
of the elements shown are contained within the central computer
casework except the supervisory control desk (SC) and the Uni-
servos,2 to which the lines in the upper right section of the diagram
connect.

The supervisory control, in addition to all the necessary control
switches and indicator lights, contains an input keyboard. Also
cabled to the supervisory control is a typewriter which is operable
by the main computer. By means of these two units, limited
amounts of information can be inserted or removed either at the
will of the operator or by the programmed instructions.

The input-output circuits operate on all data entering or leav-
ing the computer. The input and output synchronizers properly
time the incoming or outgoing data for either the Uniservos (tape
devices) or the supervisory control devices. The input and output
registers (I and 0) are each 60 word (720 characters) temporary
storage registers which are intermediate between the main com-
puter and the input-output devices.

The high-speed bus amplifier is a switching central through

'AZEE-IRE Conf., 6-16, December, 1951.
2Registered trade mark.

which all data must pass during transfer between any arithmetic
register and the main memory or between the memory and the
input-output registers. The arithmetic registers are shown along
the bottom of diagram each connected to the high speed bus
system.

The L-, F-, X - , and A-registers are each of one word or 12-
character capacity and are directly concerned with the arithmetic
operations. The V- and Y-registers are of 2- and 10-word capacity,
respectively. They are used solely for multiple word transfers
within the main memory. Associated with the arithmetic registers
are the algebraic adder (AA), the comparator (CP), and the multi-
plier-quotient counter (h4QC).

Addition-subtraction instructions

The addition-subtraction operations are performed in conjunction
with the comparator since all niimerical quantities are absolute
magnitudes with an algebraic sign attached. Before either an
addition or subtraction is performed, the two quantities, one
already in the A-register and the other either from the memory
or from the X-register, depending upon the particular instruction,
are compared for magnitude and sign. The adder inputs can then
be switched so as always to produce a noncomplemented result
for any operation. The choice of adder input arrangement is there-
fore under the control of the comparator. The comparator also
determines the proper sign for the result according to the usual
algebraic rules.

One additional function performed by the comparator for addi-
tion and subtraction is to control the complementer. This deter-
mination is based upon which operation (+, or -) is indicated,
and, whether the signs are like or unlike. For a subtract instruction,
the sign of the subtrahend is reversed before entering the com-
parator. The comparator then compares the signs of the quantities
in order to determine whether the two quantities are subtracted
or added.

Multiplication instruction

The multiplication process requires the services of the adder, the
comparator, the multiplier-quotient counter and the four arith-
metic registers. During the first step of multiplication the X-reg-

157

158 Part 2 1 The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

r --
I

I
I
I
I
I
I
I
I
I
1
I
I

I

STANDARD PULSES
TO ALL UNITS

(1 A A A i A
-\
i ~ i i i i i

TO AND FROM
UNISERVOS

CYCLlWG UNIT
INPUT-

OUTPUT
FROM TO CONTROL

ALL UNITS CIRCUITS
CONTROL SIGNALS

TO GATES

L--*-

r---
I
I

CHECK
CIRCUITS -

CONTROL

CIRCUITS

1
TIME OUT

(TO)

(1000 WORDS)

I
t---,

I
I
I
I
I
I

_ _ -

I
I
I

INSTRUCTION M E M LOCATION
OlGlTS OlGlTS

CONTROL

INPUT- OUTPUT TO
-+--- / T } - + S I G S STATIC REGISTER

DISTRIBUTOR LINE

- - -. - - - - - -
INPUT FROM REGS. I

I
AND OTHER UNITS I

I----*-

;SIGNAL ;SIGNAL
I - 3

LEGEND:

- INFORMATION SIGNALS
CONTROL SIGNALS 8 PULSES ----

Fig. 1. Block diagram of UNIVAC.

Chapter 8 I The UNIVAC system 159

ister receives the multiplier from the memory and the comparator
determines the sign of the final product by comparing the signs
of the multiplier and multiplicand. During the next three steps
the multiplicand, which has been stored in the L-register by some
previous instruction, is transferred three times to the A-register
through the algebraic adder. The result, three times the multi-
plicand, is then stored in the F-register. During the next 11 steps
of multiplication, the successive multiplier digits, beginning with
the least significant, are transferred from the X-register to the
multiplier-quotient counter. The multiplier-quotient counter then
determines whether each particular multiplier digit is less than
three, or greater than or equal to three.

If the former, the L-register releases the multiplicand to the
A-register via the adder, and the multiplier-quotient counter is
stepped downward one unit. If the multiplier digit is equal to or
greater than three, the multiplier-quotient counter sends a signal
to the F-register which releases three times the multiplicand to
the A-register and the multiplier-quotient counter is stepped three
times. Thus a multiplier digit of seven would be processed as two
transfers from the F-register to the A-register and one transfer from
the L-register to the A-register, or a total of three transfers.

When the multiplier-quotient counter reaches zero, the next
multiplier digit is brought in from the X-register, while the A-reg-
ister, containing the first partial product, is shifted one position
to the right.

During the final step of multiplication, the sign is attached to
the product which has been built up in the A-register. One of the
several available multiplication instructions causes the least sig-
nificant digits, as they are shifted beyond the limits of the A-reg-
ister, to be transferred to the X-register where they replace the
multiplier digits as they are moved to the multiplier-quotient
counter. Thus 22 place products can be obtained as well as 11
place.

Division instruction

The division operation is performed by a nonrestoring method. The
divisor is stored in the L-register by some previous instruction and
the dividend is brought from the memory and put in the A-register
during the first step of the division instruction. As in multiplica-
tion, the signs of the two operands are compared in the comparator
at this time and the sign of the quotient is then stored in the
comparator pending completion of the division operation. The
principal stages of division consist of transferring the divisor from
the L-register to the A-register through the complementer and
adder as many times as required to produce a quantity less than
zero in the A-register, the dividend having been first shifted one

position to the left. The multiplier-quotient counter counts each
transfer, thereby building up the first quotient digit. As soon as
the quantity in the A-register, (neglecting its original sign) goes
negative, the digit in the multiplier-quotient counter, not counting
the transfer which causes the remainder to go negative, is trans-
ferred to the X-register and the remainder in the A-register is
shifted one place to the left. The divisor is then added to the
A-register until the quantity becomes positive. This time the
multiplier-quotient counter must give the complement of the
number of transfers for the real quotient digit. Special comple-
menting read-out gates provide this method of interpreting the
multiplier-quotient counter.

The X-register therefore collects the quotient, digit by digit,
from the multiplier-quotient counter until the full 11 digits have
been obtained. The quotient is then transferred to the A-register
and the sign from the comparator (CP) is affixed during the final
stage of the divide instruction.

The other internal operations of the UNIVAC include many
transfer instructions by which words may be moved among the
registers and memory with and without clearing, the extraction
instruction by which certain digits of a word may be extracted
into another word according to the parity of the corresponding
digits of an extractor word; shift instructions; and special control
instructions such as breakpoint, transfer of control, (explained in
subsequent paragraphs) and stop.

Basic operating cycle

The basic operating cycle of the UNIVAC is founded upon single
address instructions which specify the memory location of one
word. In the case of the arithmetic instructions which require two
operands, one of the operands must be moved into the proper
register by some previous instruction. In order to control the
sequence of instructions, a special counter, called the control
counter (CC), retains the memory location from which the succeed-
ing instruction word is to be obtained. Each time a new instruction
word is received from the memory, the quantity in the control
counter is passed through the adder where a unit is added to it.
Therefore the normal sequence is to refer to successive memory
locations for successive instruction words. Initially the control
counter is cleared to zero and the first group of instructions must,
therefore, be placed in memory locations from zero upward. A
transfer of control instruction enables the programmer to change
the control counter reading whenever desired and thus shift from
one sequence to another. After a transfer of control takes place,
the new number in the control counter is increased by unity each
time a new instruction word is obtained from the memory.

160 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

Transfer of control instructions

The transfer of control instructions are of three types, the uncon-
ditional transfer which changes the control counter reading with-
out question, and two conditional instructions which require that
either equality or a specific inequality exists between the words
in the A-register and the L-register. In the former case the quan-
tities must be identical for transfer of control to occur and in the
latter the quantity in the A-register must be greater than the
quantity in the L-register for the control counter reading to be
changed.

Since the UNIVAC can handle alphabetic as well as numerical
data, these conditional transfer instructions are as useful for alpha-
betizing as they are to determine if a certain iterative arithmetic
process has been performed often enough to come within specified
numerical tolerances.

Control register

Since six characters (intermixed alphabetic and numerical) are
sufficient to specify an instruction and there are 12 characters per
word, each instruction word can represent two independent in-
structions. A 1-word register, called the control register (CR), has
been provided which stores each instruction word as it comes from
the memory. Thus one memory referral is sufficient for a pair of
instructions and the control register stores both halves so that the
second instruction is available as soon as the first has been com-
pleted.

The general term control circuits includes all those elements
which work together to process the instruction routine. As each
instruction word reaches the control register, the first half of it
is passed immediately into the static register (SR). The static
register drives the main function table and memory switch. The
instruction digits are translated by the function table into the
appropriate control signals for the instruction called for. The
memory switch selects the location called for by the memory
location digits and opens the proper memory channel to the high-
speed bus system at the proper time. Since the memory is con-
structed of 100 channels, each holding ten words, the memory
switch is a combination of spatial and temporal selection.

Cycle counter

Implicit within each instruction, as translated by the function
table, is an ending signal which causes the computer to move on
to the next instruction. The key to this sequence is the cycle
counter (CY), which is advanced by the ending pulse. The cycle
counter is a 2-stage 4-position counter, which is connected into

the function table. By virtue of this relation, CY develops signals
in addition to those developed by the instruction, which, for ex-
ample, can cause the control register to transfer the second half
of the instruction word into the static register when the first half
has been completed. Similarly, after the second half instruction
is finished the cycle counter causes the reading of the control
counter to pass into the memory location section of the static
register and thus cause the next instruction word to be transferred
from the memory to the control register. When the word reaches
the control register, the cycle counter also causes the control
counter reading to be increased by unity. The four cycles are
designated by the first four Greek letters a (transfer CC to SR),
,8 (transfer memory to CR), y (perform first instruction), and S
(perform second instruction).

Program counter

The multistage instructions, such as multiplication, are guided
through their various steps by the program counter (PC). The
program counter has four stages or 16 positions. All multistage
instructions can be performed within this number of steps.

Checking circuits

The checking circuits of the UNIVAC are of two main types,
odd-even checkers and duplicated equipment with comparison
circuits. The odd-even checker depends upon the design of the
pulse code used within the computer. This code provides seven
pulse positions for every character. Six of the seven positions are
significant as the actual code while the seventh is the odd-even
channel. If the number of pulses or ones within the first six chan-
nels of any character is even, a one is placed in the seventh channel
to make the total odd. Thus, the total number of ones across the
seven channels is always odd. By means of a binary counter and
a few gates, an odd-even checker has been constructed which
examines every seven pulse group which passes through the high
speed bus amplifier. In this connection, mention must be made
of the periodic memory check which interrupts operation every
five seconds to pass the entire contents of the memory over the
high speed bus system and, consequently, through the odd-even
checker. Any discrepancy is immediately signalled to the super-
visory control and further operation ceases.

The duplicated equipment type of checking consists of dupli-
cating the most essential part of the arithmetic circuits and their
controls and producing simultaneously independent results, which
can then be compared for equality. For this type of checking, the
A-, F-, X - , and L-registers, algebraic adder, comparator, multi-

Chapter 8 I The UNIVAC system 161

plier-quotient counter, and the high speed bus amplifier are dupli-
cated.

The memory is not duplicated, but is checked by the periodic
memory check mentioned previously. Various sections of the con-
trol circuits are duplicated such as the program counter and cycle
counter.

Timing pulse generator and cycling unit

The timing pulse generator and cycling unit (C U) are the source
of the basic timing signals throughout the computer. The timing
pulses occur at 2.25 megacycles per second. The cycling unit
subdivides this rate into the character rate and word rate. The
character rate is one seventh of the basic pulse rate since there
are seven pulses for each character. There are 12 characters per
word but space for a 13th character is included in a word time
and is called the space between words. This time is used for
switching purposes.

The cycling unit, therefore, develops the word signals at
y7 x yl3 or yS1 of the basic pulse rate. Within the cycling unit
(C U) are numerous duplications and comparisons to ensure com-
plete reliability.

Input-output circuits

The operation of the input-output system is dovetailed as effi-
ciently as possible with the operation of the arithmetic circuits.
Whenever possible, parallel operations are allowed to proceed so
as to minimize the time lost on internal operation while the slower
input-output operations are taking place.

The principal input-output instructions are handled in a man-
ner identical to that for the internal operations, except that now
the function table develops signals which bring the input-output
control circuits into operation. The information supplied to the
input-output control circuits by the function table includes the
following:

1

2

Which of the ten possible Uniservos is being called on

Whether it is a read or write, that is, an input or output
operation

If it is “read,” the direction in which the tape is to move 3

The input-output control circuits, therefore, begin by testing
whether or not the Uniservo indicated now is in use or not. If
it is already in use, everything else waits until that Uniservo is
free. Next, the input-output control circuits test to determine
whether the Uniservo selected last moved backward or forward.

If the previous direction does not agree with the new direction
called for, the input-output control circuits generate the proper
signals to prepare the Uniservo to move in the opposite direction.
If the instruction is to rewind a Uniservo, the input-output control
circuits then direct the center drive of the selected Uniservo to
rewind the tape to the beginning and stop.

As soon as the instruction has proceeded to the point where
the input-output control circuits need no further information from
the function table, the instruction ending signal is generated
and the internal circuits proceed to the next instruction, even
while the reading, writing or rewinding continues. The UNIVAC
can process an input, an output and several rewind operations
while simultaneously carrying on internal computation.

So far the method by which the words are transferred from
the I-register to the memory has not been mentioned. This opera-
tion is combined with certain read instructions in a manner not
immediately obvious. There are two instructions which read from
the tape to the I-register, one causing the tape to move forward,
the other causing it to move backward. There are two other input
instructions similar to those just mentioned, but they have the
additional operation of first reading from the I-register to the
memory and then reading a new group of 60 words from tape into
the I-register. Thus the first type of input instruction reads from
tape to the I-register only. It must be followed by the second type
of instruction in order first to clear the I-register and then read
in the second block of 60 words.

The output instructions do not operate in this way but instead
read directly from memory to the 0-register and then to the tape
as one instruction.

A third type of checking circuit occurs in the input-output
control circuits which counts the number of characters transferred
from the tape in each block. Since there must always be 720
characters per block, the 720 checker signals any discrepancy to
the supervisory control.

One other phase of the input-output operation concerns the
two supervisory control input-output instructions. One of them
permits a single word to be typed in from the input keyboard and
the other causes a single word to be typed out automatically.

Auxiliary equipment

The two principal auxiliary devices mentioned earlier were the
Unityper,l which converts keyboard operations to tape recording,
and the Uniprinter,l which converts magnetic recording to type-
written copy.

lRegistered trade mark.

162 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

Unityper. A simple block diagram of the Unityper is shown in Fig.
2. Each keyboard operation pulses the input to an encoding func-
tion table which, in turn, drives the appropriate heads for record-
ing the particular combination on the tape. Simultaneously, the
same pulse triggers a motor delay flop which operates the tape
motor for an interval sufficient to move the tape across the head
for the distance required to record one character. However, there
is a punched paper loop system associated with the Unityper for
the purpose of providing the typist with various guideposts individ-
ually set up for each problem. The loop control system serves three
distinct control functions. First, it allows the programmer to set
up various numbers of characters for the individual items being
entered for a given problem. If the typist ever enters other than
the specified number of characters, the loop control signals an
error. Although the basic word length is 12 characters, the pro-
grammer may subdivide or group the words to suit any length of
item. The loop can then be punched with what are called “force
check” punches. Whenever the typist completes a correctly en-
tered item, she must operate a release key before entering the next
item. If the forced check is released too early an error is created,
or if an additional character is typed after the forced check should
have been released, an error is similarly indicated.

The second function of the loop is to control the erase opera-
tion. The erase operation is the only way in which an error can
be recalled. When the erase key is operated, the loop and tape

KEYBOARD El- l

i ENCODING
FUNCTION

TABLE

RECORDING
HEAD

I
I I

RELAYS

Fig. 2. Simplified block diagram of Unityper.

are both stepped backward until a stop punch (usually associated
with each forced check) is encountered. Thus the entire erroneous
item is erased, and at a much higher rate than that at which the
backspace key can be operated. The backspace, incidentally, can-
not cancel an error indication, but it can be used to correct a
wrongly typed character if the typist recognizes it.

The third function of the loop system is to enter, automatically,
various fill-in characters. Under one such system of operation, the
loop control records the characters only at the behest of the oper-
ator. This function is useful where individual entries, such as
personal names, do not fill out all of the space allotted. The other
operation is fully automatic in which the loop assumes full control
to record, for example, a group of fill-in characters later to be
replaced by computed data within the central computer.

The block diagram therefore shows the loop motor connected
to the same delay flop that steps the tape motor. The same signal
which moves the two motors also sets a second delay flop (DF2)
which produces a delayed probing pulse. The probing pulse exam-
ines the paper loop photoelectrically for the new combination.
A third delay flop (DF3) produces another probing pulse after the
relays associated with the loop photocells have had time to set
up. If any automatic function is indicated by the photocells, the
probing pulse passes through the interpreting relays, enters the
encoding function table to generate the fill-in characters, and thus
starts the cycle over again. All automatic functions take place at
about 22 characters per second.

Numerous odd-even checks are introduced in the Unityper to
provide checks on tape and loop motion and on the recorded code
combination.

Uniprinter. The Uniprinter is shown in simplified block diagram
in Fig. 3. Its operation is a simple cycle which is initiated by a
start button. The start button triggers the motor flip-flop (MFF) .
The motor pulls the tape across the reading head until a combina-
tion is detected. The presence of pulses on any of the seven lines
between the reading head and the relay decoding function table
is sufficient to restore the motor flip-flop (M F F) and stop the tape
motion. Simultaneously a print delay flop (DF1) is triggered.
During the delay flop interval, the decoding relays are given time
to set up. When the delay flop recovers, a pulse is sent through
the relay table which reappears at one of the typewriter magnetic
actuators. As the typebar reaches the platen, a printer action
switch (PAS) is operated which pulses the motor flip-flop and starts
a new search for the next character on the tape. The odd-even
properties of the UNIVAC pulse code are utilized for checking
purposes.

Chapter 8 I The UNIVAC system 163

I
I

Fig. 3. Simplified block diagram of Uniprinter.

Engineering aspects

The entire UNIVAC system is constructed of circuits which are
as conservative as is consistent with the desired reliability and
speeds of operation. The circuits have been designed as building
blocks and the entire computer is constructed around these blocks.

One of the most important of these blocks is the pulse reshap-
ing circuit which consists of a timing pulse gate and a fast acting
flip-flop which generates the pulse envelope equivalent of the
gated timing pulses. Two polarities of timing pulse are used, the
one being capable of tripping the flip-flop into one state, the other
polarity of tripping it to the other state. As a deteriorated pulse
envelope is applied to the timing pulse gate input, either one or
the other polarity of pulse is always gated. The flip-flop therefore
produces a sharpened and correctly timed output waveform.

The gating and switching circuits in the central computer are
constructed of germanium crystal diodes, which include the main
and subordinate function tables.

The registers are all circulating delay type using a mercury
tank of one, two, or ten word-times of delay, except the static
register. The latter is composed of 27 flip-flops which are required
to maintain the static signals applied to the function tables, for
at least an entire word-time.

The switching time allowed by the seven pulse-times of the
space between words is, in general, not sufficient for a new func-
tion table excitation to stabilize. Therefore the time-out system
used successfully in the BINAC, also is employed in the UNIVAC.
Whenever an ending pulse is generated, or any other pulse which
indicates that a new set of control signals are required from the

function table, an interval of one word-time is introduced to allow
the function table signals to reach equilibrium. The time-out in-
terval is controlled by a single fast-acting flip-flop. All gates
attached to the function table signals which are critical as to
opening and closing can be inhibited by the time-out flip-flop
during time out. Regardless of the presence of the function table
signals, the gate does not operate until the time-out flip-flop re-
leases it. Thus, the burden of speed imposed by the short space
between words has been shifted to a single flip-flop which can
accommodate the needs of the entire computer.

The UNIVAC uses the excess-three pulse code system which
requires a second binary adder after the main binary adder in order
to provide the excess-three correction after each addition. On the
other side of the ledger, the complementing operation for sub-
traction and division is very much simplified, since the substitution
of ones for zeros and vice versa is sufficient to form a complement.
The excess-three part of the pulse code occupies the four least
significant digit positions. The next two positions beyond the
excess-three digits are used as zone indicators. When these digits
are both zero, the last four positions are interpreted as a numerical
quantity; when nonzero, an alphabetic or punctuation symbol is
indicated. The seventh channel is the check pulse channel.

The adder is provided with an alphabetic bypass circuit which
allows an alphabetic letter to enter one input and emerge un-
scathed provided a numeral enters the other input. Thus additive
numerical constants can be combined with instruction words to
adjust the memory location part of an instruction without affecting
the alphabetic instruction symbols.

The power supply for the computer is separately housed. It
can be placed any reasonable distance from the central computer.
Almost all rectification is done by dry disc rectifiers. The power
supply provides all a-c and d-c potentials to the central computer,
supervisory control, directly-connected printer, and the Uniservos.

A complete fusing system has been included which serves both
as protection and as a short-circuit isolating means. Each section,
of which there are 39, is locally fused, enabling the engineer to
locate a short within only 12 chassis, rather than the total of 468.

An automatic voltage monitoring system may be used to test
every d-c voltage at the rate of one per second. A meter movement
relay signals any discrepancy from standard. Similarly, overheat
thermostats detect any unfavorable temperature condition in the
bays or mercury tanks.

Cooling for the power supply and central computer is provided
by three blowers. Local cooling in the Uniservos is provided by
small fans in each unit. The operating statistics of the UNIVAC
are as follows:

164 Part 2 1 The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

Tape reading and recording:
Pulse density: 120 per inch
Tape speed: 108 inches per second
Input block size: 60 words: 720 characters
Tape width: ‘/z inch: 8 channels

Internal operations:
Memory capacity: 1,000 words; 12,000 characters
Memory construction: 100 mercury channels; 10 words/
channel

Access time:
Average: 202 microseconds
Maximum: 404 microseconds

Word length:
12 characters
9 pulses
(include space between words = 7 pulses)

Basic pulse rate:
2.25 megacycles
Addition: 525 microseconds
Subtraction: 525 microseconds
Multiplication: 2,150 microseconds
Division: 3,890 microseconds
(All times shown include time for obtaining instructions and
operands from memory)

Applications of UNIVAC

Types of problems for which UNIVAC is applicable

True to its name, Universal Automatic Computer, the UNIVAC
system is capable of handling data processing or calculation in
virtually all fields of human endeavor. It is particularly well suited
to applications requiring large volumes of input or output data,
or both.

For convenience and classification, applications of the UNIVAC
will be treated under four headings: scientific, statistical, logistical,
and commercial. The scientific problem usually, though not al-
ways, has relatively small amounts of input and output data, with
emphasis on computation. The statistical problem has relatively
large volumes of input data with a small volume of output data
and simple processing procedures. The commercial and logistical
problems both have relatively large amounts of input and output
data with processing requirements varying from slight to relatively
great. A number of problems in each of these four fields have been
studied and found suited for solution on the UNIVAC system.
Several in each field have actually been processed on the com-
puter.

Scientific problems

A general-purpose matrix algebra routine designed to add, sub-
tract, multiply, and reciprocate matrices of orders up to 300 has
been prepared and applied to a number of matrices. Inverses have
been calculated for three different matrices of orders 40, 50, and
44. The error matrices for the first two of these inverses also were
calculated. In both, the largest error term was of the order of 1W8.
A triple product matrix was formed from component matrices
ranging from 5 by 40 to 40 by 40. A check product was obtained
by reversing the sequence of multiplications, verifying the original
product to within 2 units in the 11th place. The computer time
required for these calculations was 1 hour and 15 minutes to
calculate the inverse of order 50,45 minutes to determine its error
matrix. The other calculations were proportionately shorter. In all
of this work, magnetic tapes were used as temporary storage for
the bulk of the matrix elements involved. The high speed of the
tape reading units more than kept up with the computer’s need
for data. No mathematical checks, other than the over-all check
mentioned, were included in the computation, the self-checking
features of the system making these completely unnecessary.

A second computation-that of obtaining six different specific
solutions to a system of 385 simultaneous equations-was com-
pleted in 27 minutes on the computer. The system of equations
arose from a second order nonlinear differential equation of gas
flow through a turbine. The error terms resulting from the sub-
stitution of the computed unknowns into the basic equation were
of the order of

The third example is that of a 2-dimensional Poisson equation,
using a 22 by 22 mesh. Each iteration required 13 seconds and
produced a maximum separation of successive surfaces of the order
of 10-* after approximately 300 iterations.

Statistical problems

In the second major field of statistical computation, the Census
problem has been a prime example. The Census problem produces
a part of the Second Series Population on Tables for the 1950
Decennial Census.

The Second Series contains 30 types of tables covering the
statistics of our population-age, sex, race, country of birth, edu-
cation, occupation, employment, and income. These tables are to
be compiled for every county, and for every city, rural farm, and
rural nonfarm area within a county.

The preparation of these tables by the UNIVAC system requires
three major steps:

1 Tabulation of each individual’s characteristics by groups of
about 7,000

Chapter 8 1 The UNIVAC system 165

2

3

Arranging these groups by cities, counties

Assembling from the tabulations the data required for each
table

The raw data were prepared in the form of a punched card
for each individual in the United States. The data from these
enumeration cards are then transcribed onto magnetic tape. From
these tapes, the computer processes the data sequentially through
the three steps, producing output tapes from which the tables are
printed on Uniprinters. The only manual operations encountered
in this entire procedure are the handling of the original punched
cards, mounting and demounting tape reel (the equivalent of 9,700
cards), and the removal of the printed tables from the Uniprinters.

The most important feature of the present procedure is the elim-
ination of handling and sorting tremendous quantities of punched
cards. Each handling of the card stacks is a source of potential
error and delay. The UNIVAC memory permits the simultaneous
accumulation of the 580 tallies which describe our population
for each local area being studied by the UNIVAC system.

Commercial problems

In the commercial field, the UNIVAC system has handled premium
billing for a life insurance company. This program produces pre-
mium notices, dividends, and commissions. In a particular example
worked out, approximately 1,000,000 bills, 340,000 dividends, and
100,000 commissions have to be produced monthly. The necessary
information for processing a particular policy is contained in 240
digits, or, in special cases, 480. This compactness is made possible
by a logical system of 40 symbols, comprising both alphabetic and
numeric characters, which denote over 90 definitions. The UNI-
VAC processes the policies as directed by the symbols, policy
dates, and policy numbers.

The problem includes inserting over 250,000 changes each
month before further handling is done. After this step, the policies
to be processed are selected from a file of 1,500,000 items. Next,
a list is produced of the cases which have symbols indicating that
special notices must he sent to the policyholders. Following the
calculation of dividends and commissions, additional lists are pro-
duced: one group contains information pertaining to commissions
and agents; another contains information regarding dividends; and
finally, there is a listing of option changes for later insertion into
the policy files. Policies requiring premium notices are then edited
and the notices are automatically printed from the data contained
on magnetic tapes.

The UNIVAC time needed for a program of this proportion
is about 135 hours a month. The average computer time per policy
processed is less than 0.5 second. The average time for all change

insertions, printing, calculations, and unityping is 9 seconds per
item.

Logistical problems

In the field of logistics, five major studies have been conducted,
four of these resulting in actual problems executed on the com-
puter.

The first is the type of computation in which the basic purpose
is to determine quantitively whether a given operational or mobi-
lization plan can be logistically supported. The ultimate desired
is to find, by calculation, the optimum program for carrying out
such plans. At the time of writing, only a small model has been
actually run on UNIVAC, but full size models will be run within
the next few weeks. Two computations have been executed, one
a set of three tables of thousands of lines each, giving a detailed
breakdown of machine deployment, fuel requirements, and over-
haul requirements. The other problem was a computation of the
amounts of critical raw materials required to construct a given
number of each type of equipment, these requirements being
phased by quarters over a 2-year period. The fourth problem,
which was actually computed, was a sample of a similar calcu-
lation in which every pound of critical raw material required each
month for the ultimate construction of a complete building pro-
gram was computed.

The UNIVAC program which was prepared is capable of
accommodating every type of equipment, individually tailored
construction schedules, detailed hills of materials running into the
millions of items and of determining the actual amounts of alloy
elements based on thousands of tables of percentages for the many
alloys employed. The demonstration showed that this computation
for 400 pieces of equipment of a given type could be executed
in three hours of computer time. The last problem in this field
has not yet been run, but the study has shown that the entire
gamut of stock control for a large supply office can be covered
by the computer in approximately 3 weeks time.

This program involves the maintenance of stock balances of
hundreds of thousands of stock items for many service points and
provides for the preparation of stock transfer orders, purchase
requisitions, critical lists and summary reports.

Performance record of the UNIVAC

Acceptance tests

The Acceptance Tests, prepared jointly by the Bureau of Standards
and Bureau of Census, are fully discussed in the following paper
by Dr. Alexander and Mr. McPhers0n.l However, a few comments

lPaper not included in this book. See McPherson and Alexander [1951].

166 Part 2 I The instruction-set processor: main-line computers Section 1 I Processors with one address per instruction

concerning them from the engineering point of view are appro-
priate.

The Census computer was given two tests; the first, a test of
its computational ability; the second, a test of its input-output
system which particularly stressed the tape reading and recording
abilities.

The Central Computer Acceptance Test A consisted of two
parts. During Part 1, every available internal operation, except
input-output operations, was performed. Among these operations
were addition, subtraction, comparisons, division, and three
different types of multiplication operations. Each of the arith-
metic operations handled a pair of 11-decimal digit quantities.
Altogether there were about 2,500 operations in the routine, yet
the entire routine required only 1.26 seconds to do. The routine
was performed 808 times in 17 minutes making a total of about
2,000,000 operations in all.

The second part of Test A included the solution of a heat
distribution equation, a short routine involving the input-output
device and a sorting routine. The sorting routine arranged ten
numerical quantities each containing 12 decimal digits in correct
numerical order in about 0.2 second. All three routines took a total
of 1% minutes to perform. They were performed twice for each
test and when added to Part 1 made a total of 20 minutes for
unit test A.

The Acceptance Test B examined the input-output tape devices
(Uniservos). During the first part of Test B, 2,000 blocks or about
1.4 million digits, which included every available character
(numeric and alphabetic) were recorded on a tape and then read
back into the computer with the tape moving backward. The
information read back was then compared with the original data
read out. The recording operation required about 4 minutes while
reading back and comparison required about 8 minutes. The sec-
ond part of Test B consisted of recording and reading over one
spot of tape for 700 passes in order to determine the readability
of tape as it wears. This test required 13 minutes and when com-
bined with Part 1, made a total of approximately 25 minutes for
Test B. This test was repeated 19 times.

The first test run passed in 6.6 hours (minimum theoretical
time: 6.0 hours) and the second test was passed in 9.47 hours
(minimum theoretical time: 7.45 hours). Of the 2.02 hours down
time, 1.45 hours were accumulated at one time with the remaining
0.58 hours spread over the rest of the test.

The Uniprinter test required that a block of information (60
words) be printed 200 times in tabular form. The minimum time
for printing was five hours. The test was passed in 6.16 hours.

The card-to-tape test required that ten good reels of tape be
produced in 12 hours. There were certain restrictions as to reading

accuracy and other criteria of reproducing ability which defined
“good” reels. In 10 hours, the converter had prepared over 15 reels,
14 reels had been tested, 11 of the 14 were found satisfactory and
the converter was accepted for payment.

Although the test was run on only one of two converters, the
Bureau of Census put both card-to-tape machines into operation
and after six months of use, the acceptance test was run on the
second card-to-tape converter. This test differed to some extent
from the first test in that the Census Bureau was satisfied with
the reading ability of the machines and did not require a digit-by-
digit verification of the information. However, a new stipulation
was added that, after the engineers had checked the converter
out preparatory to running the test, the converter was to be used
in actual operation for eight hours before doing the remainder of
the test with no engineering intervention between the two portions
of the test. The first part was run on Friday, October 5, 1951; the
device remained idle Saturday and Sunday and was turned on
Monday morning to complete the test. It passed with flying colors,
preparing ten acceptable reels (out of ten reels) plus two decks
of check cards in slightly less than 7 hours. Both card-to-tape
converters now are in Washington and the remainder of the system
is in operation by the Bureau of the Census on the Eckert-Mauchly
premises in Philadelphia.

Reliability and factors affecting performance

The first UNIVAC system now has been operating for approxi-
mately 8 months. In that time, much has been learned about how
UNIVACs should be operated and maintained. The situation has
been somewhat complicated by having to shake down the equip-
ment while in the customer’s possession; that is, there were certain
faults in the system from both engineering and production stand-
points which could only become apparent in the course of time
and under actual operation conditions. For example, weak tubes
or faulty solder joints did not reveal their presence at the time
of installation. Another type of difficulty only became apparent
under certain duty cycle conditions imposed by various types of
problems. Because only certain problems present this particular
duty cycle, these troubles remained in the machine causing inter-
mittent stoppages until they could be tracked down.

Patient isolation and elimination of such problems, most of
which have occurred only with conditions of operation infre-
quently encountered, is a powerful, though sometimes painful
proving ground for the engineering group charged with such re-
sponsibility. The experience and depth of judgment acquired by
such a group in the course of performing such work have become
unmistakably apparent in the already noted improved performance
of following UNIVACs and generally advanced ability to predict

Chapter 8 1 The UNIVAC system 167

and realize performance in any large scale and complex apparatus
of the same character.

Some of the troubles encountered are interesting to study in
detail. On a rather complicated routine requiring the use of a
number of Uniservos, all ran smoothly for 15 minutes. At that time,
one of the Uniservos executing a backward read somewhere in the
middle of the reel, did not stop at the end of the block but con-
tinued to run until it ran off the end of the tape. After much work,
it was shown that a cycling unit signal was being overloaded
because it was being used both by a multiplication instruction and
the backward read which were occurring simultaneously. The
input precessor loop was cleared as a result and the count of the
pulses coming off the tape was thereby lost. Once the trouble was
found, it was simple to remedy.

Another rather interesting case occurred intermittently over
an extended period. Normally when reading out of the memory,
the contents should not be cleared. Occasionally, however, reading
from the memory also caused the contents to be cleared. As the
trouble only remained for a period of seconds or, at most, a few
minutes, it was somewhat difficult to localize. Of course, parasitic
oscillations of some sort were suspected and, in fact, the trouble
was traced to the actual source on a logical basis; but the source,
a high power cathode follower, showed no evidence of oscillation.
Before the problem was remedied, various combinations of para-
sitic suppressors were tried; the trouble would vanish for perhaps
a week and then return. The oscillation finally cropped up during
a maintenance shift, was found to be in the suspect tube at 100
megacycles and was eliminated rather easily.

Other types of troubles that have occurred include intermittent
parasitic oscillations in other circuits, bounce in Uniservo relay
circuits, various mechanical problems in Uniservos, time constants
not consistent with the longest duty cycle signals, and various
types of noise in the input circuits. The tubes, which initially were
bothersome, have now stabilized to the point where two tubes
per week (on the average) stop the computer during computation.

All of the above troubles and others not discussed here have
contributed to lost computing time on the UNIVAC. However,
they cannot influence future operation because the reasons for
them have been found and eliminated. The fact that these troubles
will not occur in future UNIVACs cannot be emphasized too
strongly.

Under a contract with the Bureau of Census, Eckert-Mauchly
Computer Corporation maintains the Census installation. This
system is operated 24 hours a day, seven days a week, except for
four 8-hour preventive maintenance shifts each week. This allows
approximately 32 hours for regular maintenance and 136 hours
for operation or 21 and 79 per cent respectively. Table 1 shows

the engineering time spent on the computer system during typical
weeks of operation. The figures are given both in hours and per-
centages. Both nonscheduled engineering time as well as preven-
tive maintenance time are shown. The sum of the two gives the
total engineering time spent on the computer per week. It should
be noted that this is actual engineering time and does not include
time that the computer may have been shut down while waiting
for an engineer to report. According to our maintenance contract,
this must be within a half hour during regular working hours and
within two hours at all other times. Attention should be given to
the fact that the preventive maintenance time does not total
exactly 32 hours each week. This is due in part to a half-hour
period each morning devoted to checking and cleaning the
mechanical portions of Uniservos. It is expected that this work
will be taken over by the UNIVAC operators since the procedures
and the techniques involved are quite simple.

In addition, one extra shift was required the week ending June
3 and three extra shifts the week ending October 7 , 1951. These
shifts were required to incorporate engineering changes which had
been developed over a period of time and could not be incor-
porated in the equipment during the normal preventive main-

Table 1

?btd
Week Nomcheduled Precentiue engineering Rrcentuge of

nonscheduled ending enginvering muintenunce tinw
19.51 Z;lours Per Cent Hours Per Cent Hours Per Cent engineering

-

June 3 18.9
26 20.5

July 14 14.7
21 19.4
28 39.2

Aug. 4 26.2
Sept. 2 28.8

9 16.1
16 22.6
23 42.3
30 21.8

Oct. 7 15.9
14 14.0
21 10.4
28 20.8

Nov. 4 40.4
11 10.1
18 30.5
25 13.7

Dec. 2 14.8
9 19.6

11.3
12.2
8.8

11.6
23.3
15.6
17.1
9.6

13.5
25.2
13.0
9.5
8.3
6.2

12.4
24.0

6.0
18.2
8.2
8.7

11.7

40 23.8
3 4 20.2
33 19.6
34.5 20.5
34.5 20.5
33 19.6
34.5 20.5
34.5 20.5
33 19.6
34.5 20.5
34.5 20.5
56 33.3
34.5 20.5
34.5 20.5
33 19.6
34.5 20.5
34.5 20.5
34.5 20.5
34.5 20.5
34.5 20.5
34.5 20.5

58.9
54.5
47.7
53.9
73.7
59.2
63.3
50.6
55.6
76.8
56.3
71.9
48.5
44.9
53.8
74.9
44.6
65
48
49.3
54.1

35.1 14.8
32 15.3
28 10.9
32 14.5
43.8 29.4
35.2 19.4
37.7 21.6
30 12.1
33 16.7
45.7 31.7
33.5 16.3
42.8 14.2
28.9 10.5
26.7 7.8
32 15.4
44.6 30.3
26.5 7.6
38.7 22
28.6 10
29.3 12.6
32.2 14.7

168 Part 2 I The instruction-set processor: main-line computers Section 1 1 Processors with one address per instruction

tenance time. The nonscheduled engineering time has varied from
as little as 10.1 hours or 6 per cent to 42.3 hours or 25 per cent.
The last column in the Table shows the amount of nonscheduled
engineering time as compared to the allowable operating time
(total time less preventive maintenance time). Here there is a
variation of from 7.6 to 31.7 per cent and an average for the weeks
shown of 16.9 per cent. It is believed that these figures, while good
for the first months of operation of a new piece of equipment, will
show definite improvement over the next year.

Although the opportunity to prove or disprove the following
theory of operation has not presented itself, it is believed logical
that optimum use of the UNIVAC equipment might be obtained
by means of scheduling preventive maintenance only at such times
as it is indicated in the judgment of competent operators. In other
words, there are many occasions preceding a scheduled main-
tenance shift when the system is performing very well. At such
times, it is extremely inefficient to shut down the operation in
order to provide maintenance. For many reasons, however, it has
been impossible to operate and maintain the first system in this
way. It is hoped that such operation will be possible in following
installations.

It should be realized that the UNIVAC system requires a super-
visor of the same caliber as the one required for a large punched
card installation. However, the large group of operating personnel
would be replaced by a small group of well-trained extremely
competent people thoroughly familiar with the details of the
computer and associated equipment. The time spent in providing
a high degree of training for these people is more than repaid in
increased operating efficiency and consequently higher work out-
put. For example, situations arise in the course of running a prob-
lem where a correct operational decision can save hours of elapsed
computation. Also, a competent operator will recognize malfunc-
tions sufficiently early to prevent serious delays. He is capable of
deciding whether to continue with machine operation or to stop
to diagnose. The second UNIVAC system which is ready for
installation in Washington, will be operated by a group of engi-
neers who have been trained in operation and maintenance. This
procedure, it is believed, will result in the UNIVAC system being
of maximum benefit to the Air Comptroller’s Office.

Evaluation of UNIVAC design

Checking features

Maintenance of the UNIVAC has been vastly simplified by use
of duplicate arithmetic and control equipment and other checking
methods. Many factors which would have led to undetected errors

have, by virtue of duplication, immediately stopped the computer.
Although checking by means of inverse operations can provide
operational checks on the arithmetic circuits, there is some ques-
tion as to whether it provides as good a check as duplication.
However, in connection with odd-even codes, it may conceivably
be comparable. It should be remembered, however, that this is
from an operational standpoint and not a maintenance standpoint.
When the control equipment is considered it is difficult to visualize
a check that is as good as duplicated equipment. Other checks

ed in UNIVAC include the periodic memory check,
intermediate line function table checker, function table output
checker, memory switch checker, and 720 checker.

As explained earlier in the paper, the periodic memory check
is accomplished by reading out of all memory channels sequen-
tially and performing an odd-even check on each digit as it passes
through the high speed bus amplifier. The period at which the
check is repeated may be varied over a large interval. At present,
it is set at 5 seconds, the check taking 52 milliseconds or about
1 per cent of the computing time.

The function table has a check at the very input by bringing
in the check pulse in each character so that if an odd-even error
occurs between the control register and the static register, no order
will be set up and the computer will grind to a halt! If the input
sets up properly but an error occurs farther on in the table, but
not ahead of the intermediate lines (the linear set into which the
input combinations are decoded), the error is caught at this point.
The intermediate lines are broken into groups in such a way that
an error is indicated when more than one line is set up in one
group or the entire set. There is an exception to this in some groups
where no error is indicated by this checker if more than one line
is set up within the group.

This has been allowed only in those cases where it has been
shown that setting up two or more lines will cause some other
checker or checkers to indicate the trouble.

If the error occurs beyond the intermediate lines, the output
checker then comes into play. This checker makes an odd-even
count on the number of gates used on each instruction: dummy
lines having been added so that the count is normally always odd.

The memory switch or tank selector checker ensures that one
and only one memory channel is selected on any instruction. It
checks each of the two digit positions separately indicating which
if either, is in error.

The 720 checker counts the digits coming off the tape and if
there are either more or less than 720 in one block, the computer
stops; by examining the indicators on the supervisory control
console, the operator can determine the number of digits actually

Chapter 8 1 The UNIVAC system 169

read. By means of some rather simple manipulations, the operator
can then reread the block without losing his place in the routine;
and if the information is then read correctly, he may again start
the computer on the routine. The same procedure may be followed
if an odd-even error is made in reading from the tape.

Many checks other than those mentioned before have been
built into the UNIVAC. On the basis of operating experience, the
engineers cannot recommend too strongly the use of built-in
checking facilities. All in all, the faith that can be put into results
obtained from an unchecked computer comparable in size to
UNIVAC is in the writers’ opinion exceedingly low.

More than this, however, the methods by which the UNIVAC
is checked have been of extreme usefulness in trouble shooting.
The duplication of circuits has amply repaid the increase of space
and the number of components required by this checking system.

General comments

After evaluating UNIVAC performance over a period of eight
months, the over-all picture of the UNIVAC design, in the minds

of its designers, is extremely good. Certain phases of its design
exceeded expectations, while of course, other phases were some-
what disappointing. The first eight months of actual operation
have taught more than years of experimentation with laboratory
models. Many improvements have already been conceived of this
experience and are continuing daily to increase reliability.

The other major factor influencing computer design, cost, has
been duly considered in the UNIVAC design; and it is being met
with plans for a continuing full-scale production of UNIVAC sys-
tems. As the production techniques are developed concurrently
with the engineering design details, the UNIVAC becomes the
realization of a hope which has long been in the minds of its
designers: An economical, completely reliable commercial com-
puter for performing the routine mental work of the world much
as automatic machinery has taken over the routine mechanical
work of the manufacturer.

References

McPhJ51.

Section 2

Processors with a general register
state

The processors described in this section all have a processor
state consisting of registers which are used for multiple (i.e.,
general) purposes. Perhaps a better name might be processors
with a state consisting of a register array(s). The following
machines are fairly similar in their ISP structure: Pegasus
(Chap. 9), the DEC PDP-6,10, the SDS Sigma 5 and 7, and
the UNIVAC 1107 and 1108. However, other computers includ-
ing an 8-bit character computer (Chap. 10) and the CDC 6600
(Chap. 39) also use arrays of registers.

The general register organization appears as a compromise
between the 1 and 2 address organizations. It avoids some of
the extra instructions for shuffling data, inherent in a 1 address
system, but avoids taking the space for a full additional address.
The index register organization is also such a compromise, but
one that is specialized to address calculations. The general
register organization moves further toward a full 2 address
organization without much additional cost. This assumes a
small relative cost for a small amount of memory that is sig-
nificantly faster than the larger Mp.

The design philosophy of Pegasus,
a quantity-production computer

Chapter 9 describes Pegasus’s logical organization and the
technology from which it was implemented. The technology
includes vacuum tubes, a cyclic memory, and dynamic logic
based on delay lines. Pegasus has the nicest ISP processor
structure discussed in this section-perhaps in the book. It is
included because it is probably the first machine to use an array
of general registers as accumulators, multiplier-quotient regis-
ters, index registers, etc. This ISP organization should be com-
pared with the IBM System/360 (Chap. 43). Note that the

multiple-register organization is independent of Mp.cyclic. This
organization improves performance by generality.

The structure of System/360
Part I-outline of the logical structure

The IBM System/360 is described in Part 6, Sec. 3, and is
included mainly because of the very large number of such
systems that have been built.

An 8-bit-character computer

This computer (Chap. 10) has been invented by the authors to
show the composite features of a small character/word-oriented
computer. In reality, 8-bit machines turn out to look either like
16-bit machines, because the Mp size accessed is usually >28
words, or like character-string processors. Because of the
primitive nature of this machine, it is a possible alternative to
the larger more complex microprogrammed processors for
defining more complex ISP’s.

Parallel operation in the Control Data 6600

The CDC 6600, described in Chap. 39, has three arrays of eight
registers each. Two of the arrays are used rather generally, and
the third array is used to access words in Mp. The design of
the CDC 6600 is a classic because of the computing power it
provides. It is also worth studying as an example of a Pc
assigned exclusively to data operation, with all concern with the
larger PMS structure located in Pio’s. A discussion of it is given
in Part 5, Sec. 4, page 470.

170

Chapter 9

The design philosophy of Pegasus,
a quantity-production computer1

W. S. Elliott / C. E . Owen / C. H . Devonald
B . G. Maudsley

Summary The paper gives an historical account of the development of
the packaged method of construction of computers, and the advantages
of this method are discussed. The packages used in the computer Pegasus
are described from both an electronic and a mechanical point of view. The
specification of the machine is given and the arguments which led to this
specification are discussed. The detailed logical design procedure leading
from the specification to the wiring lists is described. The method of
maintenance and some reliability fipres are given.

Introduction

The development of standard plug-in unit circuits (‘packages’) for
digital computers began in this country [England] in 1947, and
some of the advantages of the method have been discussed in
earlier papers [Elliott, 1951; Johnston, 1952; Elliott et al., 1952;
Elliott et al., 19531. The advantages start in the design stage of
a new computer project and follow through production and com-
missioning to maintenance.

In the design stage, what is known as ‘logical’ design is sepa-
rated from engineering design. Once the packages have been
designed by electronic engineers and the rules for their inter-
connection have been laid down, the ‘logical designers’ (usually,
but not necessarily, mathematicians) can begin organizing the
packages into various computers to carry out different functional
requirements. The electronic and mechanical design work invested
in the packages is thus drawn on for more than one computer
design, and each computer can be assembled from stock parts
without further engineering effort. Design time and cost are there-
fore much reduced.

In production, whether we consider one design of computer
or several designs using the same packages, costs and time are also
much reduced. Quantity production lines for the relatively few
types of standard package are set up, and are common to different
computer designs, thus reducing inspection and planning costs.
Standard cabinet work has been designed for Pegasus, and this

‘PRJC. IEE, pt. €3, vol. 103, supp. 2, pp. 188-196, 1956.

too can be taken from stock or established production lines to make
other computers.

In commissioning a computer, because all the packages have
been pretested, when power is first applied to the complete
machine it is known that a large part is already fault-free. It
remains to detect a few errors which may have been made in the
interconnections.

Perhaps an even more important consideration is ease and
speed of maintenance. Test programmes will usually indicate the
part of the machine in which a fault is occurring. Several monitor
sockets are located on the front of each package, and by inspection
the faulty package is speedily found and replaced.

The package method has been criticized on the grounds of the
cost and questionable reliability of plugs and sockets, and some
redundancy of components.

The authors believe that the many advantages far outweigh
the cost of plugs and sockets. The present trend is to use copper-
etched printed circuits, and these fall naturally into the plug-in
unit idea, the plug contacts being part of the printed wiring; there
has been no trouble in Pegasus from plugs and sockets. Component
redundancy in Pegasus is about 10% of the diodes and a few
resistors, the cost of redundant components being about 2 150.

Electrical design of the packages

Circuits used for arithmetic and switching operations

Historical. A previous data-processing machine [Elliott et al.,
1952; Elliott e t al., 1956bl used 330 kc/s serial-digital circuits; they
had originally been designed for 1 Mc/s operation, but 330 kc/s
waschosen to suit an anticipation-pulse cathode-ray-tube store. This
frequency has been retained to the present time because it suits
the magnetostriction delay-line store [Fairclough, 19561 and the
magnetic-drum store [Merry and Maudsley, 19561. Experience
with the data processor led to work (commenced in 1951) on a
new set of circuits [Elliott et al., 19521, particular emphasis being

171

172 Part 2 1 The instruction-set processor: main-line computers Section 2 I Processors with a general register state

laid on flexibility of use and ability to work without error in high
electrical interference fields. These circuits form the basis of those
in Pegasus.

Operations to be carried out. The following well-known opera-
tions are used to build up the logical structure of the computer:

‘And.’ This operation, which may be carried out between
two or more input serial trains of pulses, produces an output
train in which pulses occur only when pulses are present
at the same time on all inputs.

‘Or.’ This operation produces an output train in which
pulses occur at all times when a pulse is present on any
of a number of inputs.

‘Not.’ 1’s are changed into 0’s and 0’s into 1’s; this is
achieved by inverting the pulse train.

Digit Delay. The passing of a pulse train through a digit
delay produces a pulse train similar to the input, but each
pulse is one pulse position later in timing and restandard-
ized in shape.

(I

b

c

d

All operations in the computer, including addition, subtraction,
and staticizing, are carried out by combinations of these elements.
There is no circuit specifically for addition, and there are, in
general, no flip-flops such as are often used for staticizing or storing
a single digit. A similar philosophy was arrived at independently
by the designers of SEAC and DYSEAC [Elbourne and Witt, 19531,
bnt the detailed working out is considerably different.

Digit wavefoms. The timing of digit pulses throughout the ma-
chine is controlled by a common ‘clock’ waveform-a 3 micro-
sec square wave (Fig. l a) in which the positive-going portions
define digit positions.

The digit pulses, which are routed about the machine and ap-
plied to logical circuits, are generally of the form shown in Fig.
l h ; as generated, they have their leading edges well in advance
of the clock pulse and are of a greater amplitude. This means that
considerable distortion of the pulse is tolerable, since only the
portion which coincides with positive clock pulse is of conse-
quence. Digit pulse trains are ‘clocked’ (‘and’ operation with clock)
only at their entry into a storage system or into a digit-delay
circuit.

Inverted pulses are also employed: as an illustration, consider
the operation ‘A and not B’. Pulses A and B (Fig. 1) are on two
lines and are of the same nominal timing, and we wish to form
A . B (symbolic representation of ‘A and not B’). To do this pulse

B is inverted (forming B, or ‘not B’) and is used to gate pulse A
and prevent its passage. The inverted pulse will be a little late
on B, which also may have been later than A, as shown in Fig.
IC; thus when A and B are ‘anded’ together a spike may be pro-
duced, as shown in Fig. le. This spike, however, lies between clock
pulses and so will be rejected on clocking.

The pulse system used allows several logical operations to be
performed in cascade without any loss in nominal timing, so easing
the problem of logical design (particularly by permitting after-
thoughts). The maximum number of logical operations performed

m + 2 to + 3 v o l t s

’ I j I
1 . 5 ~ sec , I

-10 to -11 v o l t s

Fig. 1. Basic waveforms.

Chapter 9 I The design philosophy of Pegasus, a quantity-production computer 173

(b

+zoo v o l t s t200 vol ts + 200 VOI t S

470 k f i &--....,
Input clock

+zoo Vol ts +zoo V o l t *

3 3 0 k S Z ,,

C l o c k -150
V o l t s

(a i

“2

- o u t p u t 1

, o u t p u t 2

(b l Reset -150 -150--150
“Dits YOltS Y O l t S

Fig. 2. Digit-delay circuit.

in cascade in Pegasus is five, though up to 12 could be performed
in special circumstances.

The logicul circuits. Each of the logical packages has more than
one circuit unit. A circuit unit is defined as that part of a package
which has input and output pins, and no connections to other parts
of the package other than supplies. We may make the following
generalizations:

a

h

Each unit has an ‘and’ gate at its input.

Each unit has a cathode-follower output (half a 12AT7
valve).

Each unit has an additional output via a germanium diode
for making ‘or’ gate connections.

c

[Note: There are exceptions to (a) and (c) on one package type.]

There are three possibilities for the part of the circuit unit
between the input ‘and’ gate and the output cathode-follower,
namely a digit delay (half a 12AT7 valve), an inverter (half a
12AT7 valve), and a direct connection. Space does not permit a
description of all the circuits, so it is proposed to deal only with
the digit delay.

The circuit is shown in Fig. 2, and some typical waveforms
are shown in Fig. 3. The input circuit can be of two forms, namely
a 3-input ‘and’ gate and two such gates with their outputs ‘or-ed’
together. In both cases there is a further gating with a clock pulse.
The clocked digits from the gate input circuit are applied to the
grid of VI, the anode voltage of which falls, so building up a

current in L. When VI is cut off at the end of the digit, this current
flows through diodes D, and charges up a storage condenser, C,
which is discharged at the end of the next clock pulse by a ‘reset’
pulse applied through D,. The reset pulse supply is a common
computer supply whose amplitude and phasing relative to the
clock pulse is shown in Fig. 3.

It will be noted that the reset pulse is also present at a time,
just after V, is cut off, when the current in the inductor is about
to charge the storage condenser. This merely has the effect of
deferring the charging of C until the end of the reset pulse, the

-10 vol ts (C)

approximate

Fig. 3. Digit-delay waveforms.

174 Part 2 I The instruction-set processor: main-line computers Section 2 I Processors with a general register state

current in the meantime continuing to flow through the diodes
with little loss in the stored energy of L, since the voltage across
L is low at this time.

The output cathode-follower V, is caught at - 10 volts in the
negative direction by a diode; this safeguards the crystal-diode
circuits driven by it in the event of failure of the h.t. supply or
V,, and it removes residual ripple on the bottom of the input
waveform, and thus reduces the back voltage and hence leakage
in diodes of gates driven by the output.

The second output through a diode can be used in conjunction
with similar outputs from other circuits and a resistor (pins 3 and
4) to make an ‘or’ (up to about 16-way).

In general, each output circuit has two available load resistors,
disposed between direct and ‘or’ outputs according to a set of rules
which are applied for each case. The number of units which can
be driven by an output can vary between three and 16 according
to circumstances; where more have to be driven than the rules
allow, use is made of ‘booster’ cathode-followers available on one
of the packages.

Some examples of the use of the logical circuits

Two examples will be given, the first being a simple arrange-
ment-the staticixor-which is used frequently, and the second
being a complicated arrangement-the adder/subtracter-which
is used infrequently. The symbols used to indicate the circuit units
are shown in Figs. 2c and 5h.

The staficizor. The function of a staticizor is to remember the
fact that a digit occurred at a particular time, for an indefinite
period, the method generally used in Pegasus being shown in Fig.
4. A digit delay with a twin ‘and’ gate input has its output con-
nected to one of its inputs. It is turned on by gate 1, which causes
a digit to circulate as long as the inputs to gate 2 remain positive.

S t a t i c i z o r is t u r n e d
/ o f f i f e i ther of t h e s e

leads i s n e g a t i v e
S t a t i c i r o r is s e t if
t h e s e leads a r e
p o s i t i v e

r
Fig. 4. The staticizor.

X + Y or X - Y
(Delayed one

C a r r y Add S u b t r o c t (O)
suppression

Cathode I n v e r t e r D i g i t
AND G a t e fol lower delay (b)

Fig. 5. The adder/subtracter.

It is normally turned off by an inverted pulse (a ‘0’ following a
series of 1’s) on one of the gate 2 inputs.

The adder/subtracter. Figure 5 shows an adder/subtracter unit
with inputs X and Y and an output X + Y for the sum or X - Y
for the difference. There are two further input control leads
marked ‘add’ and ‘subtract’. If the ‘add’ lead is held positive
while the ‘subtract’ lead is held negative, the unit acts as an adder.
If the ‘subtract’ lead is held positive and the ‘add’ lead negative,
the unit acts as a subtracter. Carry suppression is controlled by
the lead marked ‘carry suppression’. Carries are allowed to propa-
gate when this lead is held positive, so that a negative signal on
this lead will snppress carry.

Table 1 gives the digits appearing at the outputs of logical
elements in the adder/subtracter unit for all combinations of input
and carry digits when the unit is operating as an adder.

Arrangement of circuits bused on packages

It was required to base the logical circuits OII a standard size of
package which could also be used for other circuits, e.g. a nickel-
line 1-word store [Fairclough, 19561. A unit which could accom-
modate three valves and had a 32-way plug was decided on; the

Chapter 9 I The design philosophy of Pegasus, a quantity-production computer 175

Table 1
when set to add, for all combinations of the input and carry digits

Digits at various internal points of the adder/subtracter unit

Present Digits at internal points

digit A B c D E F
Inputs digits carry

(Sum) (Next
X Y Z carry)

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

0 1 0 1 0 0
1 1 0 1 1 0
1 1 0 1 1 0
0 1 1 0 1 0
1 1 0 1 0 1
0 0 1 1 1 1
0 0 1 1 1 1
1 1 1 0 1 1

Note.-A and Care at the grids of the digit delay units.

problem then was to arrange the various circuits in such a way
as to enable a computer to be designed using a minimum total
number of packages without too many types. Five types were
arrived at and these are shown in Fig. 6.

As an example of the factors involved, consider package types

W W NOTE Clock connections
are not shown, they are
implied whenever a delay
symbol is used.

(U)

1 and 2. The circuit units based on package type 1 can perform
all the functions of those on type 2. However, there are many uses
for a digit-delay circuit with a single ‘and’ gate input (package
type 2), and since three units of this kind (instead of two for a
2- ‘and’-gate input delay) can be based on one package, a saving
can be effected. In Pegasus this saving amounts to 32 packages,
which is considered to be well worth an extra package type.

In addition to the five logical packages, a further 16 types (three
of which are peculiar to each computer) are required. The numbers
used for the various functions are given below:

Number

Type 1 113
Type 2 64

Logical types Type 3 55
Type 4 45
Type 8 37

61
38
17
14

Total 444

i
Nickel line 1 word store
Drum-store packages (8 types)
Input/output packages (3 types)
Clock and reset waveforms (3 types)

~

Fig. 6. Contents of logical packages. The arrowhead on an output lead denotes the presence of an OR crystal connection.

176 Part 2 I The instruction-set processor: main-line computers Section 2 I Processors with a general register state

The magnetic-drum store and the circuit packages used with
it are described in another paper [Merry and Maudsley, 19561,
as is the nickel-line store [Fairclough, 19561.

The mechanical design of the packages

General form

Each standard package consists of three main parts, namely the
valve panel, the component panel and the plug.

The valve panel is an aluminium pressing, there being three
types-a 3-valve type, a 2-valve type and a blank. The package
type number is marked on the panel by two dots according to
the standard resistor colour code.

The component panel houses up to 100 components, including
small transformers, chokes and coils, the panel and the handle
being made in one piece from sheet insulating material. This
design provides a minimum resistance to airflow over the valves
and gives ample protection to the valves against accidental dam-
age.

The plugs and sockets are used in multiples of eight connec-
tions. Most of the packages have four plugs providing 32 connec-
tions, but up to 64 are possible in each package. The plug contacts
are made of brass and are heavily silver-plated. The socket uses
a proprietary valve-holder contact, which can readily be replaced
if damaged.

SOCKETS
/ PLUGS

Fig. 7. Standard package.

This combination of plug and socket has a consistently low
contact resistance (0.003 ohm at 1 amp); the insertion and with-
drawal force is about 4 oz per contact.

The wiring of the packages

At present packages are wired and soldered by hand. The wiring
is point-to-point, and within the limitations of layout for efficient
performance, wire lengths are standardized for mass production on
automatic wire-cutting and stripping machines. The symmetry of
the eyelet positions makes it possible to use components which
are preformed to a standard pitch and would allow for automatic
preforming and insertion of components.

Experimental packages have been produced by photo-etched
wiring and dip soldering.

Specification of the computer Pegasus

Summary specijication

A detailed specification would cover the ground of the program-
ming manual [Pegasus Programming Manual, Ferranti Ltd.,
London] and would be out of place here.

Pegasus is a binary serial-digital computer. The word length
is 42 binary digits, of which 39 digits are used for a number and
its sign (negative numbers are represented by their complements
with respect to two), one digit is used for a parity check and the
other two are gap digits. The length of an order is 19 binary digits,
so that one word may consist of two orders, the remaining digit
being a ‘stop-go’ digit. If the ‘stop-go’ digit is a ‘V, the computer
will stop before obeying the orders in the word, but will proceed
unhindered if the digit is a ‘1’.

There is a 2-level store, a magnetic drum holding 5120 words
and an immediate-access or computing store of 55 single-word
magnetostriction delay lines.

An order is made up of seven N-digits, three X-digits, six F-digits
and three M-digits, the N-digits being the most significant and the
M-digits the least significant. The N-digits allow 128 addresses in
the immediate-access store (of which only 63 are used). The reg-
isters in this store are shown in Fig. 8. The X-digits refer to one
of the accumulators, the registers corresponding to N-addresses
0-7. Thus the order code is a 2-address code with one address
referring to only a limited part of the store. The F-digits indicate
the function of the order. A list of functions and their correspond-
ing F values are given in the appendix of this chapter. The M-digits
indicate a modifier for the order: they select one of the accumula-
tors, and the modification process is to add certain parts of the
contents of the selected accumulator to the order before it is

Chapter 9 I The design philosophy of Pegasus, a quantity-production computer 177

In

E- + 8
a

z

8
9

NAME OF ADDRESS NOTES REGISTER O F REGISTER

BLOCK T R W Y E R S
TO AND FROM
MAIN STORE 1 0 ----- ALWAYS ZERO

SINGLE- WORD TRANSFE
ACCUMULATORS 2 -
(ORXREGISTER 3 -
THESE ARE 4 -
THE REGISTERS 5 -

USED FOR 6 -
MODIFICATION 7 -]DOUBLE LENGTH

HAND SWITCHES (20 DIGITS)

i1 -
- INPUT/OUTPUT CHECKED (5 DIGITS)

SPECIAL I:“ l7 - UNCHECKED (5 DIGITS)

BCOCK 0

BLOCK 1

BLOCK2

BLOCK3

BLOCK4

BLOCK 5

ALWAYS- 1.0

ALWAYS ‘Tl0

REGISTERS 32 -
33 - ALWAYS % I:: = ALWAYS 2-13

0’7
1 0

’ROGRAMMERS
NOTATION

Fig. 8. Allocation of addresses in store.

obeyed, the part chosen depending on the function of the order
to be modified. Figure 9 gives a schematic representation of the
modification process. The effect of modifying an order depends
on the function of the order and can be to make the effective order
length 22 digits. This extension is necessary when specifying an
address in the main store.

Transfers of information can take place between the computing
store and the main store, and vice versa, either in single words
or in blocks of eight words. For single-word transfers, only the
register with address 1 in the computing store is involved. For
block transfers the address on the drum of the first word of the
block must be divisible by eight, and the registers in the computing
store that are involved will be one of the discrete blocks indicated
in Fig. 8.

Input and output is by means of punched paper tape. An ‘exter-
nal conditioning’ order is included in the code to enable a choice
of input and output equipment to be made. In the standard
machine, two tape readers are used.

All stored information is checked (when read) by means of a
parity digit, which is such that the total number of 1’s in any
correctly stored word is odd. The input and output of decimal
characters on tape can be checked by a similar process.

The considerations which led to the
specification and the logical design

The main features of the design are

a The use of a computing store from which all orders and
numbers are taken while computing

The provision of multiple accumulators

The provision of special orders and facilities for dealing
easily with ‘red tape’l

b

c

The computing store. The use of a fast-access store from which
all numbers and orders are taken increases the speed of the
machine and eliminates the need for optimum programming. It
is this computing store which makes it possible to use an inexpen-
sive magnetic drum (with a relatively long access time) as the main
store, and yet have a machine which is fast and relatively simple
to programme. On the other hand, programmes have more ‘red
tape’ and are not as simple as with single-level storage.

Transfer between levels is in blocks of eight words; this is a
simplification and saves time. One block holds a reasonable amount
of programme and other blocks hold data. Four blocks in all (32
words) would be just sufficient, and Pegasus was originally de-
signed with this number. The design was subsequently modified
to six blocks, which is quite adequate, in conjunction with the
seven accumulators. Any further increase in the size of the com-
puting store would be achieved by increasing the size, not the
number, of blocks. As it is there is an economic balance between
the usefulness and the cost of the computing store.

“Red tape’ is an expression for the non-arithmetic orders in a programme.

SHADED PORTION IS ADDED
TO THE ORDER. THE FULL
13 DlGlTS ALWAYS APPEAR
I N X REGISTERS I N
SIGNIFICANCE SUCH THAT
THE MOST S I O N I F I U N T
DIGIT CORRESPONDS TO
2-I (AND LEAST SIGNIFICANT
TO 2-13.)

FUNCTIONS 0 0 3 7
FUNCTIONS 40.61-

F U N C l l O N S lO,lI,74.13

fUNCTlONS 7 . ? , 1 3 , 1 6 , 7 1 ~ 0 .

Fig. 9. Order-modification process.

178 Part 2 1 The instruction-set processor: main-line computers Section 2 I Processors with a general register state

The procision of several accumulators. This is the most novel
feature of the logical design of Pegasus. It is generally agreed that
the simplest order code from the user’s aspect is the 3-address code
with orders of the form, A + B+ C. An examination of this
form of code, however, shows that in many cases two of the ad-
dresses are the same, so that the order takes the 2-address form,
A + H 4 A. A further examination shows that in a large propor-
tion of cases the address A is confined to a very few addresses.
This leads to the suggestion of a code of the form N + X-- t X,
where X covers only a small part of the store while N covers the
whole store. This will have the advantage of yielding a reasonably
short order. In Pegasus two such orders are incorporated in one
word, leaving sufficient digits to specify a modification register (a
Mancunian B-line) in each order.

The extreme case of this code is, of course, the single-address
code, where X is confined to one address, the accumulator. How-
ever, experience had convinced the programmers collaborating in
the design of Pegasus that, with single-address codes, a large
number of orders are concerned 50kly with transfers of numbers
from one register to another; the single accumulator is a restriction
through which all numbers must pass and in which all operations
have to be performed.

In the Manchester University computer the B-lines serve two
very valuable but distinct purposes: they allow order modification
and rudimentary arithmetic (such as counting) to be done without
disturbing the accumulator. It was felt that fuller arithmetic and
logical facilities on these B-lines would have been extremely valu-
able. The seven accumulators in Pegasus, used for modification
and arithmetic, are a development of the B-line concept.

Special facilities for dealing with ‘red tape’. The difficulties asso-
ciated with the 2-level storage system have been greatly reduced
by having an order-modification procedure which depends on the
function of the order (Fig. 9). This method of modifying orders,
used in conjunction with order 66 of the code (the unit-modify
order), enables the counting through blocks of information to be
done with relative ease.

The use of the group-4 orders of the code enables counters to
be set conveniently and a constant (up to 127) to be placed in
an accumulator, the constant being the value of the N-digits of
the order. Order 67 (the unit-count order) enables the counting
of cycles of operations to be dealt with in a simple way. A jump
to another part of the programme can be programmed to take
place automatically when the required number of cycles has been
performed.

Having a large number of jump instructions greatly helps in
organizing a programme. In particular, one order enables a jump
to be made depending on the condition of an accumulator (being
zero, for example), and another order on the complementary con-
dition (being not zero). When only one of these orders is available
it is necessary to think ahead to see whether or not the correct
condition will be satisfied. Although the eight jump instructions
included in the code were felt initially to be enough, it is now
suggested by programmers that even more such orders would be
helpful.

The logical shift orders, 52 and 53, are also included to simplify
‘red tape’. In particular, they are used for packing and unpacking
words holding several items of information.

As a result of including these various orders, the order code
of Pegasus is quite large. It is worth remarking, however, that by
a sensible grouping of the orders in the code the remembering
of the code is a very simple task. A sensible arrangement of the
code tends to reduce the amount of equipment needed to engineer
it. For example, when the equipment for dealing with group 0
of the code has been allocated, groups 1 and 4 require the addition
of only three gates.

Facilities for checking programmes. The features mentioned above
make the computer easier to programme, and there are other
facilities in Pegasus that make it easier to check out and develop
new programmes. These include causing the machine to stop
obeying orders, either under programme control or when the
programme is in error. In particular, the machine stops if an order
for writing in the main store is reached and an overflow indicator
is set. A further aid when testing new programmes is the automatic
punching out of all main-store addresses appearing in block-
transfer orders. When this information is examined an indication
of the course of a programme is readily obtained. The punching
can be inhibited by a switch when a return to full-speed running
is needed.

Machine rhythm

The logical design of Pegasus is built around a nucleus that deals
with the simple arithmetic orders, groups 0, 1 and 4, of the code.
This nucleus contains the control section, i.e. the order register
and order decoding equipment, and the mill in which these orders
are executed. The design of this nucleus could not begin until a
basic rhythm for dealing with the extraction from the computing
store and the execution of such a pair was determined. When the
outline of this nucleus was clear, the equipment for dealing with
the remaining orders in the code was designed to fit it.

Chapter 9 I The design philosophy of Pegasus, a quantity-production computer 179

The following arguments led to the basic rhythm. Since the
orders of groups 0, 1 and 4 are similar in many respects, for
definiteness, it will be sufficient to consider a particular order, 11
of the code, say. This is an order which takes two numbers from
the computing store and replaces one of them by their sum. It
would take a prohibitive amount of equipment to extract these
numbers, add them together and have the least significant digit
of the sum available for replacing in the store in the same digit
time as the least significant digits of the two components taken
out of the store. In practice, some four digit times at least would
be needed for this sequence of operations. Thus, it would be im-
possible to return the sum to the store in the same word as the
operands are extracted without having an entry point to each
register which is in a different timing from the normal circulation
entry. To produce two such entry points to each register would
mean more equipment associated with each register, which was
considered an uneconomical use of extra equipment. Instead, it
was decided to delay the sum so that it could enter the register
in the computing store in the next word time in standard timing.
This involves one common delaying circuit instead of one for every
register. Such an order therefore takes two word times to execute.
It may be argued that this second word time could be made to
overlap with the first word time for the next order. Two reasons
oppose this: the new contents of the register being changed might
be required by the next order; and two different sets of equipment
for selecting a storage register would be needed if numbers were
to be extracted from one and replaced in another register in the
same word time.

Thus, the execution of a pair of orders taken from the comput-
ing store requires four word times. The reasons for opposing the
overlapping of the execution of two orders also oppose the extrac-
tion of an order pair while the previous pair is being dealt with.
Five word times are therefore needed for the process of extracting
and obeying a pair of simple arithmetic orders. More time may
be needed for some of the other orders in the code.

The basic 3-beat rhythm is thus established:

a

h

c Obey the second order.

Extract the order pair from the computing store.

Obey the first order of the pair.

The duration of beat (a) is one word time; beats (b) and (c)
are each two word times long for orders in groups 0, 1, 4 and 6
of the code, but may be longer for other orders.

Times for typical operations

The times for the various arithmetic operations are:

millisec
Addition and subtraction 0.3
Multiplication 2.0
Division 5.4

These times include an allowance for the time to extract the
orders.

Some times for standard subroutines are:

millisec
Exponential function 29
Sine function 24
Logarithmic function 34

Finally, to give some indication of the time for a typical prob-
lem, a set of 50 simultaneous equations (with a single right-hand
side) takes about 10y4 min. Of this time, 3 min 8 sec is for input,
7 min 17 sec is for calculation and 18 sec is for output.

Realizing the specification

The detailed logical design

It would take too long to describe fully the detailed logical design.
One aspect is worth mentioning, however, namely the avoidance
of all ‘exceptions’ in the results of orders. As an example of an
exception consider the overflow indicators, which should be set
whenever the final result of an order is outside the permissible
range of numbers. In multiplication this can occur only when both
the multiplier and the multiplicand are - 1, and this is likely to
occur very infrequently. Rather than provide equipment to sense
this infrequent case, it is easier to put a footnote in the program-
ming manual, where the overflow indicator is described, pointing
out the exception. It was felt, however, that such exceptions should
be avoided even at the expense of extra equipment or extra com-
plication. For this and other reasons concerned with facilitating
machine use, the logic of Pegasus is quite complicated.

The end-product of the detailed logical design is a series of
diagrams with symbols corresponding to the circuit units of the
packages, as shown, for example, in Fig. 5. The inputs and outputs
of the units on these diagrams correspond to the pins of the sockets
into which the packages plug. Thus, the wiring lists of connections
of these pins can be produced from these logical diagrams. The
first step in the production of these lists is to allocate a position

180 Part 2 1 The instruction-set processor: main-line computers

in the cabinets to each logical circuit in such a way as to reduce
the amount of wire needed. When the layout has been completed,
the last stage of producing the wire lists can proceed.

General construction of machine

The main units are shown in Fig. 10.

The package frame. This unit is a simple light-alloy frame sup-
porting diecast light-alloy frame racks to which the back socket
panels are fixed. The packages slide into grooves in the rack and
plug into sockets at the back, a polarizing feature preventing the
insertion of a package upside down. If electrical or magnetic

Section 2 I Processors with a general register state

screening is necessary between any packages, a special metal plate
is inserted in slots in the cast rack and is fixed by a single screw
in the back panel. Coded aluminium strips containing coloured
plastic studs which identify the position of each package are fixed
to the front of each casting.

Arrangement of the packages. There are 200 packages per cabinet,
arranged in ten horizontal rows of 20 units per row. The metal
valve panels are placed so that the edges almost touch. The com-
ponent panel of each unit is in register with the unit in the corre-
sponding position in each of the other rows, thereby providing
vertical chimneys for cooling the components secured to these

BAY I
LOGlC PACKAGES

\ I

8 A V 2
.OGlC PACKAGES BAY 3

INPUT
EQUIPMENT

Fig. 10. Main units.

Chapter 9 I The design philosophy of Pegasus, a quantity-production computer 181

panels. Warm air from the main source of heat, the valves, is
prevented by the valve panels from reaching the more tempera-
ture-sensitive components, such as diodes, secured to the com-
ponent panel.

The back panel wiring. For locating long signal wires between
sockets a system of plastic strips is used, which hold the wires
at definite positions given by the instructions on the wiring lists.
The exact route of every wire is predetermined, thus making
wiring and inspection more reliable and fault finding and mainte-
nance easier.

Final assembly. The completely wired frame is assembled in its
cabinet, which has already been fitted with the control and auxili-
ary supply circuit unit, heater transformers, fuses, cooling assembly
and cablefornis. The work of connecting the cableforms, heaters
and earths can be done by relatively unskilled labour working to
clearly written instructions and diagrams.

The cooling system. Each cabinet has its own cooling system as
an integral part of the construction; there is therefore no difficulty
in cooling cabinets added to existing computers. Two axial-flow
turbo blowers are mounted in the base beneath an airtight pressure
chamber, each providing 300 ft3/min of air a t a total pressure head
of 1 in (water gauge). The maximum temperature rise is 10” C.

The power supply. A separate cubicle houses metal rectifiers, shunt
stabilizing valves and control circuits. The power is obtained from
the mains through a motor-alternator set, the output of which is
stabilized to 2%, the main purpose of this set being to act as a
buffer against switching surges and other mains voltage variations.
The valve heaters in the computer are energized from the stabi-
lized alternator output, which is expected to extend the valve life.

Maintenance

General

All digital computers so far have a fault rate which cannot be
ignored. When the best has been done in the choice of components,
circuits and mechanical construction, attention must be paid to
the following points to get the best out of a machine:

a Rapid fault location

b Getting the machine working again as soon as possible after
locating a fault

c Preventive maintenance

Fault location

There are parity-checking circuits on both the main and the high-
speed stores. Errors of a single digit in the stores stop the machine.
The fault can then be quickly located by examination of the
monitors.

For other faults the general method is to run a test programme
(assuming the fault is not in the main control) which will indicate
the area of the fault. Detailed examination can then be carried
out with the monitors.

All outputs of circuit units are readily accessible at monitoring
sockets on the front of each package, and in addition about 80
points can be directly selected by switches from the monitoring
position: these include all store lines and a number of key wave-
forms. Fault-finding is normally a matter of tracing 0’s and 1’s
through the machine with reference to logical diagrams rather
than electronic circuit diagrams.

A variety of triggers can be selected for the monitor time-bases,
these including

a Trigger at any word position within a drum revolution (128
different times selectable by switches)

Trigger at any word time of any selected order h

These triggers and some other monitoring facilities are pro-
duced by 19 standard packages and are found to be well worth
the extra equipment.

Fault repair

Once a faulty package has been located, the machine can be got
working again immediately by replacement of the package with
a spare; repair of the faulty package can be done at leisure with
the aid of a package tester. With this equipment a package can
quickly be given a series of standard tests; each is selected by
switches, and the performance is measured either by observation
of meters or a built-in oscillograph.

During commissioning not one case was found of the first
machine doing other than what one would expect from the logical
diagram (except for a very few cases of incorrect wiring).

Preuentiue maintenance

The machine h.t. supplies are reduced while the test programmes
are being run. This marginal testing shows up incipient faults such
as deterioration in valves, crystal diodes or resistors. The machine
is at present kept in good running order down to 10% margins

182 Part 2 I The instruction-set processor: main-line computers

30
31
32
33
34
35
36
37

Section 2 I Processors with a general register state

,Not allocated

(the supplies are normally controlled to about 1% of nominal),
although correct running at about 20% reduction has been ob-
served.

for 55”/, hours’ running. The majority of package replacements are
done during routine maintenance.

The packaged method of construction of computers has proved
to have great advantages in design, construction and operation.

Conclusions

The first machine has been computing regularly for only a few
months and has been on regular preventive maintenance (about
1 hour per day) for a few weeks. Error-free runs of over 30 hours
are common, and at the time of writing there has been no error

References

ElliW56a; ~ l b o ~ 5 3 ; ElliW51, 52, 53, 56b; FairJ56; JohnD52; MerrI56;
Pegasus Programming Manual, Ferranti Ltd., London: Pegasus Mainte-
nance Manuals, Ferranti Ltd., London.

40 x‘ = c
41 X ’ = X + C

42 x’ = - e

44 x ’ = c - - x
45 x ’ = x & c
46 X ’ = X ~ C

43 = -

APPENDIX

.c = ~ 2 - 3 8

The Pegasus Order Code

00 x’ = n
01 x ’ = x + n
02 x‘ = -n
03 x ‘ = x - n
04 x ’ = n - x
05 x’ = x & n
06 x’ = x $ n
07 Not allocated

10 n’ = x
11 n ’ = n + x
12 n’ = -x
13 n ’ = n - x
14 n ’ = ~ - n
15 n’ = n & x

17 Not allocated
16 n ’ = n f x

this order assumes that any
overflow is due to opera-
tions in 7. Clears overflow I unless n‘ overflows

23 (nq)’ = n + 2-3xy

0 2 p’ /n < 1 (unrounded
division)

25 -y2 5 p ’ / n < ‘/z (rounded
division)

26 q‘ + 2-38(:) = x; -y2 5 p’/n < Y2 (rounded single-

27 Not allocated

n
length division

Note: x’ = x
single-length arith-

metical shifts
50 x‘ = ZNx
51 x’ = 2-lVx (rounded)

53 Shift x down N places] shifts
52 Shift x up N places single-length logical

Note: p ’ = p
and q’ = q I i f N = O

double-length arith-
metical shifts I 54 (p q) ’ = 2N(pq)

55 (py)’ 2-N(pq) (un-
rounded)

Chapter 9 1 The design philosophy of Pegasus, a quantity-production computer 183

56 (Normalize) (p q) ’ = 2p(pq);

either (1) y4 5 (p q) ’ < ‘/z and I - 1 I p s N - 1

57 Not allocated

60 Jump to N if x = 0
61 Jump to N if x # O
62 Jump to N if x 2 0
63 Jump to N if x < 0
64 Jump to N if overflow staticizor clear; clear overflow staticizor.
65 Jump to N if overflow staticizor set; clear overflow staticizor.
66 (Unit-modify) x& = xm + 1. Jump to N if x& $ 0 (mod. 8)
67 (Unit-count) x: = x, - 1. Jump to N if x: # 0

70 Single word read to accumulator 1.
71 Single word write from accumulator 1.
72 Block read from main store

1’ = s
s‘ = 1
u‘ = b

73 Block write into main store
74 External conditioning

”]Not 76 allocated

77 stop

h‘ = u

The notation used here is as follows:
N is the first address (the register address) in an order.
X is the accumulator specified in an order.
n is the word in N before obeying the order.
x is the word in X before obeying the order.
p and q are the words in 6 and 7 before obeying the order.
(p q) = p + 2-38q, with 2 0. This is a double-length number.
x‘, n’, p ’ and 9’ are the corresponding values after obeying the

B is a block in the main store (the drum).
U is a block in the computing store.
P is the position number of a word within a block.
OVR is the overflow indicator.
xm is the modifier in X , i.e. an integer represented by the digits

xc is the counter in X , i.e. an integer represented by the digits

order.

1 to 13 of x.

14 to 38 of x.

Chapter 10

000

001

010

011

loo

101

An 8-bit-character computer

10 101 50 SO1

A-M[Ra A-M[Ra:R-R+L' M[RD]-A M[Ra-A; R+R+L'

I r , ori srd a id

(2-51 (2-51 (3) (31
odl S U I br b l d

(11 111 (2) (31
cbr cbd C"r cnd

(0' (11 (11 (11

Q - i m Q - R t i m M [d]- R Q-M[d]

R - R f L ' R- R - I.' P- R P-d,R-P

f(r.i.N,Z,C+(P- f(s.d)l -
(2) (31 (2) (3)

(11 (1) (11 (11

ad odc sb sbc
D!-A+R A'-A+ R t C A'-A - R A ' t A - R - C

m u , muf d i i d i f
A'-AXR(i) A8-AxR(ffr) A'-A/R(I) A'-A / R (fr}

111 (1) (1) (11

Introduction

We present in this chapter the result of an exercise to design an
%bit computer. Although a rather trivial machine, it is not without
interest, either as manipulator of variable-length character strings
or as an interpreter of more complex computers in a role similar
to a microprogrammed Pc. In the latter role a read-only memory
could be used as Mp to speed up the Pc.

This computer is typical of %bit character-oriented computers.
Among the similar machines are the Interdata Model 3, the RCA
1600, the IBM System/360 Model 25, and the Data Machines Inc.
DMI 520/I. A processor of this type rarely stands alone but is used
with a fixed program in the following ways: as a control in a larger
C, as a control to a laboratory or other complex instrument, and
as a microprogrammed processor to interpret an 1SP.l

The processor must perform fixed-length operations on both
%bit characters and 16-bit addresses. The address (double length)
operations are necessary for performance reasons, because almost
all programs operate on address integers. (For example, see the
program on page 185.) Thus, extending (generalizing) the operation
length to three and four characters is comparatively inexpensive.
It should be noted that a processor might allow the operation
length to be specified between 1 and perhaps 28 (256) characters
for a much more general capability. We limit the directly addressa-
ble Mp to 216 (or 65,384) characters. An alternative design might
allow the maximum addressable Mp to be zz4 words, or, alter-
natively, it could be variable. Although 24-bit operations are
defined, their implementation might be expensive. Aligning the
24-bit words on 32-bit-word boundaries would simplify the address
calculation hardware.

110

111

The ISP

The basic information unit is the 8-bit character. Instructions are,
in general, one character in length. However, both instructions
and data formats are of variable length, instructions being 1, 2,
3,4, and 5 characters long, and data being 1,2,3, and 4 characters
long. The Pc state contains -35 characters, which are organized
to be dealt with as eight 8-, 16, 24-, or 32-bit registers (shown

and or XO, cmpr

(1) (11 (1) (1)
A-A A R A-A" R A-A@ R N.2-A-R

Id S t sh i f t SI.

L- r A'-A X 2' B ' c R R- A
(0 ~ (1) (1) (1 1

'The structure should be compared with the elaborate microprogrammed
IBM System 3BO/Model 30 (Chap. 32).

in the ISP description in Appendix 1 of this chapter). Of these
registers, the first (register 0) is taken to be a special accumu-
lator, A.

The Pc state contains both operands and addresses to operands.
The instructions to load or store register A, from or into Mp, with
or without incrementing a general register, all use the general
registers as a two-character address pointer. Any general register
may be loaded or stored direct from or to Mp. The binary arith-
metic and logical operations are with a register and the accumu-
lator, and leave the result in the accumulator; i.e., they are of the
form

A t A b R[r]

Inst ruct ion execution .=
(oP=xxxyyz l

Instructions Formots

FOrmat Chorocler length __ Name ~ Behavior'

0 4 7
1 No parameters 0

2 address
Integer or relative

l o p I r T 5 I b
0 7 15

IOP I r 1 d J c 3 Direct address
0 7 23

0 7 - 15 23L--31Lp-z
2-5 Immediate doto d

m- - - ---I 1 r - - - 7 - - - 7

' (1 encloses instruction length in characters shown In formats toble
'See Stote diogrom, Fig. 2

Fig. 1. Instruction coding for an 8-bit-character computer.

184

Chapter 10 I An 8-bit-character computer 185

00100,011

1 character r

1010,1001 0000,0111

Inst ruct ion lengths

2 chorocters 3 Characters

Inst ruct ion lengths

2 chorocters 3 Characters

o The operotton specified by the instruction q
0.q
a q
0.v Operation t o determine variobles specified by Instruction q
a.v Access to obtain variables or return result variables

Operation t o determine location of inst ruct ion q
Access t o obtain instruction q

Fig. 2. An 8-bit-character-computer instruction-interpretation state dia-
gram. (a) No parameters; (b) integer or relative address; (c) direct ad-
dress; (d) immediate data.

The general registers discussed above are similar to those of
the general register processors. Since it is assumed that this type
of processor might be used to interpret another ISP, the + 1 and
- 1 instructions provide for both string and stack memory opera-
tions. The instructions for a microprogrammed P and the 1/0
devices are not defined. For example, a 16-way branch instruction
which branched to one of 16 locations based on 4 bits of the
accumulator might facilitate writing an interpreter.

The ISP is given in Appendix 1 of this chapter. The Pc state
is organized about a small scratch-pad memory, although Mp could
be used instead. The instruction formats and the operation code
assignments are shown in Fig. 1.

The instructions behave as illustrated in the state diagram (Fig.
2). For example, the instruction “hi 3, A907,,” is coded

The instruction, xor 3, with L = 2, is coded

and the effect is

R[0](0:23) t R[0](0:23) @ R[3](0:23)

In these examples, the behavior of Iri and xor is specified in the
state diagrams of Fig. Id and la , respectively.

An open subprogram to perform the n-component vector

(16-bit) addition’ +% +% is

start sl 2 - 1
lri 4, A
Iri 5, B
Iri 6, C
lri 7, 2 x n

loop la1 5
st 3
la1 6
ad 3
stl 4
sul 7
cnr 4, loop

set register length = 2
set up vector pointers to

locutions A, B, C in Mp

set up count ut 2n
fetch B
storc B temporarily
fetch C
add
store in A
decrement n count
brunch if negative n

The above program loop is nine characters long. A program
loop for the IBM Systern/360 is about 16 characters long. The
setup is 13 characters, as opposed to 6 - 16 characters for the
360.

Conclusions

We have violated our principle of showing “real” computers by
designing this computer. We think it is typical of a small processor,
but slightly more interesting.

‘The length is specified by register L

186 Part 2 1 The instruction-set processor: main-line computers Section 2 I Processors with a general register state

APPENDIX 1 AN 8-BIT-CHARACTER COMPUTER ISP DESCRIPTION

Appendix 1

An 8 B i t Charac te r Computer I S P D e s c r i p t i o n

P c S t a t e
The fo l lowing array of 8 general r e g i s t e r s , R, are mapped i n t o t h e f i r s t 8 x
&:6 x i L + l l) - I>.

(I h I) c e l l s . The r e g i s t e r length i s
The f i r s t r e g i s t e r o f each array, R [O l i s an accumulator, m d has s p e c i a l p r o p e r t i e s .

R[O:71<0: (8 x L ') - I > := M[O:7][0:L1<0:7>

A 4 : (8 x L ') - I > := R[O]63:(8 X L ') -1>

:= M [O : 7 1 [0:31<0:7> RQ[O : 7 1 4 : 31>

AQ<0:31> := RQ[0]<0:31>

RT[O: 71<0:23> := M [O : 7 1 10:21<0:7>
AT<O:23> := RT[01<0:23>

R O [0: 7 1 4 : 15> := M [O : 7 1 [0:11<0:7>

AD<0:15> := RD[Ol<O:15>

R S E O : 7 1 G : 7> := M[0:71 [o:oIUl :7>
AS<O:7> := R S [O l < O : P

General R e g i s t e r s o f length IL+lI x 8 b i t s

AccumuLator IgeneralZyJ
Quadruple R e g i s t e r s

Quadruple Accumulator

T r i p l e Regis ters

T r i p l e Accumulator

Double R e g i s t e r s

Double Accumulator

S ingle R e g i s t e r s

S ingle Accumulator

The fo l lowing f l a g s are s e t by t h e r e s u l t o f a l l a r i t h m e t i c and l o g i c a l i n s t r u c t i o n s on t h e Accumulator, A .
t o A t o form A ' .

These are connected

N Negative resu2.t f l a g

2 Zero f l a g , s e t i f t h e r e g i s t e r conta ins a z e r o

C

A ' < N , Z , C , O : (8 X L ') -1> := N o Z O C O A < O : (~ x L ') -1>

L<o: 1>

Carry f l a g , s e t i f there i s a carry or borrow from b i t 0 o f t h e
a d d i t i o n

2 b i t r e g i s t e r t o i n d i c a t e t h e character length of operations;
1,2,3,4 f o r S,D,T,Q

L'<1>4 := L + l

P<O : 1 5> Program counter

Mp S t a t e
M[O:17777781<0:h primary memory

I n s t r u c t i o n Format

i [0 :41<0 : n
op<0:4> := i [0 1 4 :4>
r<O:2> := i [O] < 5 : h

s < O : p := i [1]

&O :IS>:= i [1 : 2]

i 6 0 : (8 x L ') - I > := i [l : L '] d) : P

1 t o 5 character i n s t r u c t i o n

O p Code
r e g i s t e r address

signed i n t e g e r f o r s h i f t s

address i n t e g e r
var iable length innnediate data

I n s t r u c t i o n I n t e r p r e t a t i o n Process
((i n s t r u c t i o n [O : 4] * J : D c M [P : P + k] ; P t P + 1) ; n e x t f e t c h

((op = Oil*) v (op = 1@11) v (op = 1001)) 4 (p t P t 2))

((op = 1 M O) v (op = 1010)) + cp t p + I) ;
(op = 010$) 4 (P t P + L+]) : n e x t

I n s t r u c t ion-execut i o n) execute

Chapter 10 I An 8-bit-character computer 187

Instruct ion Set and Instruct ion Execution Process
I n s t r u c t i o n a x e c u t i o n :* (
la (:= op = 0) + (A +MCRD[r l l) ; toad A

l a 1 (:= op = I) i (A + M [R D [r]] ; n e x t R O [r] t R O [r l + L ') ; load A , Zncrement

sa (:= op = 2) + (M [R D C r l I +A);
sa l (: = op = 3) i (M[RD[r]] + A ; n e x t R D [r] + R O [r] + L ') ;

l r i (:= op = 4) i (R [r] e im) ;

a r i (:= op = 5) 3 (R [r] t im + R [r]) ;

s r d (:= op = 6) i (M[d] + R [r]) ;

I r d (: = op = 7) i (R [r] t M [d]) ;

ad1 (:= op = OIOOO) + (R [r l c R [r] + L ') ;

S U I (:= op = OlOOl) 3 (R [r l + R [r] - L ') ;

b r (:= op = 01010) i (P + R [r]) ;

b l d (: = op = OlOll) i (P c d ; R [r] + P) ;

c b r (:= op = 01100) + ((cond # 0) i P C P + s) ;

cbd (:= op = OllOl) i ((cond # 0) - t P c d) ;

c n r (:= op = OlllO) i ((cond = 0) i P t P + 5) ;

cnd (:= op = O l l l l) + ((cond = 0) + P c d) ;

cond := (r h NoZoC)

ad (:= op = 10000) i (A ' + A + R [r]) ;

adc (:= op = 10001) + (A ' + A + R [r]+ C);
sb (:= op = 10010) i (A ' + A - R [r]) ;

sbc (:= op = lOOl1) 3 (A ' ' -A - R [r] - C);
mui (:= op = 10100) 3 (A ' <-A x R [r] (i }) ;

muf (:= op = 10101) 3 (A ' c A x R [r]

d i i (:= op = IOIIO) + (A ' + A / R [r]

d i f (:= op = IOllI) i (A ' < - A / R [r]

and (:= op = 11000) i (A + A A R [r]) ;

o r (:= op = IlOOl) (A + A v R [r]) ;

xor (: = op = 11010) + (A e A @ R [r]) ;

cmpr(:= op = I i O l l) i (No2 + A - R [r]

I d

s t (:= op = I l l O l) + (f d r l + A) ;

s h i f t (: = op = 11110) i (A ' + A x 2 ') ;

s 1

(: = op = 11100) + (A ' t R [r l) ;

(:= op = 11111) --f (L + r)

1

store A

store A , increment

load reg i s t e r innnediate

add reg i s t e r innnediate

s tore reg i s t e r

load reg i s t e r
add I to regis ter

subtract I from regis ter
branch return
branch and l ink direct

conditional branch re la t i ve
conditional branch direct

conditional not branch re la t i ve

conditional not branch direct

add

add with carry
suhtract

subtract with carry
integer multiply

fract ion multiply
integer divide
fract ion divide

logical and
logical or
exclusive or

compare used t o N and Z

load

s tore
s h i f t r igh t or l e f t

s e t operation length
end Instruction,execution

The instruction-set processor level:
variations in the processor

In this part we discuss computers whose ISP’s are variations from the main-line
computers in Part 2. These variations represent historical computers that have not
remained viable in the judgment of the computer engineering community, responses
to particular technology, and explorations that were either too advanced for their
time or still exist as open options.

Section 1, Processors with greater than 1 address per instruction, is mostly of
historical and comparative interest. The general register organization with large Mp’s
(hence large addresses) almost surely dominate them.

Section 2, Processors constrained by a cyclic, primary memory, describes a
response to a historical feature of Mp technology. The use of a drum, delay line,
or disk was a matter of necessity rather than choice. When better random access
core memories were available, the drum ceased to be a primary memory component.

Section 3 presents processors for variable string data. These processors are no
longer built in their original form. However, they were very successful for a while
(IBM 1401). Furthermore, string data-types have been incorporated in later proc-
essors.

Section 4 presents two desk calculator computers. Although we too often dismiss
these devices as mere desk calculators, they have facilities that qualify them as
general purpose stored program computers. Unlike most computers, because of the
production cost constraint, these calculator computers are all very cleverly designed.

Section 5, Processors with stack memories, describes an organization that has
never reached the main line state. Nevertheless, the idea of a stack memory is
gradually being assimilated. For example, the DEC PDP-6 and PDP-10 computers
use their general registers for stack pointer control, as suggested in Chap. 3, page
62.

In Sec. 6 the ideas of multiprogramming are presented. These ideas are recent
and have not yet been adequately incorporated in main line designs. They undoubt-
edly will be standard features in the next generation, although the exact form can-
not yet be known.

189

Section 1

Processors with greater than 1
address per instruction

Multiple-address instruction formats exist for several reasons.
The addition of an explicit address to determine the next in-
struction occurs with cyclic Mp's to make them efficient. Section
2 is devoted to this case, and it will not be considered further
here. These processors are known as n + 1 address. A second
reason is that many operations have more than one operand
(as in A + B or A V B), and it seems to be efficient encoding
to put them all into an instruction. A third reason is that many
operations need to be followed by writing the result in memory,
to permit the Pc to be used for operations on other data. Thus,
coupling each operation with the address where the result
is to be stored seems to be advantageous. However, in evalu-
ating complex arithmetic expressions, more instruction bits and
memory references are required than in a single-address com-
puter. Also, for unary operators one address field is unused.
It seems fair to say that ISP organizations with two or three
addresses have not proved themselves in competition with the
main line of 1, (1 + index), or (1 + general register) organiza-
tions. However, no definitive demonstration of their inefficiency
under all technological conditions exists, and they are worth
studying.

For microprogrammed processors, multiple-address instruc-
tions allow a high degree of parallelism to be obtained in a
single instruction. Multiple-address formats survive in this form.

The Pilot ACE

The National Physics Laboratory's Pilot ACE is the first of
several cyclic memory computers which have been designed to
provide optimum coding of instructions. Subsequent machines
which it influenced include the nearly identical English Electric
Deuce, the Bendix G-15, and the Packard Bell PB-250.' The
PMS structure does not strictly follow our lattice model (page
65). The Deuce PMS structure is given in Fig. 1. A 32-word
block in Mp.delay-line can be transferred to Ms.drum in one
instruction (transfer time of 1,024 ps). Another capability of

'H. D. Huskey was involved in the design of ACE, G-15, and PB.250; he was
undoubtedly the idea carrier.

ACE allows it to perform operations on vectors of up to 32
elements in 1 instruction.

The ACE structure (Chap. 11) has a common M which con-
tains much of the processor state and Mp. Many of the locations
used for processor state can store programs for direct execu-
tion. The diagram on page 198 in Chap. 11 describes the in-
struction execution process and implementation.

Alan M. Turing is credited with the basic design of ACE
(see introduction, page 193, and Turing's biography [Turing,
19591).

ZEBRA, a simple binary computer

ZEBRA illustrates the organizational details of another serial
arithmetic computer with Mp.cyclic. ZEBRA, like ACE, allows the
user to construct instructions for the hardware which are almost
directly interpreted. In both ACE and ZEBRA very little decoding
is built into the machine; a large instruction set is available
since the instructions are microcoded. In these computers the
programming problem can be as complex as the user wishes,
because a large number of different instructions can be micro-

S-T.console -

K-Ms moving head drum; 8192 w;

32 b/w; 16 t r a c k s / p o s i -

t i o n ; 32 w / t rack ; 16 p o s i -

[t ions]
'Mp(delay l i n e ; c y c l i c ; 32 - 1024 ps/w; 32 w; 32 b/w)

'Pc(techno1ogy: vacuum tubes; 1955 - 1961; (2+1) address/ I i n s t r u c t i o n ; ances to rs : NPL A C E)

~~ ~ ~~

Fig. 1. English Electric Deuce PMS diagram.

191

192 Part 3 I The instruction-set processor level: variations in the processor

coded. The LGP-30 (Chap. 16), by contrast, has only a basic
instruction set. Hence a problem can be coded only one or two
ways. ZEBRA'S performance of 60 percent memory-cycle utiliza-
tion is rather outstanding and raises the possibility that ran-
dom-access primary memories may not be necessary.

UNIVAC scientific (1103A) instruction logic

The UNIVAC 1103A (Chap. 13) is a two-address computer. The
computer was designed initially by Engineering Research Asso-
ciates (ERA) of St. Paul.' UNIVAC acquired ERA in 1952 as a
scientific-computer division. The evolution of the 1103A later
yielded the 1107 and 1108 general register processors. The
reader should compare the 1103A with the IBM 704 series
(Chap. 41). At the time both were used, it was not clear which
computer was better.

' A s the third in a series that started with the ERA 1101 and 1102

Section 1 I Processors with greater than 1 address per instruction

The RW-400: a new polymorphic data system

The RW-400 in Chap. 38 is a two-address, binary computer. It
is discussed in Part 5, Sec. 4, page 470.

Instruction logic of the MIDAC

The University of Michigan's MIDAC (Michigan Digital Auto-
matic Computer) is based on the National Bureau of Standards'
SEAC (Standards' Electronic Automatic Computer). MIDAC, a
three-address, binary computer, is presented in Chap. 14.

Instruction logic of the Soviet Strela (Arrow)

The Russian Strela is presented in Chap. 15. Since it is used
only to illustrate a three-address organization, the chapter con-
sists of only the instruction set.

Chapter 11

The Pilot ACE1

J. H . Wilkinson

Introduction General description

A machine which was almost identical with the Pilot ACE was
first designed by the staff of the Mathematics Division at the
suggestion of Dr. H. D. Huskey during his stay at the National
Physical Laboratory in 1947. It was based on an earlier design
by Dr. A. M. Turing and its principal object was to provide experi-
ence in the construction of equipment of this type. It was not
intended that it would be used on an extensive programme of
computation, but it was hoped that it would give practical experi-
ence in the production of subroutines which would serve as a
useful guide to the design of a full scale machine. An attempt to
build the Pilot Model, during Dr. Huskey’s stay, was unsuccessful,
but a year later after the formation of an Electronics Section at
the NPL a combined team consisting of this section and four
members of the Mathematics Division started on the construction
of a Pilot Model, the design of which was taken over almost
unchanged from the earlier version. The machine first worked, in
the sense that it carried out automatically a simple sequence of
operations, in May 1950 and by the end of that year it had reached
the stage at which a successful Press Demonstration was held. The
successful application of the machine to the solution of a number
of problems made it apparent that, in spite of its obvious short-
comings, it was capable of being converted into a powerful com-
puter comparable with any then in existence and much faster than
most. Accordingly a small programme of modifications was em-
barked upon early in 1951, but the machine was not functioning
satisfactorily again until November of that year. After a month
of continuous operation it was transferred from the Electronics
Section to Mathematics Division where it has since been in use
on a 13-hour day. During its first year of full scale operation it
achieved a 65% serviceability figure based on a very strict criterion.
Its performance during its second year has so far been considerably
better than this.

The Pilot ACE is a serial machine using mercury delay line storage
and working at a pulse repetition rate of 1 megacycle/sec. Its high
speed store consists of 11 long delay lines each of which stores
32 words of 32 binary digits each, with a corresponding circulation
period of 1024 microseconds, 5 short lines storing one word each
with a circulation period of 32 microseconds and two delay lines
storing two words each. It was inevitable that in the design of
a machine originally intended for experimental purposes, over-
riding consideration should be given to the minimization of equip-
ment rather than to making the machine logically satisfying as
a whole. This is reflected to a certain extent in the code adopted
for the machine and in its arithmetic facilities, which are in gen-
eral fairly rudimentary. The design of the machine was also de-
cisively influenced by the attempt to overcome the loss of speed
due to the high access time of the long storage units. The machine
in fact uses what is usually known as a system of “optimum
coding.”

Code of Pilot ACE

The Pilot ACE may be said to have a “three-address code” though
this form of classification is not particularly appropriate. Each
instruction calls for the transfer of information from one of 32
“sources” to one of 32 “destinations” and selects which of eight
long delay lines will provide the next instruction. This third
address is necessary because consecutive instructions do not occupy
consecutive positions but are placed in such relative positions that,
in so far as is possible, each instruction emerges during the minor
cycle in which the current instruction is completed. An unusual
feature of the instructions is that the transfers they describe may
last for any number of consecutive minor cycles from one to thirty-
two. The instruction word contains three other main elements
which are known as the wait number, the timing number and the

iAutmatic ~ i ~ i ~ ~ l cmputat~on, ~ ~ t i ~ ~ ~ l physical Laboratory, Teading.
ton, England, pp. 5-14, March, 1953.

characteristic which together determine when the transfer starts,
when it stops and which instruction in the selected instruction

193

194 Part 3 I The instruction-set processor level: variations in the processor Section 1 I Processors with greater than 1 address per instruction

source is the next to be obeyed. The structure of the instruction
word is as follows:

Next instruction source Digits 2-4

Source Digits 5-9

Destination Digits 10-14

Characteristic Digits 15-16

Wait number Digits 17-21

Timing number Digits 25-29

Go digit Digit 32

The remaining digits are spare.
Coding of a problem takes place in two parts, in the first of

which only the source, the destination and the period of transfer
are specified, the last being a function of the characteristic, wait
number and timing number. In the second part, the detailed cod-
ing, the other elements are added.

The sources and destinations

Simplest among the sources and destinations are those associated
with the short delay lines. The six one-word delay lines are each
given numbers and these for reasons associated with the history
of the machine are 11, 15, 16, 20, 26 and 27. They are usually
referred to as Temporary Stores or TS’s because they are used to
store temporarily those numbers which are being operated upon
most frequently at each stage of a computation. In general TSn
has associated with it a source, source n, and a destination, des-
tination n. An instruction of the type

15-16

in the preliminary stage of the coding represents the transfer of
a copy of the contents of TS15 via source 15 to TSl6 via the
destination 16. After it has taken place both stores contain the
number originally in TS15. The period of the transfer is not
mentioned in the coding because a transfer of more than one minor
cycle is irrelevant. Most transfers are for one minor cycle and
hence the period of transfer is not specified unless it is greater
than one minor cycle. Associated with the TS’s are a number of
functional sources and destinations. TSl6 for instance has two
other destinations 17 and 18 associated with it, in addition to
destination 16. Any number transferred to destination 17 is added
to the contents of TSl6 while any number transferred to destina-
tion 18 is subtracted from the contents of TS16. TS16 may be said
to have some of the functions associated with the accumulator

on an orthodox machine. The period of transfer to destinations
17 and 18 is very important. Thus

15-17 (n minor cycles)

has the effect of adding the contents of TS15, n times to the
contents of TS16. This prolonged transfer is used in this way to
give small multiples (up to 32) of numbers. Similarly, we may have

15-18 (n mc)

The instruction

16-17 (n mc)

is of special significance because it has the effect of adding the
content of TSl6 to itself for each minor cycle of the transfer, that
is it gives multiplication by 271 or a left shift of n binary places.

TS26 has associated with it a number of functional sources.
Source 17 gives the ones complement of the number in TS26,
Source 18, the contents divided by 2, and Source 19, the contents
multiplied by 2. The instruction

18-26 (n mc)

thus has the effect of dividing the contents of TS26 by 2n, that
is a right shift of n places. Similarly

19-26 (n mc)

gives a left shift of n places.
There are two functional sources which give composite func-

tions of the numbers in TS26 and TS27. These are Source 21 which
gives the number

TS26 & TS27

and Source 22 which gives the number

TS26 f TS27

There are a number of sources which give constant numbers which
are of frequent use in computation. These are Source 23 which
gives the number which has a zero everywhere except in the 17th
position, usually known as P17, Source 24 which gives P32, Source
25 which gives P1, Source 28 which gives zero and Source 29
which gives a number consisting of 32 consecutive ones. These
sources are valuable because they provide numbers with an access
time of one minor cycle and are thus almost as useful as several
extra TS’s.

The use of a number of TS’s with the arithmetic facilities
distributed among them makes it possible to take advantage of
the placing of instructions in appropriate positions in the long

Chapter 11 I The Pilot ACE 195

storage units so that they emerge as required. The coding of a
trivial example will illustrate the uses of the TS’s and their asso-
ciated sources. It is required to build up the successive natural
numbers, their squares and their cubes simultaneously. It is natural
to store the values in TS’s and we may suppose TS15 contains
n, TS20, n2 and TS26, n3.

Instruction Description

1.
2.
3.

4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

28- 15 zero to TS15 i.e. 0
28-20 zero to TS20 i.e. 02 initial values
28-26 zero to TS26 i.e. 0 3

26-16 TS16 contains n3

20-17 (3rnc) TS16 contains n3 + 3n2
15-17 (3rnc) TS16 contains n3 + 3 n 2 + 3 n
25- 17 TS16 contains n3 + 3 n 2 + 3 n + 1
16-26 TS26 contains (n + 1)s
20-16 TS16 contains n*
15-17 (2rnc) TS16 contains n* + 2n
25-17 TS16 contains n* + 2n + 1
16-20 TS20 contains (n + 1)2

15-16 TS16 contains n
25-17 TS16 contains (n + 1)
16-15 TS15 contains (n + 1) Next instruction (4)

These 3 instructions set the

-

The instructions (1) to (3) set the initial conditions. The instruction
(4) - (15) have the effect of changing the contents of 15, 20, 26
from n, n2, n3 to (n + l), (n + 1)2, (n + l)3. As remarked earlier,
each instruction selects the next instruction and here instruction
(15) selects instruction (4) as the next instruction. In the prelimi-
nary coding this is usually denoted by using an arrow; it must be
catered for in the detailed coding by the correct choice of the
timing number, as will be shown below.

The branching of a programme is achieved by the use of two
destinations, destination 24 and destination 25. If a transfer is made
from any source to destination 24 then the next instruction is one
or other of two according as the number transferred is positive
or negative. Similarly if a transfer is made to destination 25 then
the next instruction is one or other of two according as the number
transferred is zero or non-zero. In the preliminary coding the
bifurcation is denoted by the use of arrows, thus:

In the detailed coding the effect is that if the number transferred
to destination 24 is negative then the timing number is increased

by 1. Similarly for destination 25; the two possible next instructions
are consecutive in the store.

The two double word stores are numbered DS12 and DS14.
DS12 has only source 12 and destination 12 associated with it,
but DS14 has, in addition to source 14 and destination 14, a
number of functional sources and destinations. Source 13 gives the
contents of DS14 divided by 2, while transfers to destination 13
have the effect of adding the numbers transferred to DS14. In
specifying transfers from, and to, the double length stores, the time
of the transfer must be specified, i.e. whether it takes place in an
even or an odd minor cycle or both. Thus the transfer

12-14 (odd minor cycle) usually written
12-14 (0)

represents the transfer of the word in the odd positions of DS12
to the odd position in DS14 while

12-14 (2 minor cycles)

represents the transfer of both words in 12 to the corresponding
positions in 14. The operation

13-14 (2n)

gives us a method of shifting the contents of TS14 n places to the
right while

14-13 (2n)

produces a shift of n places to the left.
The machine is not equipped with a fully automatic multiplier.

To multiply two numbers, a and b, together, a must be sent to
TS20, b to DS14 odd, zero to DS14 even and a transfer (source
irrelevant) made to destination 19. The product is then produced
in DS14 in 2 milliseconds, but a and b are treated as positive
numbers. Corrections must be made to the answer if a and b are
signed numbers. To make multiplication fast, it has been made
possible to perform other operations while multiplication is pro-
ceeding. Thus the corrections necessary if a and b are signed
numbers may be built up in TS16 during multiplication, and signed
multiplication takes only a little over two millisecs. It is, of course,
therefore, a subroutine but a very fast one. The amount of equip-
ment associated with the multiplier is very small. The main part
of the store consists of the long storage units known as DL1, DL2,
. . . , DL11. Each of these has a source and a destination with the
same number as the DL number. The words in each DL are
numbered 0 to 31 and the nth word in DLM is usually denoted
by DLM,. Transfers to and from long lines in the preliminary
coding are denoted thus:

196 Part 3 I The instruction-set processor level: variations in the processor

8,- 16 (transfer nth word of DL8 to TS16)
8,-,-17 (add all the words from 8, to 8, i.e. n - m + 1 con-

secutive words of DL8" to TS16)

Detailed coding

In the second stage of the coding the true instruction words are
derived from the preliminary coding. This is a fairly automatic
process and recent experience has shown that it can be carried
out satisfactorily by quite junior staff. The timing of each instruc-
tion is given relative to the position of that instruction in the store.
This is an incidental feature of the code which arose from the
attempts to minimize equipment. It would be dropped in any
future machine in favour of an absolute timing system. If an in-
struction occupies position m in a DL and has a wait number
W and timing number T then the transfer always begins in minor
cycle (m + W + 2) and the next instruction is always in minor
cycle (m + T + 2) of the selected next instruction source. The
period of transfer depends on the value of the characteristic. If
the characteristic is zero then the transfer lasts for the whole
period from (m + W + 2) to (m + T + 2), that is (T - W + 1)
minor cycles. If the characteristic is one, then the transfer is for
one minor cycle, that is minor cycle (m + W + 2). If the charac-
teristic is three then the transfer is for two minor cycles
(m + W + 2) and (m + W + 3). The characteristic value, two,
is not used. The characteristic value zero gives a prolonged transfer
which is peculiar to the Pilot ACE. The characteristics 1 and 3
are analogous to the facility on EDSAC whereby full length or
l/-length words may be transferred. On the Pilot ACE we transfer
single or double length words. This facility is invaluable for double
length, floating and complex arithmetic. In the above definitions
the numbers (m + W + 2) etc. are to be interpreted modulo 32.
In general, timing and wait numbers are simpler than they appear
from the definitions because they are very frequently both zero,
corresponding to a transfer for one minor cycle. The detailed
coding of the problem given earlier will illustrate the procedure.
All the instructions are in D L l so that the next instruction source
is always one. The key to the headings in the following table is:

m.c.

N.I.S. Next instruction source

S Source

D Destination

C Characteristic

W Wait number

T Timing number

Minor cycle position of instructions in DLI

Section 1 I Processors with greater than 1 address per instruction

The last column gives the position of the next instruction in DL1;
it is given by (m + T + 2). The first 4 instructions occupy minor
cycles, 0, 2 and 4, 6 and each takes two minor cycles, and gives
a transfer for one minor cycle only. The next instruction occupies
minor cycle number 8 and it requires a transfer lasting 3 minor
cycles. The simplest and fastest way of getting this is to have
W = 0 and T = 2 giving a transfer of (2 - 0 + 1) minor cycles.
The next instruction is in position (8 + 2 + 2), that is minor cycle
12, and so on. When we reach the instruction in minor cycle 31,
viz. 25-17, a transfer for one minor cycle is required. The simplest
way is to have W = 0 T = 0 and this makes the next instruction
occupy position (31 + 0 + 2) i.e. position 33 which is position 1.
If position 1 had been already occupied, a value of T could have
been chosen in order to land in an unoccupied position. In order
to ensure that a transfer of one minor cycle only took place, the
characteristic could have been made 1. It should be appreciated
that the choice of C, W and T is far from unique. Whenever
possible T = 0 and W = 0 are chosen because this gives the
highest speed of operation besides being simplest. The instruction
occupying position 1 is of special interest because this is the last
instruction of the cycle needed to build up a square and cube and
it must select as its next instruction the first of the cycle, which
is, in position number 6. This is achieved by making T = 3 (giving
the next instruction in m.c. 1 + 3 + 2 = 6). This incidentally
gives a transfer lasting four minor cycles but since it is a transfer
from one TS to another and no functional source or destination
is in use, the prolonged transfer produces no harmful effect. If a
prolonged transfer had to be avoided then the characteristic could
be taken as 1. It is seldom necessary to use any characteristic other
than zero for transfers to and from TS's but when transfers are
made to and from DL's, characteristic values of 1 or 3 are almost
universal. All 12 instructions which comprise the repeated cycle
of the computation take a total time of one major cycle exactly
(32 minor cycles) the last instruction of the cycle having been
specially designed to get back to the beginning of the cycle. This
is in contrast to the position in a machine not using optimum
coding, where 12 major cycles would be necessary quite apart from
the fact that the multiplications by factors of 3 and 2, each of
which uses one instruction, would normally need more than one
instruction if a prolonged transfer were not available. Figure 1
gives a simplified diagram of the machine. The sequence of events
in obeying the instruction

N S D C W T
2 16 - 2C 0 8 10

occupying DL1, for example is as follows. Starting from the time
when the last instruction was completed, the instruction from

Chapter 11 I The Pilot ACE 197

Minor cycle Minor cycle
position of Next position of
instructions instruction Charac- Wait Timing next
in DLl source Source Destination teristic no. no. instruction

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

28
16
28

28

26

20

15

25

16

20

15

25

16

15

25

15
15
20

16

16

17

17

17

26

16

17

17

20

16

17

0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
3
0

0

0

2

2

0

0

0

1

0

0

0

0

DL1, will have passed into the special TS marked TS COUNT
during minor cycle number 2. By the end of minor cycle number
3, S switch number 16 will be over and also N switch number
2. The contents of TSl6 will be passing into HIGHWAY and those
of DL2 into INSTRUCTION HIGHWAY. At the beginning of
minor cycle number 12 (i .e. 2 + 8 + 2), D switch number 20 will
go over, and TS20 will stop recirculating and the number on the
HIGHWAY will pass into TS20. The transfer will continue until
minor cycle 14 (i.e. 2 + 10 + 2) when the D switch number 20
will switch back. At the beginning of minor cycle 14, the switch
X on COUNT will go over and the number on INSTRUCTION
HIGHWAY during this minor cycle, DL2,,, will pass into COUNT.
At the end of minor cycle 14, the X switch will close again and

DL2,, will be trapped in COUNT. The cycle of events is now
complete. COUNT is associated with a counter and it is this
counter which determines from the wait, timing, and characteristic
numbers of the trapped instruction, when the D and X switches
go over and back.

Input and output

The only part of the instruction word not described is the GO
digit. If the GO digit is a one, the instruction is carried out at
high speed, but if it is a zero the machine stops and does not
proceed until a manual switch is operated. The GO digit is omitted
in strategic instructions when a programme is being tested. It also

198 Part 3 I The instruction-set processor level: variations in the processor

1s IS
TS. 27
DS 14
os ta etc.

c

Fig. 1. Simplified diagram showing some sources, destinations, and
next-instruction sources.

serves a further purpose in synchronising the input and output
facilities with the high speed computer. Input on the machine is
by means of Hollerith punched cards. When cards are passed
through the reader the numbers on the card may be read row by
row as each passes under a set of 32 reading brushes. When a row
of a card is under the reading brushes, the number punched on
that row, regarded as a number of 32 binary digits, is available
on source 0. In order to make certain that reading takes place
when a row is in position and not between rows, transfers from
source 0, have the GO digit omitted and it is arranged that the
Hollerith reader has the same effect as operating the manual
switch each time a row comes into position. The passage of a card
through the reader is called for by a transfer from any source to
destination 31. No transfer of information from the card takes place
unless the appropriate instruction using source 0 is obeyed during
the passage of the card. Output on the machine is also provided

Section 1 I Processors with greater than 1 address per instruction

by a Hollerith punch. The passage of a card through the punch
is called for by a transfer from any source to destination 30. While
a card is passing through the punch a 32 digit number may be
punched on each row by a transfer to destination 28. Again syn-
chronisation is ensured by omitting the GO digit in instructions
calling for a transfer to destination 28, and arranging that the
Hollerith punch effectively operates the manual switch as each
row comes into position. The reader feeds cards a t the rate of 200
cards per minute and the punch, at the rate of 100 cards per
minute. The speed of input for binary digits is 200 x 32 x 12 per
minute or 1280 per second. The output speed is 640 digits per
second. Data may be fed in and out in decimal, but it then requires
conversion subroutines. The computation involved in the conver-
sion is done between the rows of the card and up to 30 decimal
digits per card may be translated. This speed of conversion is only
possible because of the use of optimum coding. The facility for
carrying out computation between rows of cards is used extensively
particularly in linear algebra when matrices exceeding the storage
capacity of the machine are involved. The matrices are stored on
cards in binary form with one number on each of the 12 rows of
each card, all the computation being done either between rows
when reading or when punching. Times comparable with those
possible with the matrices stored in the memory are often achieved
in this way, when the computation uses a high percentage of the
available time between rows. Up to 80% of this time may be safely
used.

Initial input

The initial input of instructions is achieved by choosing destination
0 in a special manner. When a transfer is made to destination 0,
then the instruction transferred becomes the next to be obeyed
and the next instruction source is ignored. Source 0 has already
been chosen specially since it is provided from a row of a card.
The instruction consisting of zeros has the effect of injecting the
instruction punched on a row of a card into the machine as the
next to be obeyed. The machine is started by clearing the store
and starting the Hollerith reader which contains cards punched
with appropriate instructions. Destination 0 is also used when an
instruction is built up in an arithmetic unit ready to be obeyed.

Miscellaneous sources and destinations

Destination 29 controls a buzzer. If a non-zero number is trans-
ferred to destination 29 the buzzer sounds.

Source 30 is used to indicate when the last row of a card is
in position in the reader or punch. This source gives a non-zero
number only when a last row is in position. The operation of the
arithmetic facilities on DS14 may be modified by a transfer to

Chapter 11 1 The Pilot ACE 199

destination 23. If a transfer with an odd characteristic is made
from any source to destination 23 then, from then on, DS14 be-
haves as though it were two single length accumulators in series.
This means that carries are suppressed at the end of each of the
single words. This condition persists until a transfer is made to
destination 23 using an even characteristic, when DS14 behaves
as an accumulator for double length numbers with their least
significant parts in even minor cycles and more significant parts
in odd minor cycles.

The operation TS20 is modified by transfers to destination 21.
If a transfer with an odd characteristic is made to destination 21
then TS20 ceases to have an independent existence and from then
on is fed continuously from DL10. Source 20 then gives the con-
tents of DLl0 one minor cycle later than from source 10. TS20
reverts to its former condition when a transfer with an even char-
acteristic is made to destination 21. The facility is used to move
the 32 words in DLlO round one position so that the word in minor
cycle n is available in minor cycle (n + 1).

Assessment of optimum coding

A detailed assessment of the value of optimum coding is by no
means simple. Roughly speaking, subroutines are on an average
about 4 or 5 times as fast as on an orthodox machine using the
same pulse repetition rate. In main tables a somewhat lower factor
is usually achieved. The factor of 4 or 5 would be exceeded if less
of the advantage given by optimum coding were used to overcome
disadvantages due to the rudimentary nature of the arithmetic
facilities on Pilot ACE. Even so, the bald statement of the average
ratio of speeds does not do full justice to the value of optimum
coding on the Pilot ACE. Its value springs as much from the fact
that it has made possible the programmes in which computing
is done between the rows of cards and also the high output speed
of decimal numbers. The binary decimal conversion routines for
punching out several decimal numbers simultaneously on a card
and also decimal-binary conversion routines for reading several
numbers, achieve a ratio of something like 14 to 1, and on a
machine which is being used extensively for scientific computation
on a commercial basis this is of immense importance.

Future programme

Engineered versions of the Pilot Model are now under construction
by the English Electric Company. These machines will be similar
to the Pilot Model but will have a little more high-speed store,
an automatic divider, two quadruple length stores and a subtrac-
tive input on the double length accumulator besides several minor
modifications including a rationalization of the numbering of the

stores! In addition a magnetic drum intermediate store with the
equivalent of 32DL’s storage capacity will be added. A full scale
machine will probably soon be under development employing a
4 address code. Typical instructions will be of the form

A k B C

and will select the next source of instruction. This code is more
economical in instruction storage space and since all single word
stores will then become complete accumulators with all facilities
except multiplication on them, it will be possible to take much
fuller advantage of optimum coding.

Sources, destination and next instruction sources

Sources Des tinations Next instr. sources

0. Input
1. DL1
2. DL2
3. DL3
4. DL4
5. DL5
6. DL6
7. DL7
8. DL8
9. DL9

10. DLlO
11. D L l l
12. DS12
13. DS14 + 2
14. DS14
15. TS15
16. TS16
17. TS26
18. TS26 i 2
19. TS26 x 2
20. TS20
21. TS26 & TS27
22. TS26 $ TS27
23. P17

24. P32
25. P1
26. TS26
27. TS27
28. Zero
29. Ones

0. INSTRUCTION 0. D L l l
1. DL1 1. DL1
2. DL2 2. DL2
3. DL3 3. DL3
4. DL4 4. DL4
5. DL5 5. DL5
6. DL6 6. DL6
7. DL7 7. DL7
8. DL8
9. DL9

10. DLlO
11. D L l l
12. DS12
13. DS14add
14. DS14
15. TS15
16. TS16
17. TS16add
18. TS16 subtract
19.t MULTIPLY
20. TS20
21. Modifies Source 20
22. -
23. Modifies Source 13,

Destination 13
24. DISCRIMINATE on sign
25. DISCRIMINATE on zero
26. TS26
27. TS27
28. Output
29. BUZZER

30. Last row of card 30 . t PUNCH
31. - 31. t READ

t Independent of source used.

References

WilkJ53; TuriS59

Chapter 12

ZEBRA, a simple binary computer1

W. L. van der Poel

Summary The computer ZEBRA is a computer based on the following

15 bits
A K Q L R I B C D E V X ~ X Z X I W

test bits I /
operation part

ideas:

1.

2.

3.

4.

5.

6.

5 bits
0 0 0 0 0
fast store
address

The logical structure of the arithmetic and control units of the
machine have been simplified as much as possible; there is not even
a built-in multiplier nor a divider.

The separate bits in an instruction word are used functionally and
can be put together in any combination.

Conventional two stage operation (set-up, execution) has been aban-
doned. Each unit time interval can be used for arithmetical opera-
tions.

A small number of fast access registers is used as temporary storage;
at the same time these registers serve as modifier registers (B-lines).

Optimum programming is almost automatically done to a very great
extent. The percentage of word times effectively used is usually
greater than 60%.

An instruction can be repeated and modified while repeated by
using an accumulator as next instruction source and the address
counter as counter. This can be done without any special hardware.

This has resulted in a machine which has a very simple structure and hence
contains only a very moderate number of components, giving high relia-
bility and easy maintenance. Because of the functional bit coding, the
programming is extremely flexible. In fact the machine code is a sort of
micro-programming. Full-length inultiplication or half-length mnltiplica-
tion in half the time are just as easy, only require a different micro-
programme. The minimum latency programming together with the effec-
tive use of word times lost in other systems results in a very high speed
of operation compared to the basic clock pulse frequency.

Introduction

In the Dr. Neher Laboratory of the Dutch Postal & Telecom-
munications Services the logical design of a computer called ZE-
BRA has been developed, and this computer has been engineered
and constructed by Standard Telephones & Cables Ltd, England.
The logical system is so different from most computers, that it
is worth while t o devote a special lecture to it. As time is limited,

'Proc. ICIP, UNESCO, pp. 361-365, June, 1959.

no technical details nor questions about dimensions or capacity
will be discussed. They can all be found in the literature [van
der Poel, 1956; van der Poel, 19521.

The main idea of the machine is t o economise as far as possible
on the number of components by simplifying the logical structure.
For example, multiplication and division are not built in but must
be programmed. Of course this system can only work with an
appropriate internal code which has enough properties to execute
basic arithmetic and logical routines effectively. In fact, the inter-
nal machine code is more or less a system of microprogramming
[Wilkes and Stringer, 19531.

Chapter 12 1 ZEBRA, a simple binary computer 201

Arithmetic Control
unit

store store

Arithmetic I,] El

store store

Fig. 1. The main units of the computer.

arithmetic unit or the control. In the same way the K-bit controls
the interconnection of the fast store with the arithmetic unit or
the control unit. These interconnections can be seen from Fig. 1.

It will be seen that A and K can have 4 possible combinations:

Case 1 . A = 0, K = 0. This is called the adding jump (Fig. 2a).

While a new instruction is coming into the control from the drum,
the arithmetic unit can at the same time do an operation with
the operand coming from the fast store. This is the fastest type
of operation. When the following instruction is placed in the next
location on the drum there is no waiting time, and 32 instructions
of this type can be executed per revolution. (One revolution = 10
ms, one word time = 312 ps.)

Case 2. A = 0, K = 1. This is called the double jump (Fig. 2b).

Both stores are now used for giving information to the control,
i.e., making a jump. Since the fast store is used for the control,
the instruction coming in from the drum is modified by the con-
tents of a fast register. In this way the B-line facility, as it is often
called, is realised.

Case 3. A = 1, K = 0. This is called the double addition (Fig. 2c).

Both stores are now connected to the arithmetic unit. The control
must take care of itself using the address counter which is stepped
up by 2 at a time, thus enabling this type of instruction to reach
the number lying between the two successive instructions without
any waiting time. Constants in particular will always be taken
from optimum places on the drum.

Case 4 . A = 1, K = 1. This is called the jumping addition (Fig.
2 4 .

While the drum is used for the arithmetic unit the address counter
is modified by a fast register. Control may thus be passed to any
instruction, and not only to the next instruction.

D- and E-bits

The functional bits D and E control the direction of flow of infor-
mation.

D = 0 means: read from the drum.

E = 0 means: read from the fast store.

D = 1 means: write to the drum.

E = 1 means: write to the fast store.

A few possible instructions will be given below. In the written
code a drum address will always be written with 3 or more digits
and the absence of the A-bit will be indicated by the letter X.
(This is necessary for the input programme to recognize the be-
ginning of a new instruction.)

A200.5 Add (200) (the contents of address 200) and (5)
to the accumulator. Step the address counter
by 2.

Take next instruction from 200 (= jump to 200)
and store contents of accumulator in 5.

Jump to 200 and store previous contents of ad-
dress counter in 5. This amounts to placing a link
instruction for return from a sub-routine.

Take next instruction from 200 but modify it with
(5) thus making a variable instruction.

X200E5

X200KE5

X200K5

Arithmetic bits

The remainder of the function bits have arithmetic meanings. We
shall only briefly indicate their different actions.

B: Do not use the A accumulator (most significant accumulator)
but the B accumulator.

IC) Id1

Fig. 2. The possible combinations of the A- and K-bits.

202 Part 3 1 The instruction-set processor level: variations in the processor

C: Clear the accumulator specified by B after storing, or before
addition. (In a serial machine like ZEBRA this is auto-
matically the case, cf. Fig. 3.)

I: Subtract instead of add.

Q: Add one (unit in the least significant place) to the B-accu-
mulator.

L: Shift both accumulators one place to the left.

R: Shift both accumulators one place to the right. The accu-
mulators are always coupled together in shifting except
when C is present.

A few more examples will be given.

A200BCE25 Store (B) in 5, clear B and add (200)
to B.

Jump to 200. Store (B) in 6, put - 1 in B
(because of QIBC) and shift the A accumu-
lator one place to the left. Shifting from B
into A is prevented by the presence of C.

Jump to 200. Shift A to the right. Copy (3)
into B. As register 3 is just an address for
the B accumulator itself, this means that
A is shifted while B is static.

Take the instruction from 200 and modify
it with the contents of the B accumulator
(= register 3) . Put -1 in B afterwards.

X2WQLIBCE6

X200RBC3

X200KSQIBC

Drum s t o r e Fast s to re To s t o r e

Fig. 3. Accumulator.

Section 1 1 Processors with greater than 1 address per instruction

As can be seen, many complicated operations can be composed
by the elementary possibilities of the separate bits.

The accumulator

A simplified block diagram of one of the accumulators is shown
in Fig. 3.

Shifting is effected by looping the accumulator over one place
less or one place more. In a double addition the contents of the
drum store and the fast store are first added together in the pre-
adder (possibly augmented by unity in the B accumulator, if Q
is present) and this result is added into the accumulator (or sub-
tracted in case of I). A clearing gate controlled by C interrupts
the recirculation of the previous contents.

The control unit

The control unit has two shifting registers, the C-register which
receives the next instruction to be executed and the D-register
or counter. The block diagram is shown in Fig. 4. After a new
instruction has come into C, it is taken over in parallel form into
E in the interword time. It remains in E while the next instruction
is coming into C. Let us explain the action of this control with
a short programme.

Examples of programmes

100 X101E5
101 AC102
102 constant
103 etc.

The actions in the several registers are now:

X1007 X101E5 X102

.L
const. X103E5

Suppose Xl00 is in C at the start.
This will take (100) into C. (C) + 2 -+ D.

Another jump comes into C taking in (101)
and storing (A) + 5.
(C) + 2 -+ D gives X103E5.

Note that the operational part is kept in the
counter. The necessary constant from 102 is
just becoming available.

The next instruction is taken from 103 which
is immediately following. The constant in
A is stored to 5 by E5, and is still active
after coming back from D.

Chapter 12 I ZEBRA, a simple binary computer 203

D

I f

To s t o r e

Fig. 4. Control unit.

This is the most important aspect of the machine. An instruction
in the address counter comes back after an A-instruction and can
do something useful. To our surprise we found that in many more
cases than we first suspected, the second action could be used
effectively. In most other computers the time of access to the next
instruction is lost because nothing can be done concurrently in
the arithmetic unit.

Another example of the action of the control is the jump to a
sub-routine. Suppose that we have the following piece of pro-
gramme:

100 X200KE.5 Jump to sub-routine starting in 200. Place
return jump in 5.

102 etc. Sub-routine returns here.

The action is as follows:

(C) (D)

The instruction is taken from 100. x1007
X200KE5 X102 X 2 0 0 K E 5 4 C and X l 0 0 + 2 + D. Now

K E 5 stores D in 5. Thus (5) = X102.

The subroutine at 200 is executed and ends
with XK5: jump to 5.

(200)

XK5 Take instruction from 5.

XI02
(102) etc.

Now the main programme proceeds to 102

By ending the sub-routine:

220 X221K5
221 - 1

we can return not two but one location further on, i.e., X221K5
takes as next instruction (5) - 1 = X101. Here 5 contains the
instruction and the drum modifier.

The test bits

The digits V x4 x2 x1 will not be dealt with extensively but the
different combinations of these 4 digits represent different types
of test. When for example V1 is attached to an instruction, this
instruction will be executed when (A) is negative, but will be
skipped altogether when (A) is positive or zero. The harmless
A-instruction will then be executed instead. The test can be at-
tached to a jump, giving a conditional jump, as well as to an
A-instruction, giving a conditional addition.

The W-bit

So far the digit W has not been mentioned. When W is present
in an instruction the drum address is not used. The instruction
is not kept waiting but is immediately executed and the drum is
completely disregarded. With the help of this digit W, jumps can
be made to instructions in the fast store, e.g., XK5W takes the
instruction from 5 only, and the drum does not deliver any number.
The use of this type of instruction has very peculiar consequences.
Let us take the following example:

100 XlOlKE6 (5) = ARW
101 X8186KSRW
102 etc.

(6) = filled with return instruction

The action is as follows:

Take instruction from 100.

XlOlKE6 X102 Jump to 101 and store return
instruction X102 in 6.

X8 186K5WR Do 1 right shift. \
4/2 a ARW X8188KSRW Do another right shift by ARW.

The drum address in D is

counted up but is not active.
The register address remains
the same. Hence the instruc-
tion in 5 is repeated. I

204 Pari 3 1 The instruction-set processor level: variations in the processor

2-2 - a X8188K5RW The repeating instruction as
well as the repeated instruction
are both shifted one place to 1

F3 * a ARW X8190K5RW the right.

2 - 5 * a ARW XOOOK6RW As the drum address overflows
into the fast store address the
repeating instruction becomes
X8192K5RW = XOOOK6RW
taking the next instruction from
6.

2-4 a X8190K5RWb d

1
2-6 a XOOOK6RW

2 Y . a X102 As (6) = X102 the repetition
returns to the main programme
and the A accumulator is shifted
over 7 places.

The instruction ARW has thus been repeated p times when the
drum address of the repeating instruction is 8192-213. This way
of repeating an instruction has made it possible to do multipli-
cation, division, block transfers, table look up and many other
small basic repetitive processes in a very simple way. There is no
special hardware present in the machine to do the counting neces-
sary for the repetition, as this counting is done by the normal
address counter.

As a last example we shall give a programme for the summa-

Section 1 1 Processors with greater than 1 address per instruction

tion of a block of locations from 200 to 300 in the store. This
involves 101 locations. The programme reads:

100 AlOlBC
101 A200Q

102 X103KE4C

Put A200Q in B (B has address 3) .

Put return jump X104 in 4. Clear A in
advance.

Repeat A200Q 101 times. Because A200Q
is standing in B the Q augments the in-
struction itself at every repetition. Hence
successively (200), (201) etc. are added
to A. At the end the sum is left in A and
the programme proceeds at 104.

103 X7990K3W

104 etc.

It is left to the reader to work out the action diagram.
This example is not programmed for minimum waiting, but by

supplying the repeating instruction X7990K3W with a Q it will
step up the repeated instruction A200Q by 2 every time. Now,
once the first instruction has been located, all even locations follow-
ing are emerging from the drum just at the right time. The odd
numbered locations must be summed in a second, similar repeti-
tion.

References

VandW59; VandW52, 56; WilkhlS3a.

Chapter 13

oc
6 bits

UNIVAC Scientific (1103A)

U V

15 bits 15 bits

instruction logic1

John W. Cam I l l

The UNIVAC Scientific computer is a (35, 0, 0)2 binary machine,
with option of (27, 8, 0). The arithmetic unit contains two 36-bit
X (exchange) and Q (quotient) registers and one 72-bit A register
(accumulator). Negative numbers are represented in one’s com-
plement notation.

Input-output is via high-speed paper tape reader and punch,
direct card reader and punch, and Uniservo magnetic tape units,
which may be connected to peripheral punched card readers and
punches and a high-speed printer. In addition, information may
be recorded on magnetic tape directly from keyboards by the use
of Unitypers. Communication with external equipment is via an
%bit (IOA) register and a S6-bit (IOB) register. Information sent
to these registers controls magnetic tapes as well as other input-
output equipment. The program address counter (PAK) contains
the present instruction address. Storage is in up to 12,288 locations
of magnetic core storage, along with a directly addressable drum
of 16,384 locations. Instructions are of the two-address form,
with six bits for the operation code and two fifteen-bit addresses
(11 and v).

The following information is taken from a Univac Scientific
Manual [Univac Scientific Electronic Computing System Model
1103A, Form EL3381.

Definitions and conventions

lnstruction word

‘In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 77-83, John
Wiley & Sons, Inc., New York, 1959.
2Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

oc Operation code
u First execution address
v Second execution address

For some of the instructions, the form jn or jk replaces the u ad-
dress; for others the form k replaces the v address.

j
n

k

One-digit octal number modifying the instruction
Four-digit octal number designating number of times in-
struction is to be performed
Seven-digit binary number designating the number of places
the word is to be shifted to the left

Address allocations (octal)
00000-07777 4096
00000-17777 8192 or
00000-27777 12,288 36-bit words

Q 31000-31777 1 36-bit word
A 32000-37777 172-bit word
M D 40000-77777 16,384 36-bit words

Fixed addresses

F, 00000 or 40001
F, 00001
F, 00002
F, 00003

Arithmetic section registers

A

A,
A,
Q
X 36-bit exchange register

72-bit accumulator with shifting properties
Right-hand 36 bits of A
Left-hand 36 bits of A
36-bit register with shifting properties

Note: Parentheses denote contents of. For example, (A) means
contents of A (72-bit word in A); (Q) means contents of Q (36-bit
word in Q).

205

206 Part 3 I The instruction-set processor level: variations in the processor Section 1 I Processors with greater than 1 address per instruction

Input-output registers
IOA 8-bit in-out register
IOB 36-bit in-out register
TWR 6-bit typewriter register
HPR 7-bit high-speed punch register

Word extension

72-bit word whose right-hand 36 bits are the word at
address u, and whose left-hand 36 bits are the same as
the leftmost bit of the word at u.

72-bit word whose right-hand 36 bits are the word at
address u, and whose left-hand 36 bits are zero.

72-bit word-right-hand 36 bits are in register Q, left-
hand 36 bits are same as leftmost bit in register Q.

same as D(Q) except left 36 bits are zero.
D(AR), S(AR) are similarly defined.

L(Q)(u) 72-bit word-left-hand 36 bits are zero, right-hand
36 bits are the bit-by-bit product of corresponding
bits of (Q) and word at address u.
72-bit word-left-hand 36 bits are zero, right-hand
36 bits are the bit-by-bit product of corresponding
bits of the complement of (Q) and word at ad-
dress v.

L(Q’)(v)

Transmit instructions

11’
13

12

15

16

35

36

22

Transmit Positive TPuv2: Replace (v) with (u).
Transmit Negative TNuv: Replace (v) with the comple-
ment of (u).
Transmit Magnitude TMuv: Replace (v) with the absolute
magnitude of (u).
Transmit U-address TUuv: Replace the 15 bits of (v) desig-
nated by vl:, through vZ9, with the corresponding bits of
(u), leaving the remaining 21 bits of (v) undisturbed.
Transmit V-address TVuv: Replace the right-hand 15 bits
of (v) designated by vo through vI4, with the corresponding
bits of (u), leaving the remaining 21 bits of (v) undisturbed.
Add and Transmit ATuv: Add D(u) to (A). Then replace
(v) with (AR).
Subtract and Transmit STuv: Subtract D(LI) from (A). Then
replace (v) with (AR).
Left Transmit LTjkv: Left circular shift (A) by k places.
If j = 0 replace (v) with (AL); if j = 1 replace (v) with (AR).

‘Octal notation.
Mnemonic notation

Q-controlled instructions

51 Q-controlled Transmit QTuv: Form in A the number
L(Q)(u). Then replace (v) by (AR).

52 Q-controlled Add QAuv: Add to (A) the number L(Q)(u).
Then replace (v) by (AR).
Q-controlled Substitute QSuv: Form in A the quantity
L(Q)(u) plus L(Q’)(v). Then replace (v) with (AR). The
effect is to replace selected bits of (v) with the corre-
sponding bits of (u) in those places corresponding to 1’s
in Q. The final (v) is the same as the final (AR).

53

Replace instructions

21 Replace Add RAuv: Form in A the sum of D(u) and D(v).
Then replace (11) with (AR).
Replace Subtract RSuv: Form in A the difference D(u)
minus D(v). Then replace (11) with (AR).
Controlled Complement CCuv: Replace (AR) with (u)
leaving (AL) undisturbed. Then complement those bits of
(AR) that correspond to ones in (v). Then replace (u) with

Left Shift in A LAuk: Replace (A) with D(u). Then left
circular shift (A) by k places. Then replace (u) with (AR).
If u = A, the first step is omitted, so that the initial content
of A is shifted.
Left Shift in Q LQuk: Replace (Q) with (u). Then left
circular shift (Q) by k places. Then replace (u) with (0).

23

27

(AR) .

54

55

Split instructions

31 Split Positive Entry SPuk: Form S(u) in A. Then left circu-
lar shift (A) by k places.
Split Negative Entry SNuk: Form in A the complement
of S(ii). Then left circular shift (A) by k places.
Split Add SAuk: Add S(u) to (A). Then left circular shift
(A) by k places.
Split Subtract SSuk: Subtract S(u) from (A). Then left
circular shift (A) by k places.

33

32

34

Two-way conditional jump instructions

46

47

Sign Jump SJuv: If A,, = 1, take (u) as NI. If A,, = 0,
take (v) as NI. (NI means next instruction.)
Zero Jump ZJuv: If (’4) is not zero, take (u) as NI. If (A)
is zero, take (v) as NI.

Chapter 13 I UNIVAC Scientific (1103A) instruction logic 207

44 Q-Jump QJuv: If Q35 = 1, take (u) as NI. If Q35 = 0, take
(v) as NI. Then, in either case, left circular shift (Q) by
one place.

One-way conditional jump instructions

41 Index Jump IJuv: Form in A the difference D(u) minus
1. Then if A,, = 1, continue the present sequence of in-
structions; if A,, = 0, replace (u) with (AR) and take (v)
as NI.
Threshold Jump TJuv: If D(u) is greater than (A), take (v)
as NI; if not, continue the present sequence. In either case,
leave (A) in its initial state.
Equality Jump EJuv: If D(u) equals (A), take (v) as NI,
if not, continue the present sequence. In either case leave
(A) in its initial state.

42

43

One-way unconditional jump instructions

45 Manually Selective Jump MJjv: If the number j is zero,
take (v) as NI. If j is 1, 2, or 3, and the correspondingly
numbered MJ selecting switch is set to “jump,” take (v)
as NI; if this switch is not set to “jump,” continue the
present sequence.
Return Jump RJuv: Let y represent the address from
which CI was obtained, Replace the right-hand 15 bits of
(u) with the quantity y plus 1. Then take (v) as NI.
Interpret IP: Let y represent the address from which CI
was obtained. Replace the right-hand 15 bits of (F,) with
the quantity y + 1. Then take (F,) as NI.

37

14

Stop instructions

56 Manually Selective Stop MSjv: If j = 0, stop computer
operation and provide suitable indication. If j = 1, 2, or
3 and the correspondingly numbered MS selecting switch
is set to “stop,” stop computer operation and provide
suitable indication. Whether or not a stop occurs, (v) is
NI.
Program Stop PS-Stop computer operations and provide
suitable indication.

57

External equipment instructions

17 External Function EF-V: Select a unit of external equip-
ment and perform the function designated by (v).

76 External Read ERjv: If j = 0, replace the right-hand 8 bits
of (v) with (IOA); if j = 1, replace (v) with (IOB).
External Write EWjv: If j = 0, replace (IOA) with the
right-hand 8 bits of (v); if j = 1, replace (IOB) with (v).
Cause the previously selected unit to respond to the infor-
mation in IOA or IOB.
PRint PR-V: Replace (TWR) with the right-hand 6 bits of
(v). Cause the typewriter to print the character corre-
sponding to the 6-bit code.
Punch PUjv: Replace (HPR) with the right-hand 6 bits
of (v). Cause the punch to respond to (HPR). If j = 0, omit
seventh level hole; if j = 1, include seventh level hole.

77

61

63

Arithmetic instructions

71

72

73

74

Multiply MPuv: Form in A the 72-bit product of (u) and
(v), leaving in Q the multiplier (u).
Multiply Add MAuv: Add to (A) the 72-bit product of (u)
and (v), leaving in Q the multiplier (u).
Divide DVuv: Divide the 72-bit number (A) by (u), putting
the quotient in Q, and leaving in A a non-negative re-
mainder R. Then replace (v) by (Q). The quotient and
remainder are defined by: (A), = (u) - (Q) + R, where
0 5 R < I(u)I. Here (A)i denotes the initial contents
of A.
Scale Factor SFuv: Replace (A) with D(u). Then left cir-
cular shift (A) by 36 places. Then continue to shift (A) until
A,, # A,5. Then replace the right-hand 15 bits of (v) with
the number of left circular shifts, k, which would be neces-
sary to return (A) to its original position. If (A) is all ones
or zeros, k = 37. If u is A, (A) is left unchanged in the
first step, instead of being replaced by D(A,).

Sequenced instructions

75 Repeat RPjnw: This instruction calls for the next instruc-
tion, which will be called NIuv, to be executed n times,
its u and v addresses being modified or not according to
the value of j. Afterwards the program is continued by the
execution of the instruction stored at a fixed address F,.
The exact steps carried out are:

a Replace the right-hand 15 bits of (F,) with the
address w.

Execute NIuv, the next instruction in the program,
n times.

b

208 Part 3 1 The instruction-set processor level: variations in the processor

c If j = 0, do not change u and v.
If j = 1, add one to v after each execution.
If j = 2, add one to u after each execution.
If j = 3, add one to u and v after each execution.

The modification of the u address and v address is done
in program control registers. The original form of the
instruction in storage is unaltered.

d On completing n executions, take (FJ, as the next
instruction. F, normally contains a manually selec-
tive jump whereby the computer is sent to w for
the next instruction after the repeat.

If the repeated instruction is a jump instruction,
the occurrence of a jump terminates the repetition.
If the instruction is a Threshold Jump or an Equality
Jump, and the jump to address v occurs, (Q) is
replaced by the quantity j, (n - r), where r is the
number of executions that have taken place.

e

Floating point instructions

64

65

66

Add FAuv: Form in Q the normalized rounded packed
floating point sum (u) + (v).
Subtract FSuv: Form in Q the normalized rounded packed
floating point difference (u) - (v).
Multiply FMuv: Form in Q the normalized rounded
packed floating point product (u) - (v).

67

01

02

03

04

05

Section 1 I Processors with greater than 1 address per instruction

Divide FDuv: Form in Q the normalized rounded packed
floating point quotient (u) + (v).
Polynomial Multiply FPuv: Floating add (v) to the floating
product (Q)i (u), leaving the packed normalized rounded
result in Q.
Inner Product FIuv: Floating add to (Q)i the floating
product (u) * (v) and store the rounded normalized packed
result in Q. This instruction uses MC location F4 = 00003
for temporary storage, where (FJf = (Q)i. The subscripts
i and f represent “initial” and “final.”
Unpack UPuv: Unpack (u), replacing (u) with (u) ~ and
replacing (v) ~ with (u) ~ or its complement if (u) is negative.
The characteristic portion of (u) ~ contains sign bits. The
sign portion and mantissa portion of (v) ~ are set to zero.
Note. The subscripts M and C denote the mantissa and
characteristic portions.
Normalize Pack NPuv: Replace (u) with the normalized
rounded packed floating point number obtained from the
possibly unnormalized mantissa in (u)~ and the biased
characteristic in (v) ~ . Note. It is assumed that (u)~ has the
binary point between uZ7 and uZ6; that is, that (u) ~ is scaled
by 2-27.
Normalize Exit NEj-: If j = 1 normalize without rounding
until a master clear or until the instruction is again exe-
cuted with i = 0.

References

Univac Scientific Electronic Computing System Model 1103A, Form EL
338

Chapter 14

Instruction logic of the MIDAC1

John W. Cam III

The MIDAC, Michigan Digital Automatic Computer [Carr, 19561,
was constructed on the basis of the design of the SEAC at the
National Bureau of Standards. Its instruction code is particularly
of interest because it incorporates the index register concept into
a three-address binary instruction. Numbers in this machine are
(44, 0, 0)2 fixed points. The word length is 45 binary digits with
serial operation.

Word structure

The data or address positions of an instruction are labeled the a ,
j3, and y positions. Each contains twelve binary digits represented
externally as three hexadecimal digits. Four binary digits, or one
hexadecimal digit, are used to convey the instruction modification
or relative addressing information. The next four binary digits or
single hexadecimal digit represents the operation portion of the
instruction. The final binary digit is the halt or breakpoint indi-
cator for use with the instruction.

For example, the 45-binary-digit word

00000110010000001100100000010010l100000001011

considered as an instruction would be interpreted as

a P Y abcd Op halt
000001100100 000011001000 o00100101100 0OOo 0101 1

In external hexadecimal form this would be written

064 0c8 12c 0 5 -

The above binary word is the equivalent machine representation
of the following instruction: “Take the contents of hexadecimal
address 064, add to it the contents of hexadecimal address 0c8,
and store the result in hexadecimal address 12c. There is no
modification of the 12-binary-digit address locations given by the

‘In E. M . Grabbe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 115-121,
John Wiley & Sons, Inc., New York, 1959.
2Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

instruction. Upon completion of the operation, stop the machine
if the proper external switches are energized.” The binary com-
bination represented by 5 is the operation code for addition.

Data or addresses

The addresses given by the twelve binary digits in each of the
three locations designate in the machine the individual acoustic
storage cells and blocks of eight magnetic drum storage cells. The
addresses from 0 to 1023 (decimal) or 000 to 3FF (hexadecimal)
correspond to acoustic storage cells. The addresses from 1024 to
4095 (decimal) or 400 to FFF (hexadecimal) correspond to mag-
netic drum storage blocks. In certain operations, however, the
addresses 0 to 15 (decimal) or 0 to F (hexadecimal) represent
input-output stations rather than storage locations.

These twelve-binary-digit groups will in some cases be modified
by the machine in order to yield a final twelve-binary-digit address.
The method of processing will depend on the values of the instruc-
tion modification digits. After modification, the final result will
then be interpreted by the control unit as a machine address.

In some instructions, namely those that perform change of
control operations, which involve cycling and counting rather than
simple arithmetic operations on numbers, the a and /3 positions
in an instruction are not considered as addresses. In those cases,
they are used instead as counters or tallies. In other instructions,
which do not require three addresses, but only one or two, the
p position is not considered as an address. In these cases, the
oddness or evenness of the /3 address is used to differentiate be-
tween two operations having the same operation code digits. That
is, the parity of binary digit P22 is used as an extra function
designator.

Instruction modification digits

The four binary digits P9-P6 are used as instruction modification
or relative addressing digits. Their normal function is relatively
simple; nevertheless, the possible exceptions to the general rule
can make their behavior complicated. These four digits are labeled

209

210 Part 3 I The instruction-set processor level: variations in the processor

the a, b, c, and d digits. Ordinarily the a digit is associated with
the a position, the b digit with the position, and the c digit
with the y position in an instruction.

When binary digit P22 (or the p position) is used in an instnic-
tion to represent extra operation information, the instruction
modification digit b is ignored. In the case of input and output
instructions, when the various address positions represent machine
address locations on the drum, input-output stations, or block
lengths, and modification of these addresses is not desired in any
case, the corresponding relative addressing digits are ignored.

The purpose of the instruction modification digits is to tell the
machine whether or not to modify the twelve binary digits making
up the corresponding address position in an instruction by addition
of the contents of one or the other of two counters. In the normal
case, if the a, b, or c digit is a zero, the twelve binary digits in
the corresponding position are interpreted, unchanged, as the
binary representation of the machine address of the number word
to be processed by the instruction.

If one or more of the a, b, or c digits is a one, the contents
of one of two auxiliary address counters is added to the corre-
sponding twelve binary digits to yield a final address usually differ-
ent from that given by the original twelve-digit portion of the
instruction word. The addresses are then said to be relative to the
counter.

The two counters involved in the address modification feature
of the MIDAC are known as the instruction counter and the base
counter. In the normal case, if the fourth instruction modification
or d digit is a zero, the contents of the instruction counter will
be added to the contents of the various twelve-digit addresses
(dependent on the values of the a, b, and c digits) before further
processing of the instruction. If the a digit is one and the d digit
zero, the contents of the instruction counter will be added to the
a address; similarly for b and d digits and P address, etc.

If the d digit is a one, the contents of the base counter will
be normally added to the contents of the twelve digits in the a ,
b, and y positions (again dependent on the values of the a, b, and
c digits), before further processing of the results. If the a digit is
one and the d digit one, the contents of the base counter will be
added to the a address, etc.

marized as follows:
The effect of the instruction modification digits may be sum-

The contents of the two counters will he designated by C,
(d = 0, 1).

C, = contents of the instruction counter
C, = contents of the base counter

Section 1 1 Processors with greater than 1 address per instruction

Then the modified addresses a’, b’, and y’ are related to the a ,
/I, and y addresses appearing in the instruction by the following:

a’ = a + aC, p’ = + 1Xd y’ = y + cC,
(a, b, c, d = 0, 1)

In certain instructions addresses relative to one of the two
counters may be prohibited. Thus, if in a particular instruction
N may be relative only to the instruction counter, then for that
instruction

a’ = a + aC,

no matter whether the d digit is a 0 or a 1.

in the location whose address is a’, b’, or y’.

The notation (a’), (b’), or (y ’) is used to indicate the word stored

Instruction counter

The instruction counter is a twelve-binary digit (modulo 4096)
counter which contains the binary representation of the address
of the instruction which the control unit is processing or is about
to process. In normal operation when no change of control opera-
tion is being processed, the contents of the instruction counter
is increased by one at the completion of each instruction. Thus,
normally the next instruction to be processed is stored in the
acoustic storage cell immediately following the cell which contains
the present instruction.

A change of control operation is one which selects a next in-
struction not stored in sequence in the acoustic storage. That is,
a t the completion of such instructions the contents of the instruc-
tion counter is not increased by one, but instead is changed en-
tirely.

Base counter

The base counter is a second twelve-binary-digit counter (modulo
4096), physically identical to the instruction counter, which con-
tains the binary representation of a base number or tally. Unlike
the instruction counter, however, the base counter does not se-
quence automatically, but remains unchanged until a change of
base instruction is processed. This counter serves two primary
purposes, dependent on the usage to which it is put:

1 It may contain the address of the initial word in a group,
thus serving as a base address to which integers representing
the relative position of a given word in the group of words
may be added by using the address modification digits.

Chapter 14 I Instruction logic of the MIDAC 211

2 It may contain a counter or tally which can be increased
by a base instruction. This instruction makes use of the
address modification digits to change the counter so as to
count the number of traversals of a particular cycle of
instructions.

Instruction types

Instructions used in MIDAC can be divided into three categories:
change of information, change of control, and transfer of informa-
tion. The first category can be further subdivided into arithmetic
and logical instructions. In the arithmetic instructions are included
addition, subtraction, division, various forms of multiplication;
power extraction, number shifting; and number conversion instruc-
tions. The sole logical instruction is extract, which modifies infor-
mation in a nonarithmetic fashion.

The transfer of information or data transfer instructions include
transfers of individual words or blocks of words into and out of
the acoustic storage and drum and magnetic tape control.

The possible change of control instructions includes two com-
parisons that provide different future sequences dependent on the
differences of two numbers. In the compare numbers or algebraic
comparison, the difference is an algebraic, signed one. In the
compare magnitudes or absolute comparison, the difference is one
between absolute values. Two other instructions, file and base,
perform other tasks beside transferring control. The file instruction
transfers control unconditionally. The file instruction files or stores
the contents of the base or instruction counter in a specific address
position of a particular word in the storage. The base or tally
instruction provides a method for referring addresses automatically
relative to the address given by the base counter, irrespective of
its contents. The base instruction also gives a conditional transfer
of control.

The nineteen MIDAC instructions can be described function-
ally as follows:

Change of information

Add. (a’) + (p’) is placed in y’. Result must be less than
1 in absolute value.

Subtract. (a’) - (p’) is placed in y’. Result must be less
than 1 in absolute value.

Multiply, Low Order. The least significant 44 binary digits
of (a’) x (p’) are placed in y’.

Multiply, High Order. The most significant 44 binary digits
of (a’) x (p’) are placed in y’.

5

6

7

8

9

10

11

Multiply, Rounded. The most significant 44 binary digits
of (a’) x (p’) k 1 2-45 are placed in y’. The 1 * 2-45 is
added if (a’) x (p’) is positive, and subtracted if (a’) x (p’)
is negative.

Divide. The most significant 44 binary digits of (D’)/(a’)
are placed in y’. (Note the inversion of order of a and p.)
Result must be less than 1 in absolute value.

Power Extract. The number n * 2-44 is placed in y’ where
n is the number of binary 0’s to the left of the most signifi-
cant binary 1 in (a’). The b digit is ignored; p may be any
even number. If (a’) is all zeros, zero is placed in y’.

Shift Number. The 44 binary digits immediately to the
right of the radix point in (a’) * 2(P’)’2’‘ are placed in y’.
The result, in y’, is the equivalent of shifting (a’) n places,
where n - 2-44 = (p’) and 11 positive indicates a shift left,
n negative a shift right. If In1 2 44, zero is placed in y’.

Extract or Logical Transfer. Those binary digits in (y’),
including the sign digit, whose positions correspond to 1’s
in (p’) are replaced by the digits in the corresponding
positions of (a’).

Decimal to Binary Conversion. This operation may be
interpreted in two ways: (a) (a’) is considered as a binary-
coded-decimal integer times 2-44. It is converted to the
equivalent binary integer times 2-37 and the result is
placed in y’, or (b) (a’) is considered as a binary-coded-
decimal fraction, D. It is converted into an intermediate
binary fraction, Ri, such that Bi = D x loll x 2-37 and
the result placed in y’. To obtain B, the true binary equiv-
alent of D, Bi must be multiplied by x 237). How-
ever, since this factor is greater than l and therefore can-
not be represented in the machine, two operations must
be performed. For example,

B~ x (10-11 x 237 - 1) = B~
B = Bi + Bj

Here the b digit is ignored, and p may be any eoen number.

Binary-to-Decimal Conversion. (a’), considered as a binary
fraction, is converted into the equivalent eleven-digit bi-
nary-coded-decimal fraction. The result is placed in y’. The
b digit is ignored, and /3 may be any odd number.

Change of control

12 Compare Numbers. y can be relative only to the instruc-
tion counter. If (a’) 2 (p’), the contents of the instruction
counter are increased by one as is normally done at the
end of each instruction. If (a’) < (B’), the contents of the
instruction counter are set to y’.

212 Part 3 I The instruction-set processor level: variations in the processor

13

14

15

Compare Magnitudes. y can be relative only to the instruc-
tion counter. If I (a’) 1 2 I (p’) 1 , the contents of the instruc-
tion counter are increased by one as is normally done at
the end of each instruction. If I (a’) I < 1 (p’) 1 , the contents
of the instruction counter is set to y’.

Base or Tally. The d digit is ignored. a and p may be
relative only to the base counter, y only to the instruction
counter. If a’ 2 p’, the contents of the base counter are
set to zero and the contents of the instruction counter
increased by one as usual. If a’ < /3‘, the contents of the
base counter are set to a’ and the contents of the instruc-
tion counter to y’. (Note. The comparisons made here are
of addresses themselves, not their contents.)

File. p may be any odd number. a and y may be relative
only to the instruction counter.

If d = 0, the contents of the instruction counter in-
creased by one is placed in the y position of (a’), and the
instruction counter is set to y’.

If d = 1, the contents of the base counter is placed in
the a position of (a’), and the instruction counter is set
to y’. In addition, if b = 1, the contents of the base counter
is set to zero; if b = 0, the contents of the base counter
is not changed.

Transfer of information

16

17

Section 1 I Processors with greater than 1 address per instruction

16 Alphanumeric Read In. The a digit must be 1; the b digit
is ignored. If p is in the range 0 to 7 (decimal) or 000 to
007 (hexadecimal) a characters are read into the acoustic
storage from input-output station /3. The first character
read in is placed in y’, the second in y’ + 1, etc. Each
character occupies the six most significant digit positions
of the register into which it is read; the other positions
are set to zero. This operation may not be used to read
words from the drum into the acoustic storage.

Alphanumeric Read Out. The a digit must be 1; the c digit
is ignored. Starting with (p’), read out a consecutive char-
acters from the acoustic storage to input-output station
y ; y must be in the range 0 to 7 (decimal) or 000 to 007
(hexadecimal). This operation may not be used to read
words from the acoustic storage onto the drum.

Move Tape Forward. (a, b, c and d digits are ignored.) /3
may be any even number; y must be in the range 0 to 15
decimal (000 to OOF hexadecimal). The magnetic tape at
input-output station y is moved forward n blocks where

17

18

a - 1
n=[T] + 1

that is, one plus the integral part of a - yx, or the number
of blocks that include a words.

19 Move Tape Backward. (a, b, c, and d digits are ignored.)
/3 may be any odd number; y must be in the range 0 to
15 decimal (000 to OOF hexadecimal). The magnetic tape
at input-output station y is moved backward n blocks
where

Read In. The a digit must be 0; the b digit is ignored.
If p is in the range 0 to 7 (decimal) or 000 to 007 (hexadeci-
mal) a words are read into the acoustic storage from in-
put-output station p. The first word read in is placed in
y’, the second in y’ + 1, etc. If p is in the range 1024 to
1791 decimal (400 to 6FF hexadecimal), a words are read
into the acoustic storage from the drum starting with the
first word in the drum block whose address is p. The first
word is placed in y’, the second in y’ + 1, etc.

Read Out. The a digit must be 0, the c digit is ignored.
Starting with (p’), read out a consecutive words from the
acoustic storage to input-output station y, if y is in the
range 0 to 7 decimal (000 to 007 hexadecimal), or to the
drum starting at the beginning of the drum block whose
address is y, if y is in the range 1024 to 1791 decimal (400
to 6FF hexadecimal). references: LeinA54.

References

CarrJ56. SEAC computer references: AinsE52; AlexS51; ElboR53; GreeS52,
53; HaueR52; PikeJ52; SerrR62; ShupP53; SlutR51. DYSEAC computer

a - 1 . = [T I + 1

that is, one plus the integral part of a - yx, or the number
of blocks that include a words.

Chapter 15

Instruction logic of the
Soviet Strela (Arrow)l

John W. Caw I I I

A typical general purpose digital computer using three-address
instruction logic is the Strela (Arrow) constructed in quantity
under the leadership of Iu. la. Basilewskii of the Soviet Academy
of Sciences, and described in detail by Kitov [1956]. This com-
puter uses a (35, 6, 0)2 binary floating point number system.
Its instruction word, of 43 digits, contains a six-digit operation
code, and three 12-digit addresses, with one breakpoint bit. In
octal notation, two digits represent the operation, four each the
addresses, and one bit the breakpoint. This machine operates with
up to 2048 words of high-speed cathode ray tube storage.

Input-output is ordinarily via punched cards and punched
paper tape. A “standard program library” is attached to the com-
puter as well as magnetic tape units (termed “external accumula-
tors” below). Note. This computer is different from both the BESM
described by Lebedev [19561 and the Ural reported by Basilewskii
[19571. Apparently, it is somewhat lower in performance than
BESM.

Since all arithmetic is ordinarily in floating point, “special
instructions” perform fixed point computations for instruction
modifications.

Ordinarily instructions are written in an octal notation, but
external to the machine operation symbols are written in a
mnemonic code. The two-digit numerals are the octal instruction
equivalent.

Arithmetic and logical instructions

01. + cy /3 y. Algebraic addition of (a) to (p) with result
in y.

02. + a /3 y. Special addition, used for increasing ad-
dresses of instructions. The command (a) or (/?) is added to the
number (/3) or (a) and the result sent to the cell with address y .

‘In E. M. Grahhe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 111-115,
John Wiley & Sons, Inc., New York, 1959.
’Carr’s triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

As a rule, the address of the instruction being changed corresponds
to the address y.

03. - a /3 y. Subtraction with signed numbers. From
the number (a) is subtracted the number (p) and the result sent
to y.

04. - ‘cy /3 y. Difference of the absolute value of two
numbers I(a)I - I(P)I = (VI.

05. X a /3 y. Multiplication of two numbers (a) and (/?)
with result sent to y .

06. A a /3 y. 1,ogical multiplication of two numbers in
cells a and P. This instruction is used for extraction from a given
number or instruction a part defined by the special number (p).

07. V cy /3 y. Logical addition of two numbers (a) and
(p) and sending the result to cell y. This instruction is used for
forming numbers and commands from parts.

10. Sh a /3 y. Shift of the contents of cell a by the
number of steps equal to the exponent of the (p). If the exponent
of the (p) is positive then the shift proceeds to the left, in the
direction of increasing value; if negative, then the shift is right.
In addition, the sign of the number, which is shifted out of the
cell, is lost.

11. - cy /3 y. Special subtraction, used for decreasing
the addresses of instructions. In the cell a is found the instruction
to be transformed, and in cell p the specially selected number.
Ordinarily addresses a and y are identical.

12. # a /3 y. Comparison of two numbers (a) and (p)
by means of digital additions of the numbers being compared
modulo two. In the cell y is placed a number possessing ones in
those digits in which inequivalence results in the numbers being
compared.

Control instructions

13. C cy /3 0000. Conditional transfer of control either to
instruction (a) or to instruction (p), depending on the results of
the preceding operation. With the operations of addition, sub-
traction, and subtraction of absolute values, it appraises the sign

213

214 Part 3 1 The instruction-set processor level: variations in the processor

of the result: for a positive or zero result it transfers control to
the command (a), for negative results to the command (p).

The result of the operation of multiplication is dependent on
the relationship to unity. Transfer is made to the command (a)
in the case where the result is greater than or equal to one, and
to command (p), if it is smaller than one.

For conditional transfer after the operation of comparison,
transfer to the instruction (a) is made in the case of equality of
binary digits, and to (p) when there is any inequivalence.

After the operation A (logical sequential multiplication) the
conditional transfer command jumps to the instruction (a) when
the result is different from zero, and to instruction (p) when it
is equal to zero.

A forced comparison is given by

c a a 0000

The third address in this command is not used and in its place
is put zero.

14. 1 -0 a 0000 0000. This instruction is executed paral-
lel with the code of the other operations, and guarantees bringing
into working position in good time the zone of the external ac-
cumulator (magnetic tape unit) with the address a.

15. H 0000 0000 0000. This instruction executes an ab-
solute halt.

Group transfer instructions

Special instructions for group transfer serve for the accomplish-
ment of a transfer of numbers to and from the accumulators. In
the second address in these instructions stands an integer, desig-
nating the quantity of numbers in the group which must be trans-
ferred. Group transfers always are produced in increasing sequence
of addresses of cells in the storage.

16. T, 0000 n y. The instruction T, guarantees transfer
from a given input unit (with punched cards, perforated tape, etc.)
into the storage. In the third address y of the instruction is indi-
cated the initial address of the group of cells in the storage where
numbers are to be written. With punched paper tape or punched
cards the variables are written in sequence, beginning with the
first line.

17. T, 0000 n y. The instruction T, guarantees transfer
of a group of n numbers from an input unit into the external
accumulator in zone y.

20. T, a n y. This instruction guarantees a line-by-line
sequence of transfers of n numbers from zone a of the external
accumulator into the cells of the storage beginning with the cell
with address y .

Section 1 1 Processors with greater than 1 address per instruction

21. T, a n 0000. This instruction guarantees the trans-
fer to the input-output unit (to punched paper tape or punched
cards) of a group of n numbers from the storage, beginning with
address a. The record on punched paper tape or punched cards
as a rule will begin with the first line and therefore a positive
indication of the addresses of the record is not required.

22. T, a n y. Instruction T, guarantees transfer of a
group of n numbers from one place in the storage with initial
address a into another place in the storage with initial address y.

23. T, a n y. Instruction T, guarantees transfer of a
group of n numbers from the storage with initial address a into
the external accumulator with address y.

24. T, a n 0000. Instruction T, serves for transfer of n
numbers from the zone of the external accumulator with address
a into the input-output unit.

Instructions T, and T, cannot be performed concurrently with
other machine operations.

Standard subroutine instructions

Certain instructions in the Strela, although written as ordinary
instructions, are actually “synthetic” instructions which call on
a subroutine for computation of the function involved. The amount
of machine time (number of basic instruction cycles) for an itera-
tive process depends on the required precision of the computed
function. The figures given below are based on approximately
ten-digit decimal numbers with desired precision one in the tenth
place.

25. D a /3 y. This standard subroutine serves for exe-
cution of the operation of division: The number (a) is divided into
the number (p) and the quotient is sent to cell 7.

The actual operation of division is executed in two steps: the
initial obtaining of the value of the inverse of the divisor, by which
the dividend is then multiplied. The computation of the inverse
is given by the usual Newton formula, originally used with the
EDSAC [Wilkes et al., 19521.

Yn+1 = Y n P - Y n 4

For x = d * 2 P , where ‘/z < d < 1, the first approximation is taken
as 2-P. The standard subroutine takes 8 to 10 instructions and can
be executed in 18-20 machine cycles (execution time for one
typical command).

26. < a 0000 y. This instruction guarantees obtaining
the value & from the value x = (a) and sending the result to
cell y. Initially l /& is computed by the iteration formula

Chapter 15 I Instruction logic of the Soviet Strela (Arrow) 215

where the first approximation is taken as

- Z‘P/Z’
0 -

the bracket indicating “integral part of.” After this the result is
multiplied by x to obtain 6. This standard subroutine contains 14
instructions and is executed in 40 cycles.

27. ex a 0000 y. This instruction guarantees formation
of L for the value x = (a) and sending the result to cell y. The
computation is produced by means of expansion of ex in a power
series. The standard subroutine contains 20 instructions and is
executed in 40 cycles.

30. l n x a 0000 y. This instruction guarantees forma-
tion of the function In x for the value x = (a) and sending the re-
sult to location y. computation is produced by expansion of In x in
series. The subprogram contains 15 instructions and is executed
in 60 cycles.

31. sinx a 0000 y. This instruction guarantees execu-
tion of the function sin x and sending the result to location y. The
computation is produced in two steps: initially the value of the
argument is translated into the first quadrant, then the value of
the function is obtained by a series expansion. The subroutine
contains 18 instructions and is executed in 25 cycles.

32. DB a n y. This instruction performs conversion of
a group of n numbers, stored in locations a , a + 1, . . . from bi-
nary-coded decimal into binary and sending of the result to loca-
tions y. y + l , The subroutine contains 14 instructions and
is executed in 50 cycles (for each number).

33. BD a n y. This instruction performs the conversion
of a group of n numbers stored in locations a, a + 1,. . . from the
binary system into binary-coded decimal and sends them to loca-
tions y, y + l , The subroutine contains only 30 instructions
and is executed with 100 cycles (for each number).

34. MS a n y. This is an instruction for storage sum-
ming. This instruction produces the formal addition of numbers,
stored in locations beginning with address a, and the result is sent
to location y . Numbers and instructions are added in fixed point.
This sum may be compared with a previous sum for control of
storage accuracy.

References

BasiI57; KitoA56; LebeS6; WilkM52.

Section 2

Processors constrained by a cyclic,
primary memory

These processors use one extra (the + 1) address to specify
the address of the next instruction. Obviously this address is
used to allow complete freedom in the location of both operands
and next instructions in an optimum manner. The IBM 650,
a 1 + 1 address computer, is the most straightforward to un-
derstand. ACE and ZEBRA have subtle microcoded instructions
to achieve powerful instruction sets. The LGP-30 and LGP-21
have a simple 1 address instruction format; they interlace sev-
eral logical addresses between the physical addresses to help
with the optimum location of operands.

The Olivetti Underwood Programma 101 desk calculator

The Programma 101 is a desk calculator computer implemented
with a cyclic Mp. The cyclic memory is not apparent from the
user’s viewpoint because the response is adequate (less than
0.1 sec for simple arithmetic operations). The Programma 101
is discussed in Part 3, Sec. 4, page 235.

ZEBRA, a simple binary computer

The ZEBRA is presented in Chap. 12 and is discussed in Part
3, Sec. 1, page 190.

The LGPSO and LGP-21

The LGP-30 (Chap. 16) is a first-generation, 31-bit computer
with an Mp.cyclic and a very simple ISP. The computer appears
to be characteristic of small-scale drum computers in the first
generation. We think of this class of computer as having very
little power when compared, for example, with the IBM 701.
However, the power is mostly related to the drum-based tech-
nology, with 0.26 - 16.66 millisecond access times.

The Pilot ACE

The NPL Pilot ACE is presented in Chap. 11. Its relationship in
the computer space is discussed in Part 3, Sec. 1, page 190.

The UNIVAC system

The UNIVAC I is described in Chap. 8. A discussion is given
in Part 2, Sec. 1, page 91.

The design philosophy of Pegasus,
a quantityproduction computer

The Pegasus cyclic memory, general register computer (Chap.
9) is discussed in Part 2, Sec. 2, page 170.

IBM 650 instruction logic

The IBM 650 has a 1 + 1 address format and a very complete
instruction set. Because of the long word length (10 decimal
digits) we would consider it to have general utility. The 650’s
high performance is achieved by using a fast drum (6 millisec-
onds/revolution). The characteristics given in Chap. 17 present
the machine as it was first introduced in 1954. Later versions
provided options for floating point arithmetic and index regis-
ters. A 96-word core buffer was also added for disk and mag-
netic-tape buffering. The machine structure is a simple 1 Pc
without concurrent processing and input/output transfer abil-
ity. Although the 650 has a large word, it initially processed only
fixed point integers.

NOVA: a list-oriented computer

The NOVA (Chap. 26) is a specialized computer for processing
array data. It is discussed in Part 4, Sec. 2, page 315.

216

Chapter 16

The LGP-30 and LGP-21

The LGP-30 is a small computer with an Mp.drum. It is distinct
from the first (and succeeding) generation computers using
Mp.random,access and can be described by using the PMS dia-
gram in Fig. l. The LGP-21, a direct descendant of the LGP-30,
having the same ISP, is also described by Fig. 1.

Since there is only one address/instruction, a method is needed
for the optimal allocation of operands. Otherwise, each instruction
might have to wait a complete drum (or disk) revolution each time
a data reference is made. The LGP-30 provides for operand-
location optimization by interlacing the logical addresses on the
drum so that two adjacent addresses (e.g., 00 and 01) are separated
by nine physical locations.' These spaces allow for operands to
be located next to the instructions which use them. There are 64
tracks, each with 64 words (sectors). Each word is accessed by
a track address of 6 bits and a word address of 6 bits. The sequence
of words (sectors) within a track is 00, 57, 50, 43, 36, 29, 22, 15,
08, 01, 58, 51, 44, 37, . . . , 06, 63, 56, 49, 42, 35, 28, 21, 14,
07,00. The time between two adjacent physical words is approxi-
mately 0.260 millisecond, and the time between two adjacent
addresses is 9 x 0.260 or 2.340 milliseconds. The actual maximum
t.access is 16.66 rns2

Half of the instruction (15 bits) is unused. It could be used for
extra instructions, indexing, indirect addressing, or a second (+ 1)
address to locate the next instruction, all of which increase the
preformance.

lThe LGP-21 has a space of 18 words.
2The later LGP-21 appears to have a lower performance than the LGP-30
by about a factor of 3.

'LGP-30; technology: (113 vacuum tubes) , (I 3 5 0 d iodes) ;

power: 1500 wa t t s : w e i g h t : ROO pounds; number produced:

3 2 0 - 490; t . d e l i v e r y : September 1956; descendant: 'LGP-21:

P c (l address; 1 i n s t r u c t i o n / w ; da ta : w , b v , i , f r ; Mps(- 2 w) ;

opera t i ons : (+. - .x , / ,A,x 2))

Mp(drum; t . c y c l e : 260 us/w; t . access : (.260 - 16.6) ms;

i . r a t e : 2.34 ms/w contiguous addresses: 4096 w; (31 , I

space) b/w)

T (F l e x o w r i t e r , paper tape)

LGP-21 ; technology: (460 t r a n s i s t o r s) , (375 d iodes) ; power:

300 wa t t s ; we igh t : 90 pounds; number produced:- 150;

t . d e l i v e r y : December 1962;

Mp(f i xed head d i s k ; c y c l i c ; t . c y c l e : 400 us/w; t .access:

(0 - 52) ms : i . r a t e : 7.26 ms/w contiguous addresses:

4096 w: (31.1 space) b/w)

T (#1 :32 ; F l e x o w r i t e r , paper tape, analog, CRT, card) ,

Fig. 1. LGP-30 and LGP-21 PMS diagrams.

The ISP, given in Appendix 1 of this chapter, is about the most
straightforward in the book. There are only 16 instructions, and
the program state is less than two words. Although the perform-
ance is limited because of an Mp.cyclic,access, an Mp.ran-
dom-access would serve to make the ISP fairly similar to other
faster computers, e.g., an IBM 701.

217

218 Part 3 1 The instruction-set processor level: variations in the processor Section 2 Processors constrained by a cyclic, primary memory

APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION

Appendix 1

LGP-30 and LGP-21 I S P D e s c r i p t i o n

p c S ta te
Ad) : 302

C-48: 23,24 :29;

OV

Run

pc Console S ta te
0P4,8,16,32>

TC
I

A c c m t a t o r

Propram Counter reg i s t e r
Overflow, LCP-21 only on LCP-30 machine stops i f an overflow

Break Point switches
Transfer Control switch

I 8% Sta te
M [O : 7 7 8 ~ ~ O : 7 7 8 ~ < O : 3 0 ~ ~ primar,u memory; 212 w ; track and sector (word)

I(Sta te
The following Input Output devices do not have synchronization r'escription variables. LCP-21 only. LCP-30 has a Flexowriter.

Input-devi ce LO: 31 1<1 : 6>
s top code condition s igni fy ing input dev.ce has read a special code

OutputJevice[O:31]<1:6>

Ins t ruc t ion Format
i<0:30>

opaJ : j> := i 4 2 : 1 5 >

t d : 5 > := i<18:23>

t ' a l : 4 > : = t < l : 5 >
s d : 5 > := i Q 4 : 2 9 >

s k i p c o n d i t i o n := t (t 4 : 3 > A

Ins t ruc t ion In terpre ta t ion Process

BP) # 0)

Run - (i t M [C] ; C t C + I ; next

l n s t r u c t i o n g x e c u t i o n)

Ins t ruc t ion Set and Ins t ruc t ion Execution Process
I n s t r u c t i o n g x e c u t i o n := (

2 (:= op = 0) - (
(t = OOOOOe) - (Run to):
s k i p c o n d i t i o n -(C t C + 1) ;

ia> + (O V + (O V t o ; c t~ + 1))) ;

B (: = op = 1) + (A + - M [t l [~ l) :

Y (:= op = 2) + (M[tl[s]<18:29>~-A<18:29>);
R (:= op = 3) +(M[t] [s1<18:29> C C + 1) :

I (:= op = 4) + (

7 iaJ> A (t=62) + (A t A x Z 6 [l o g i c a l)) ;

ia> A (t=62) - (A + A x Z 4 [l o g i c a l]) :

7 i aJ> A (t f 62) --f (input,b,bit) :

id> A (t#62) + (i n p u t h J i t)) :

ins t ruc t ion

operation code
track se l ec t b i t on Mp
innut-output s e l ec t , LCP-21 on ly
sector se t ec t h i t of W

f e t c h

execute

s t o p
sense BP and t rans fer
sense overflow and t rans fer

bring f rom memory

s tore address
s e t re turn address
s h i f t s , and input

Chapter 16 I The LGP.30 and LGP-21 219

APPENDIX 1 LGP-30 AND LGP-21 ISP DESCRIPTION (Continued)

6
i n p u t d u b i t := (A c A x 2 (l o g i c a l) : nex t

k25:3CD t Input,device[t ' l ; nex t

hA<o>V s top code) + input,&bit)

input,4,bit := (A + A x Z4 { l o g i c a l) ; nex t

A<27:3CD t I npu t d e v i c e [t ' l < l : b ; nex t

hA<O>V s top code) + inputY4,bit)

D (:= op = 5) + (0v.A t round(A / M C t l [s l)) ;

N (:= op = 6) + (A + A X M [t l [s l { s . i n t e q e r \) :

M (:= op = 7) + (A t A x M [t l [s l { s . f r a c t i o n)) ;

P (: = op = l o8) + (

i4> + (Output,device[t ' l<l:6> tA<D:5>) :

i a> + (Ou tpu t,dev i ce[t ']<I : 6> c A<D : i>OlOO)) :

E (: = op = 118) + (A + A A M [t l [s]) ;

u (: = op = 12) + (C t t o s) ;

T (:= op = 13) + (i<D + ((A<CU V TC) + (C c t 0 s)) ;

Ti<@ + (A<@ -f (C t t O s))) ;

H (: = op = 14) + (M [t l [S l + A) ;

C (:= op = 1 5) + (MCtICsl + A ; next A t o) ;
A (:= op = 16) + (OvoA + A + M [t] [s l) ;

5 (: = op = 17) + (OvoA + A - M[t l [51)

)

input processes

wait

divide

m u l t i p l l y , save right
multipl,u, save l e f t

print 6 b i t

print 4 b i t

extract

unconditional transfer
trans.fer control

conditional transfer
hold and store
clear
add
subtract
end Innstruction,execution

Chapter 17

10 9 8 7 6 5 4 2 3 1

Data Next Instruction OP.
Code Address Address

IBM 650 instruction logic1

0

Sign

John W. Cam III

The basic IBM 650 is a magnetic drum (10,0, 0)2 decimal computer Input-output instructions
with one-plus-one address instruction logic. It has a storage of 1000
or 2000 10-digit words (plus sign) with addresses 0000-0999 or
0000-1999. More extended versions of the equipment have built-in
floating point arithmetic and index accumulators, but the basic
machine will be described here. There are three arithmetic regis-
ters in addition to the standard program register and program
counter. All information from the drum to the arithmetic unit
passes through a signed 10-digit distributor. A twenty-digit ac-
cumulator is divided into a lower and upper part, each of 10 digits
with sign. Each of these is addressable (distributor 8001, lower
accumulator 8002, and upper accumulator 8003). Each accumula-
tor may be cleared to zero separately (in IBM 650 terminology,
“reset”). The entire 20-digit register can be considered as a unit,
or each part separately (but affecting the other in case of carries).
The 10-digit instruction is broken down into the following form:

One particular instruction, Table Look-Up, allows automatic table
search for one particular element in a table, which can be stored
with a corresponding functional value. Input-output is via 80-digit
numerical punched cards. An “alphabetic device” allows limited
alphabetical entry on cards. Only certain 10-word groups on the
magnetic drum are available for input and output. The following
information is taken from an IBM 650 manual [Type 650, Magnetic
Drum Data-Processing Machine Manual of Operations]. Much of
the input-output is handled via board wiring, which is not de-
scribed in detail below. The two-digit pair represents the machine
code. The BRD (Branch on Digit) operation is used with special
board wiring to tell when certain specific card punches exist.

iIn E. M. Grabhe, S. Ramo, and D. E. Wooldridge (eds.), “Handbook of
Automation, Computation, and Control,” vol. 2, chap. 2, pp. 93-98,
John Wiley & Sons, Inc., New York, 1959.
Carr’s triplet notation for: fractional significant digits, digits in exponent,

and digits to left of radix point.

70 RD (Read). This operation code causes the machine to
read cards by a two-step process. First, the contents of the 10
words of read buffer storage are automatically transferred to one
of the 20 (or 40) possible 10-word groups of read general storage.
The group selected is determined by the D address of the Read
instruction. Secondly, a card is moved under the reading brushes,
and the information read is entered into buffer storage for the next
Read instruction.

71 PCH (Punch). This operation code causes card punch-
ing in two steps. First the contents of one of the 20 (or 40) possible
10-word groups of punch storage are transferred to punch buffer
storage. The group selected is specified by the D address of the
Punch instruction. Secondly, the card is punched with the infor-
mation from buffer storage.

69 LD (Load Distributor). This operation code causes the
contents of the D address location of the instruction to be placed
in the distributor.

24 STD (Store Distributor). This operation code causes the
contents of the distributor with the distributor sign to be stored
in the location specified by the D address of the instruction. The
contents of the distributor remain undisturbed.

Addition and subtraction instructions

I O AU (Add to Upper). This operation code causes the
contents of the D address location to be added to the contents
of the upper half of the accumulator. The lower half of the ac-
cumulator will remain unaffected unless the addition causes the
sign of the accumulator to change, in which case the contents of
the lower half of the accumulator will be complemented. Also,
the units position of the upper half of the accumulator will be
reduced by one.

15 AL (Add to Lower). This operation code causes the
contents of the D address location to be added to the contents
of the lower half of the accumulator. The contents of the upper
half of the accumulator could be affected by carries.

11 SU (Subtract from Upper). This operation code causes
the contents of the D address location to be subtracted from the

220

Chapter 17 1 IBM 650 instruction logic 221

contents of the upper half of the accumulator. The contents of
the lower half of the accumulator will remain unaffected unless
the subtraction causes a change of sign in the accumulator, in
which case the contents of the lower half of the accumulator will
be complemented. Also, the units position of the upper half of
the accumulator will be reduced by one.

16 SL (Subtract from Lower). This operation code causes
the contents of the D address location to be subtracted from the
contents of the lower half of the accumulator. The contents of
the upper half of the accumulator could be affected by carries.

60 RAU (Reset and Add into Upper). This operation code
resets the entire accumulator to plus zero and adds the contents
of the D address location into the upper half of the accumulator.

65 RAL (Reset and Add into Lower). This operation code
resets the entire accumulator to plus zero and adds the contents
of the D address location into the lower half of the accumulator.

61 RSU (Reset and Subtract into Upper). This operation
code resets the entire accumulator to plus zero and subtracts the
contents of the D address location into the upper half of the
accumulator.

66 RSL (Reset and Subtract into Lower). This operation
code resets the entire accumulator to plus zero and subtracts the
contents of the D address location into the lower half of the
accumulator.

Accumulator store instructions

20 STL (Store Lower in Memory). This operation code
causes the contents of the lower half of the accumulator with the
accumulator sign to be stored in the location specified by the D ad-
dress of the instruction. The contents of the lower half of the
accumulator remain undisturbed.

It is important to remember that the D address for all store
instructions must be 0000-1999. An 8000 series D address will not
be accepted as valid by the machine on any of the store instruc-
tions.

21 STU (Store Upper in Memory). This operation code
causes the contents of the upper half of the accumulator with the
accumulator sign to be stored in the location specified by the
D address of the instruction. If STU is performed after a division
operation, and before another division, multiplication, or reset
operation takes place, the contents of the upper accumulator will
be stored with the sign of the remainder from the divide operation
(Op-Code 14). The contents of the upper half of the accumulator
remain undisturbed.

22 STDA (Store Lower Data Address). This operation code

causes positions 8-5 of the distributor to be replaced by the con-
tents of the corresponding positions of the lower half of the ac-
cumulator. The modified word in the distributor with the sign of
the distributor is then stored in the location specified by the
D address of the instruction.

23 STIA (Store Lower Instruction Address). This operation
code causes positions 4-1 of the distributor to be replaced by the
contents of the corresponding positions of the lower half of the
accumulator. The modified word in the distributor with the sign
of the distributor is then stored in the location specified by the
D address of the instruction. The contents of the lower half of
the accumulator remain unchanged, and the sign of the accumu-
lator is not transferred to the distributor. The modified word re-
mains in the distributor upon completion of the operation.

Absolute value instructions

17 AABL (Add Absolute to Lower). This operation code
causes the contents of the D address location to be added to the
contents of the lower half of the accumulator as a positive factor
regardless of the actual sign. When the operation is completed,
the distributor will contain the D address factor with its actual
sign.

67 RAABL (Reset and Add Absolute into Lower). This
operation code resets the entire accumulator to zeros and adds
the contents of the D address location into the lower half of the
accumulator as a positive factor regardless of its actual sign. When
the operation is completed, the distributor will contain the D ad-
dress factor with its actual sign.

18 SABL (Subtract Absolute from Lower). This operation
code causes the contents of the D address location to be subtracted
from the contents of the lower half of the accumulator as a positive
factor regardless of the actual sign. Wnen the operation is com-
pleted, the distributor will contain the D address factor with its
actual sign.

68 RSABL (Reset and Subtract Absolute into Lower). This
operation code resets the entire accumulator to plus zero and
subtracts the contents of the D address location into the lower
half of the accumulator as a positive factor, regardless of the actual
sign. When the operation is completed, the distributor will contain
the D address factor with its actual sign.

Multiplication and division

19 MULT (Multiply). This operation code causes the ma-
chine to multiply. A 10-digit multiplicand may be multiplied by

222 Part 3 1 The instruction-set processor level: variations in the processor

a 10-digit multiplier to develop a 20-digit product. The multiplier
must be placed in the upper accumulator prior to multiplication.
The location of the multiplicand is specified by the D address of
the instruction. The product is developed in the accumulator
beginning in the low-order position of the lower half of the ac-
cumulator and extending to the left into the upper half of the
accumulator as required.

14 DIV (Divide). This operation code causes the machine
to divide without resetting the remainder. A 20-digit dividend may
be divided by a 10-digit divisor to produce a 10-digit quotient.
In order to remain within these limits, the absolute value of the
divisor must be greuter than the absolute value of that portion of
the dividend that is in the upper half of the accumulator. The
entire dividend is placed in the 20-position accumulator. The
location of the divisor is specified by the D address of the divide
instruction.

64 DIV RU (Divide and Reset Upper). This operation
code causes the machine to divide as explained under operation
code 14 (DIV). However, the upper half of the accumulator con-
taining the remainder with its sign is reset to zeros.

Branching instructions (decision operations)

44 BRNZU (Branch on Non-Zero in Upper). This opera-
tion code causes the contents of the upper half of the accumulator
to be examined for zero. If the contents of the upper half of the
accumulator is nonzero, the location of the next instruction to be
executed is specified by the D address. If the contents of the upper
half of the accumulator is zero, the location of the next instruction
to be executed is specified by the I address. The sign of the ac-
cumulator is ignored.

45 BRNZ (Branch on Non-Zero). This operation code
causes the contents of the entire accumulator to be examined for
zero. If the contents of the accumulator is nonzero, the location
of the next instruction to be executed is specified by the D address.
If the contents of the accumulator is zero, the location of the next
instruction to be executed is specified by the I address. The sign
of the accumulator is ignored.

46 BRMIN (Branch on Minus). This operation code causes
the sign of the accumulator to be examined for minus. If the sign
of the accumulator is minus, the location of the next instruction
to be executed is specified by the D address. If the sign of the
accumulator is positive, the location of the next instruction to be
executed is specified by the I address. The contents of the accu-
mulator are ignored.

47 BROV (Branch on Overflow). This operation code

Section 2 1 Processors constrained by a cyclic, primary memory

causes the overflow circuit to be examined to see whether it has
been set. If the overflow circuit is set, the location of the next
instruction to be executed is specified by the D address. If the
overflow circuit is not set, the location of the next instruction to
be executed is specified by the I address.

90-99 BRD 1-10 (Branch on 8 in Distributor Position
1-10). This operation code examines a particular digit position
in the distributor for the presence of an 8 or 9. Codes 91-99 test
positions 1-9, respectively, of the test word; code 90 tests position
10. If an 8 is present, the location of the next instruction to be
executed is specified by the D address, If a 9 is present, the location
of the next instruction to be executed is specified by the I address.
The presence of other than an 8 or 9 will stop the machine.

Shift instructions

30 SRT (Shift Right). This operation code causes the con-
tents of the entire accumulator to be shifted right the number of
places specified by the units digit of the D address of the shift
instruction. A maximum shift of nine positions is possible. A data
address with units digit of zero will result in no shift. All numbers
shifted off the right end of the accumulator are lost.

31 SRD (Shift Round). This operation causes the contents
of the entire accumulator to be shifted right the number of places
specified by the units digit of the D address of the instruction.
A 5 is added (- 5 if the accumulator is negative) in the twenty-first
(blind) position of the amount in the accumulator. A data address
units digit of zero will shift 10 places right with rounding.

35 SLT (Shift Left). This operation code causes the con-
tents of the entire accumulator to be shifted left the number of
places specified by the units digit of the D address of the instruc-
tion. A maximum shift of nine positions is possible. A data address
with a units digit of zero will result in no shift. All numbers shifted
off the left end of the accumulator are lost. However, the overflow
circuit will not be turned on.

36 SCT (Shift Left and Count). This operation code causes
(1) the contents of the entire accumulator to be shifted to the left
until a nonzero digit is in the most significant place, (2) a count
of the number of places shifted to be inserted in the two low-order
positions of the accumulator. This instruction is to aid fixed-point
scaling.

Table look-up instructions

84 TLU (Table Look-up). This operation code performs an
automatic table look-up using the D address as the location of

Chapter 17 I IBM 650 instruction logic 223

the first table argument and the I address as the address of the
next instruction to be executed. The argument for which a search
is to be made must be in the distributor. The address of the table
argument equal to, or higher than (if no equal exists) the argument
given is placed in positions 8-5 of the lower accumulator. The
search argument remains, unaltered, in the distributor.

Miscellaneous instructions

00 No-Op (No Operation). This code performs no opera-
tion. The data address is bypassed, and the machine automatically

refers to the location specified by the instruction address of the
No-Op instruction.

01 Stop. This operation code causes the program to stop
provided the programmed switch on the control console is in the
stop position. When the programmed switch is in the run position
the 01 code will be ignored and treated in the same manner as
00 (NO-Op).

References

Type 650 Magnetic Drum Data-Processing Machine Manual of Operations:
HughE54; SerrR62.

Section 3

Processors for variable-length-string data

Although only two computers are described in this section, the
reader might refer to other computers in the book which handle
variable-length strings. The IBM System/360 processes a string
whose length is specified in the instruction. The Burroughs
B 5000 has a very nice string data ISP (both simple and power-
ful).

Variable-length strings imply some method to specify at in-
struction execution time the actual length of the character
strings being processed. Which method is used has a substan-
tial effect on the ISP of the resulting machine, and it is note-
worthy that a wide variety of devices has been tried without any
apparent consensus yet on the appropriate mechanism:

1 An extra bit in each character to mark the string bound-
ary (IBM 1401)

2 A special terminal character to mark the string boundary
(IBM 702)

3 A field variable in the instruction to specify the string
length (IBM System/360)

4 A register variable in the processor to specify the string
length (an 8-bit-character computer-Chap. 10)

5 A fixed number of characters at the head of the string

to specify the length (and data type) of the string (used
extensively for variable-length records on tape and disk,
though we know of no ISP that uses it)

The IBM 1401

The 1401 was IBM's most popular computer, measured by
quantity produced, prior to the 1130/1800 and System/360.
However, the authors of this book were unable to find any
technical papers on its design or design philosophy. The 1401
is based on earlier business-oriented computers (Fig. 1, page
225). It evolved a great deal, as can be seen from the number
of "features" which can be appended to improve it. Successors,
the 1440 and 1460, are also improvements. It is assumed that
early computers mainly influence successor computers within
the same organization.

An 8-bit-character computer

An 8-bit-character computer (Chap. 10) has been suggested by
the authors. It is a very restricted computer for processing
string data and illustrates another approach to string defini-
tions; the string length is specified by a variable in the proc.
essor.

224

Chapter 18

The IBM 1401
The second-generation transistor-technology IBM 1401 has been
included both because a large number' have been produced and
because it differs from common fixed word length binary and deci-
mal computers. IBM 1401s are used in business data-processing
applications requiring variable-length character strings or fields
and rather limited calculating ability. Two specific applications
are as a card processor in making a transition from plugboard
programmed calculators to full-scale automatic computations and
for converting data from one medium to another, for example, from
card to tape. The 1401 was little used by the scientific, engineer-
ing, and scientific business data-processing communities, probably
because of the limited Mp size, the low overall processing speed,
and the lack of concurrent 1/0 operation in the smaller configura-
tions. However, it did achieve considerable use as a stand-alone
Cio in C('7090) installations, perhaps because of the speed and
quality of the T('1403; line; printer).

Although undoubtedly influenced by machines outside the IBM
organization, the IBM 1401 is derived primarily from the IBM 702
and 705, which are variable word length decimal machines. The
relationship of the various IBM decimal computers to one another
is shown in Fig. 1. (RCA's early computers2 also use a combination
of fixed-length and variable-length 7-bit character strings and may
have influenced the 1401.)

The IBM 1401's ISP was the first to be adopted by another
company. Honeywell defined its H-200 ISP to be a superset of the
IBM 1401 ISP. The ISP of the H-200 is more complex and increases
performance by organizing Mp by both characters and words.

The IBM 1401, 1440, and 1460 are the only IBM computers
to be completely character-string oriented. That is, both instruc-
tions and data are stored in variable-length character strings; these
strings are addressed by a pointer register to the string. The ad-
dress integer is fixed at three characters. The encoding process
for addresses is given in Appendix 1 of this chapter. The 3-char-
acter address (3 x 6 bits) is assigned as 3 x 4 bcd characters for
encoding addresses 0:999; 2 x 2 bits for selecting 16 x 1,000
addresses; and 2 bits for selecting one of the three index registers.

The IBM 1620 processes variable-length data strings, although

'Up to 1966, more 1401s were produced than any other model. An esti-
mated 7,500 1401s, 1,500 1401 G's (card-only system), 3,600 144Os, and 1,500
1460s were produced. About 1,800 1620s were produced.
2RCA 301, 501, and 601.

the instruction length is a fixed 12-digit string corresponding to
a word in Mp. The 1620, though not identical to the 1401, is
almost a member of the same family.

The 1401 evolved. Figure 1 shows the evolution of "features"
which have created new computers. The 1401's optional features
are mainly design afterthoughts; they sometimes increase perform-
ance, sometimes make certain operations possible, and sometimes
provide substantive change. There are approximately 19 features
in the 1401: memory expansion beyond the anticipated 4,000
characters and index registers required encoding the field bits of
the A and B addresses; store A-Address and store B-Address register

f

I

i Fixed - lengih instructon,
variable - character
string doto

1 (Honeywell H-200)

I i

I 7070 7074 7072 , +-tt

I , +-+'+
1 1620 1710 1620 Ill

I
702 705 705 111 , 7080
Core, + + v o c w k tubes 1 - +

vt,drum, XR,dish,mognetiC tope

Fixed ~ length instruction,
f l i e d length d o t o

603 608,6101
t i + {L Technalogy'vocuum felectromeCh~n#C(Il , tube/st, t t t

Plugboard ond Punched- cpc 607 6 0 4

C(I1CYlatOrS
card progrommed

MICZOO d ig i t)
tlrr! ge?ero?Io" . , , , , . 1 ,

C('Honeyse1i H-ZOO, data W , C h o r H r l n g , 2 p s / c h o r , 1 4 0 1 COmDotible)

Cl '1410;10z l80 hChar ,4 ,5pr /chor , MPO 115 x5ehor l ;1401 ComDotlble)
Cl'7OlO; 4O*UlOO Ichor , 1 2 p i l c h o r , doto W,Choi.rtring, 1401,1410 compohblc)

C('l403, 4-16 kchor ; l l .Sp is /chor , 8 blehor.2 a d d r e r r , M p s b 8 char);

Cl'7070; 6ps/r,5%10 hw, i lO,1s ign ld lw,5b ld ; I (Iddre4S1,nstruction;Mpr 199 'XRl I
C1'7074; 6 p s / w ; 5 % 30 hw), C l 7 0 7 2 , 4 p i / w , 5 % 30 hw)

CC1620; 2 0 - 6 0 kohor, 6 blchor, 2 0 p i / c h o r ; (2 chor/ inStruCtlOn;

storogem rtoroge mrfrocrms), c I ' t 4 6 0 , 6 p 0 / c h ~ r l ; C I '1440; l 1 . t p $ / c h m)

Z Oddie.i/lnltrYCfion); C1'1620 111; inferrupf copob~l~tyl

1 addrersl instruct ion; MpsI512 char11
C l '702, 20%60 kchor. 23ps//char, 6 b lchar ; 5 Char/instruCtion,

Ci'650; drum , 12.4 hn, (I t1) address /#nrtruction ; (10 t 1 sign) d/w ; 5 b / d)

Fig. 1. IBM decimal and character-string computer relationships.

225

226 Part 3 I The instruction-set processor level: variations in the processor

instructions are necessary for subroutines-the Store Address Regis-
ter Feature; Indexing Feature; Multiply-Divide Feature; High-
Low-Equal Compare Feature; Read Release and Punch Release
Feature; the Column Binary Feature; Early-Card-Read Feature;
Processing Overlap Feature, etc.

PMS structure

The 1401 PMS structure (Fig. 2) is an early 1 Pc structure. The
diagram does not show the S(fixed) Pc interconnection structure
with the Ms and T. The Pc-(MslT) interconnection restricts the
concurrency of T and Ms. The optional processing overlap feature
provides a link to Mp to allow the T(card; read, punch) to be run
concurrently with Pc processing. When any of the peripheral
devices are operating without the processing overlap feature, the
Pc is dedicated to be a data transmission link or K (as in earlier
computers). The device K is connected directly to Pc. For example,
Ms(disk, magnetic tape) data transfers use the main registers of
the Pc and can tie it up full time during data transmission. By
careful programming, several devices can be synchronized and
thus run concurrently for communicating with Pc from a K. The
Pc does not have an interrupt system. Thus the peripherals have
no way of communicating with Pc. Subsequent models, the 1440
and 1460, added interrupt capability and made it easier to control
multiple simultaneous data transfers among the peripheral K's
and Pc.

T.consol*

I M s (' l 4 0 5 ; d i s k)

Mp2- P!'T('1402; card; reader,punch)-

T (' 1 4 0 3 1'1404; l i n e ; p r i n t e r) +

T (' 1 4 0 7 Console I n q u i r y S t a t i o n ; t y p e w r i t e r) -

T (paner tape; reader)+

Ms(#l :6; magnet ic tape)-

' P c (s t r i n g ; 1 - 8 c h a r / i n s t r u c t i o n ; M.processor s t a t e

(7 - 16 c h a r) ; technology; vacuum tubes; 1960-1965;

descendants:1440, 1460)

'Mp(core; 11 .5 ps/char; 4000 - 16000 char; (7 , l p a r i t y)

b/char)

Fig. 2. IBM 1401 PMS diagram.

Section 3 I Processors for variable-length-string data

ISP structure

The IBM 1401 ISP is given in Appendix 1 of this chapter. Instruc-
tion strings and data strings are delimited by the special F bit
in a character. A character in Mp is of the form1

C(check,F,B',A', 8, 4, 2, 1)
An n-character string is C[O], C[1], . . . C[n - 11
and would be stored in Mp[j:j + n - 11

The first character (or head) of an instruction must contain the
word-mark flag or F bit. The head .of the instruction, which is to
be interpreted next, is held at Mp[IJ, and. succeeding characters
of the instruction are at Mp[I + 11, Mp[I + 21, etc. Correctly
defined instructions are 1, 2, 4, 5, 7, and 8 characters long. Un-
defined instruction lengths of up to 8 characters are also inter-
preted without an error condition. The interpretation algorithm
presented in the ISP description does not explain the action of
instructions which have an incorrect length. Actually, the 1401
Reference Manual does not go into details of general instruction
interpretation but dwells on "correct" operation. Table 1 presents
the correct instruction lengths and formats. If we take the instruc-
tions in the table, the set is not variable in length but is fixed at
these six sizes. The instruction set (not including the input/output
instructions) is presented in Table 2. This table also provides a
hint of the implementation, since the execution times are given
in terms of memory cycles.

The ISP state, unlike that of more conventional processors, has
no temporary operand storage (e.g., accumulators). The ISP state
has registers which point to operands. The state of the machine
(see Appendix 1) is basically: Mp, the Instruction Location Counter,
Indicators or miscellaneous bits, three 3-character blocks of Mp
reserved for Index registers, and the two registers A-address and
B-address which point to data operands.

Instruction interpretation

There are three principal state types in processing an instruction:
o.q., when the instruction is being formed; o.v., when the operands
are being accessed or the results are being stored in Mp; and 0,

when the operation specified by the instruction is being carried
out. Each state transition corresponds essentially to a memory
access. The three instruction types of Fig. 3 each have their own
particular states. Only types 1 and 2 process the variable-length

'See Appendix 1 of this chapter for the meaning of the bits in a character.
We have renamed the A arid B bits A' and B' to avoid confusion with
the registers.

Chapter 18 I The IBM 1401 227

Table 1 IBM 1401 instruction formats

1 C[OI no-op, halt, or single character to specify
a chained instruction

2 Wl (311 the d-character is used to specify addi-
tional instruction information (e.g.,
select, card stacker)

4 C[OI C[1, 2, 31 unconditional branch instruction or sin-
gle address arithmetic; M[A] t f(M[A])

5 C[OI C[1, 2, 31 C[41 conditional branch instruction; C[4] se-
lects a specific test

7 C[Ol C[1, 2, 31 C[4. 5, 61 two address instruction;
M[B] t M[B] b M[A]; (e.g., add, sub-
tract)

8 C[Ol C[1, 2, 31 C[4, 5, 61 W I conditional branch based on Mp[B] char-
acter; d-character is test character;
(e.g., branch if character equal)

Function of instruction characters:
C[O] op code: always contains a word-mark flag or F bit.
C[1, 2, 31 = branch address for 1-Address register or first operand address for the A-Address register.
C[1] or C[4] or C[7] d-character; used as a single character for additional operation code information or a character for comparison, or to
select a test.
C[4, 5, 61 primary operand (B-Address register specification).

character strings, { charstring}, and the state diagram accounts for
strings on a character-at-a-time basis. For an add instruction
Fig. 3 oversimplifies the execution because it implies that each
character of the A and B operand is accessed, the addition is per-
formed, and the result is restored according to the B-address
register. A more complex description must account for A and B
strings of unequal length, and the case of getting a number which
must be recomplemented because it is the wrong sign. The re-
complementation process requires a reverse scan to find the end
of the B string and then a forward scan to recomplement each
character of B. Figure 4 is a detailed state diagram of the add
execution process.

The states in the ISP description (Appendix 1) within the in-
struction-interpretation process correspond to the three state types
just described: the single-instruction character-fetch operation, the
fetch-operand-addresses for the remainder of the instruction, and
Instruction-execution. Instruction-execution is not given in any
detail. For example, the execution of add is defined as “A”(:=
op = 110001) + OvOM[B] c M[B] + M[A] {charstring};. The
state diagram (Fig. 4) presents this execution in detail. Note that
in the ISP description we omit telling the reader that the A and B

address registers point to the next lowest variable-length string in
M after an operation is performed. We allow the definition of a
variable-string operation, for example, + { charstring}, to imply
the action on the processor state.

Some instructions can be defined with a single character, and
these are called chained instructions. Chained instructions take
the previous values of the pointer registers, the A and B address
registers, as the operand addresses. The add instruction, for exam-
ple, can be either 1 (chained), 4, or 7 characters; the forms of all
instructions appear in Table 1. The 4-character add instruction
places the A address field in both the A and B address registers;
thus the effect is an instruction to double a string (add it to itself).

Data

An n-decimal-digit numeric data string is represented as

C[n - 11, C[n - 21,. . . , C[l], C[0], C[M] -

The underlined characters, C[n - 11 and C[M], have the flag bit
present, that is, (C[n - 1](F) = 1) and (C[M](F) = 1). The n
characters are stored in locations Mp[jl, Mp[j + 11, . . . , Mp[j +

-

228 Part 3 I The instruction-set processor level: variations in the processor

Table 2 IBM 1401 instruction set (excluding input, output)

Section 3 I Processors for variable-length-string data

Instruction
OP Execution time
Codet in memory cyclest

Length Du tu
(char.) tY Pe

Add (no recornplernent) A LI + 3 + LA + LB 1, 4, 7
Add (recomplement) A LI + 3 + LA + 4 L B 1, 4, 7
Branch B LI + 1 4
Branch if Bit Equals W LI + 2 8
Branch if Character Equal B LI + 2 8
Branch if Indicator On B LI + 1 5
Branch if Word Mark and/or Zone V LI + 2 8

Clear Word Mark M LI + 3 1, 4, 7
Compare C LI + 1 + LA + LB 1, 7
Divide (aver.)§ % LI f 2 + 7LRLQ + ~ L Q 7
Halt LI + 1 1
Load Characters to A Word Mark L L, + 1 + 2LA 4, 7
Modify Address5 j# L, + 9 4, 7

Move Characters and Edit E LI + 1 + LA + LB + L, 7
Move Characters to Record or Word Marks P LI + 1 + 2LA 7
Move Characters and Suppress Zeros Z LI f 1 + 3LA 7
Move and Insert Zeros§ X LI + 1 + 2zLA + ZLz 7
Move Numeric D LI + 3 1, 7
Move Zone Y LI + 3 1, 7
Mu It i ply (aver.)§
No operation N Lr + 1 1
Set Word Mark LI + 3 4, 7
Store A-Address Registers Q LI + 5 4
Store B-Address Registers H LI + 4 4
Subtract (no recomplement) S LI + 3 + LA + LB 1, 4, 7
Subtract (recornplernent) S LI + 3 + LA + 4LB 1, 4, 7
Zero and Add ? LI + 1 + LA + LB 1, 4, 7
Zero and Subtract ! LI + 1 + LA + LB 1,4, 7

Clear Storage / LI + 1 + Lx 1,4, 7

Move Characters to A or B Word Mark M LI + 1 + 2Lw 4, 7

@ LI + 3 + 2Lc + 5LCLM + 7LM 7

?Alphanumeric code used to specify instruction.
$M(t.cycle: 11.5 ps/char)
§Optional-feature instructions.

Abbreviations for symbols used in timing:
La = length of the A-field (in characters)
LB = length of the 6-field
Lc = length of multiplicand field
L, = length of instruction

LM = length of multiplier field
L, = length of quotient field
LR = length of divisor field
Ls = number of significant digits in divisor (excludes highorder Os and blanks)
Lw = length of A- or B-field. whichever is shorter
Lx = number of characters to be cleaned
Ly = number of characters back to rightmost 0 in control field
Lz
Z = number of fields included in an operation

number of Os inserted in a field

char. string
char. string
3 char
1, 3 char
1, 3 char
1, 3 char
1, 3 char
char. string
1 char
char. string
char. string

char. string
3 char
char. string
char. string
char. string
char. string
char. string
1 char
1 char
char. string

1 char
3 char
3 char
char. string
char. string
char. string
char. string

Chapter 18 I The IBM 1401 229

character for q

Operotion
complete

Type 1. Type 2 :
MCBl+f (MCAl,MCBl.~chor string}) MCBl~f (MCA1,Cchor . string})

NOTE' The time in each state is roughly 1 memory cycle
q The instruction q
0.q Operation and memory access t o determine instruction q, a correct length

instruction = 1. 2,4.5,7, and 8 characters
OY Operation and memory access fetches t o determine an operand
0 Operation specified in the instruction q, requires no time
0.v' Operand and memory access stores t o restore result operand

Fig. 3. IBM 1401 instruction-interpretation state diagram.

n - 11. The values of the string are based on the bcd value of
the 8, 4, 2, 1 bits of each digit. The magnitude of the integer is

C[n - 11 x 10n-1 + C[n - 21 x IOn-' + . . . + C[O] x 10"

and the sign is
Sign := ((lC[O](A') A C[O](B'))+ -;

l(lC[OI(A') A C[~I(B')) + +)

A string is addressed (or accessed) via the A-address or B-ad-
dress pointer registers. These point to the tail (or least significant
digit), that is, C[0], of the string. The instruction-execution state
diagram of a variable-string add is shown in Fig. 4. The state
diagram assumes that A and B address registers are set up accord-
ing to Fig. 3. Thus Fig. 4 is a more detailed description of states
o.v, o.v, 0, and 0.v'. Each horizontal pair of states (Fig. 4) corre-
sponds to a single scan of the states of type 1 instruction o.v, o.v, 0,
0.v' in Fig. 3. Transition: among states 2 and 3 correspond to the

character-by-character scan with string A and B being added
together; the result string is placed in B. States 4 and 5 define
the string addition, when string A is terminated; i.e., it is con-
sidered to be zero. States 7 , 8, 9, and 10 define the recomple-
mentation process in which the B string has to be recomplemented.
This condition occurs when the operand signs differ, and the
A-field result is greater than the B field; the results are in ten's
complement form. States 7 and 8 define the B-field scan (to return
to find the least digit of B), and states 9 and 10 define the recom-
plementation of each character. Thus an add operation may re-
quire up to three scans of the B string.

The 1401 ISP (Appendix 1 of this chapter) has four parts: State
Declaration, Instruction-interpretation process, Instruction-exe-
cution process, and Operand address-register calculation proc-
ess. The Operand address-register calculation process is analogous
to the Effective-address calculation in more conventional Pc's and
is the most elaborate part of the instruction interpretation. The
operand address registers A-address and B-address are part of the
Pc state and must be retained between instructions. At the end
of an instruction, these registers point to the character of the next
lowest data string in Mp, that is, the character at C[n].

Implementation

The 1401 has a small Pc state, and there are only a few registers
in the implementations. Figure 5 shows the registers, interregister
transfer paths, and data operations that make up the register-

Initiol stote; operand
oddressee in AuAddress
and BuAddress registers
pointing t o A and B str8ngs

COrry,M[E]-M[B] +M[A] t m r y ,

chor string addition

A string has terminated

Not recomp-, M [E+l]<F>-.
B string hor terminated

8 Go to head
Result string. B.

and must be '1 -7 !o f E s tmg 1
M[EI<Ft-r(B+B-I) has wrong slgn

Fig. 4. IBM 1401 add-instruction-execution state diagram.

230 Part 3 I The instruction-set processor level: variations in the processor

L

Section 3 I Processors for variable-length-string data

1 1

INHIBIT MIlVE

ADDER

STORAGE LOGIC

I . I
I 4 4 4- I

f t 1 f * 4- -

I A A - AUX B B - AUX 0

ADDRESS ADDRESS ADDRESS ADMIESS ADDRESS ADDRESS

1

1
ADDRESS ~~~~~ OP
MODIFIER REG DECODE

f- 1

f f f t

I A A - AUX
ADDRESS ADDRESS ADDRESS

OP
MODIFIER DECODE

1401 P R O C E S S O V E R L A P

Fig. 5. IBM 1401 system data flow (registers structure). (Courtesy of International Business Machines Corporation.)

c

transfer level primitives of the complete computer together with
several options. The options, of course, increase the complexity
(and concurrency). Without the overlap feature, for example,
all data are accessed in Mp via Pc's address registers.

There are register pairs consisting of a 3-character memory
address (access) register, and a 1-character data register. The
memory-address, memory-data register pairs are A-address,
A-data; B-address, B-data; 1-address, Operation/Op; Overlap-
,address, Overlap,data/O.

The implementation is straightforward, and the instruction
times (Table 2) show the implementation at the register-transfer
level. For example, as an instruction is being read by Pc, prior
to instruction execution, each new character is taken in and ex-
amined for the instruction-terminating flag bit. When the flag bit
is present, the instruction is complete and ready to be executed.
The character of the next instruction is not saved but is picked
up again after the previous instruction has been executed.

Chapter 18 I The IBM 1401 231

APPENDIX 1 IBM 1401 ISP DESCRIPTION

Appendix 1

t B M 1401 ISP D e s c r i p t i o n

The following description i s a highly s impli f ied description of the IBM 1401.
l i ne corresponds t o a three page description i n the Reference Manual f o r the 1401.
t ions which transfer character s tr ings t o f i xed blocks of primary memory.
ch.string/ch.s.
B str ings a t the end of the operations; t h i s aspect of the operation i s not described--but implied i n the s tr ing operations.

Pc, Pc Console, and I O Device Control States
For example, the e d i t instruct ion given below i n onr

I t does not include the input-output inStrUc-
The character s tr ings are denoted as character.string/

For the character.string operations the A,address/A and B,rrddress/B regis ters contain a pointer t o the next A and

I [1:3]4 ' ,A' ,8.4.2,1> Laddress regis ter , the instruct ion location pointer
Laddress regis ter

Laddress regis ter

String Data pointer regis ters A and B point t o the least s igni f icant d i g i t end of a variable length s tr ing i n memory (see Mp
State de f in i t i on below).
Ech.6) 0perations.B i s normally the re su l t s tr ing, and the length i s defined by a word mark, F , the la s t character of the B
str ing.
a pointer t o the most s igni f icant d i g i t of the instruct ion.
has two additional b i t s check, and f i e l d . The b i t s of Mp are:

Normally A and B are decreased by one and move t o the more s igni f icant end f o r varinble length s tr ing

I f A s tr ing has a word mark, and i s shorter than the B s tr ing, then the remaining A str ing is taken t o be a zero. I i s
Although Pc regis ter characters have the B',A',8,4,2,1 b i t s , the M

Check/Parity,bit.
W ~ / W o r d ~ a r k / F / F i e l ~ b i t .
d i g i t (the la s t d i g i t) of a variable length numeric integer s tr ing.
B',A',8,4,2,1 b i t s .
as a bed d i g i t .
(A ' = 0) A (B' = I) .

The sum (modulo 2) + I , of the F,B',A' ,8,4,2,1, b i t s .
This b i t def ines the beginning of each instruct ion. The F b i t also defines the most s igni f icant

I f numeric data i s represented, the 8,4,2,1 b i t s are used A 6 b i t character i s encoded i n these b i t s .
The sign i s encoded with the least s igni f icant d i g i t . For numeric data, a minus sign, -, i s encoded b,u

A l l other combinations of A ' , B ' represent a p l u s sign, f.

X R [1 :31 [I : 3 la1 ,A ;8 ,4 .2 , l> i= M[87;89,92;94,97~99]6',At,8.4.2,1> 3 three character optional inder regis ters stored i n Mp

I nd i ca t o r s (0 : 631
There are a s e t of 31 s tatus b i t s o f the possible 64.
are used by external ?c status or I / O s tatus .
The ?e indicators assignment t o P c State i s :

logical b i t array encoding F% S tate (not including I,A, and B l

They can be cleare? or s e t under instruct ion control. Some Indicators
The indicators can be selected f o r t e s t ing bu the d character of an instruct ion.

Uncond i t i ona l := 1 a l q u s a 1

Sensegwi t c h d , B , C ,D, E, F,G>

Unequa I-compare B # A

a s e t of 7 covrsole keus

Equa1,compare R - A

Low-compare

H i ghdompare

R < A

R > A
Overf low se t b,g arithmetic overflow, cleared by a branch instruct ion i f

it i s s e t

The indicator array i s par t ia l l y encoded below.
I n d i c a t o r [OOOOOO] := Uncond i t i ona l

I n d i c a t o r [I IOOOI] := Sense-swi tch<A>

I nd i ca tor (0 IO00 I] := Unequa1,compare

I n d i c a t o r [011001] := Overf low

Mp State

M[D:15999]<Check,F,B',A',8,4,2,1>
address[X[l :31<B' , A ' ,8,4,2,1>1<1:5>,, := (

primaru memoru
Address encoding f o r 1 0.f 16000 from a 3 char value o f repis-

t e r X . Ivdexing described below.

232 Part 3 I The instruction-set processor level: variations in the processor

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)

Section 3 1 Processors for variable-length-string data

X[?]<B' , A ' > x 4000,, t

X[l]<B1 , A ' > x IOOO,, +

x [I : ? 1 < R , 4 , 7 , I>(bcd. s t r i nq))

I n s t r u c t i o n Format
op6 ,B t ,A ' ,8 ,4 ,2 .1> i n s t r u c t i o n r e g i s t e r spec i , fy ivq t h e operation

d L h a r 4 , B ' ,A ' , 8 ,4 ,2 ,1>

d-char-present

addi t ional character u s i ~ d t n eome i n s t r u c t i o n s
i n d i c a t e s a d j h a r i s used i n the current i n s t r u c t i o n

a c t i v e

A-address-present

B a d d res sup r e sen t

i n d i c a t e s an ins t ruc t ior i s t r i n p is s t i l l being .fetched
i n d i c a t e s there i s an A address nar t of an i n s t r u c t i o n
i n d i c a t e s there i s a R (Iddress p a r t of an i n s t r u c t i o n

Vove, load, and s t o r e i n s t r u c t i o n types contro l the i n i t i a l i z a t i o n of A and E.
mdve or load o r s t o r e A or B/mls := ((move characters and e d i t = opl v (load characters t o A word mark = op l v (move characters
t o A o r B idords mark = op) v (move characters and suppress zeros = o p) V (move numerical = O D) V (move zone = opl V (s t o r e A
address r e g i s t e r = opl v (s t o r e R address r e g i s t e r = op l l

l n s t r u c t i o n I n t e r n r e t a t i o n Process

Run + (op c M [I] : I I I + I ; n e x t

Fe t ch-ope rand,a dd res ses ; n e x t

I n s t r u c t i OnLexecut i o n)

, f e tch operation

f e t c h addresses ,for A and R

execute

Address Calculation Process
The 1401 ca lcu la tes e x p l i c i t e f f e c t i v e addresses b y f i r s t s e t t i n g up the A, and R address r i ig i s ters .
i n I n s t r u c t i o n ~ x e r u t i o n .
(r e s p e c t i v e l y) : no char, d char, the I or A address, the I o r A address and d char, the A and B address, and t h e I G P A address
and E address and d char.

Operands are not f e t c h e d
There are 1 ,2 ,4 ,5 ,7 and 8 character i n s t r u c t i o n s which have the o p and t h e , following operands

The folloiuinp process d e f i n e s the operation , for correc t lenpth i r s t m c t i o n s .
Fetch-operand-addresses := (

d ~ h a r - p r e s e n t + 0 :

M[I]<D + (a c t i v e 0) ; 1 char i n s t r u c t i o n
--Y[I]<D + (a c t i v e t I ; rnls + B + o) ; n e x t proceed t o p e t an T or il adr7ress

a c t i v e + (d,char get -char ; n e x t A [l] d-char; I or A address s e t un or d-char
d,char,,present t I ; n e x t

~ m 1 s + (@,[I] + A [I])) : n e x t

a c t i v e + (A[2] ge t - cha r ; n e x t m l s + B[2] A[2]) : n e x t

a c t i v e + (A[?] + ge t -cha r ; n e x t A[?]) : n e x t

a c t i v e + (Adddressupresen t ' - 1) ; record alhether I or A address i s present
m l s -f E[?]

~ a c t i v e -> (A-address-present - 0) ; n e x t

A-address-present + (d,char,present t 0 : add index r e g i s t e r t o I or A

(A[2]<B',A'> # 0) + (A < - A + XR[A[2]<B',A1? I ? . c h l)) ;

7 M [I) < R + (B 0) : n e x t F ad?ress s e t up o r d-char

a c t i v e + (d-char t ge t -cha r : n e x t B[l] t d-char:

d-char-present t 1) ;

a c t i v e + (B[2] + g e t - c h a r) ; n e x t

a c t i v e + (B[?] + g e t - c h a r) : n e x t

a c t i v e + (B,address,present t I) ;

a c t i v e + (Baddressupresen t t 0) ; n e x t

B,address,present --f (

record 1,ihether R addres:: is oresent

add index w g i s t e r t o B

d-char-present t 0 ;

(El[2]<B1,A'> # 0) + (B c B + X R [B [Z] < B ' , A ' >] (3 .ch.J)) ;

Chapter 18 I The IBM 1401 233

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)

(7 M [1]6> A a c t i v e) 4 (d L h a r t get,char;

(7 M [l] < h A a c t i v e) + Run t o ;

f {nal h c h a r

d,char,present t 1) ; n e x t

h a l t i f more than 8 char i n s t r u c t i o n

) end Fetch,overanhaddresses

g e t character:
A sub-process used to f e t c h each new character i n t h e i n s t r u c t i o n . T,f F is ,found i n a charazter, ?he process terminates.

qet,char<B1,A',8,4,2,1> := (

7 M[l]<F> A a c t i v e --t (M [I] ; I + I + I) :
M [I] < R + a c t i v e e o) ;

value i s present character
no value, terminate

rns t ruc t ion S e t and I n s t r u c t i o n Ezecution Process

l n s t r u c t i o n ~ x e c ~ t i o n := (

character string/ch.s movement and c l e a r memory:
move characters to P o r B biord ma?k - character s t r i n g ich .s i

moue characters and sutmress zero.$
"M" (:= op = IOOIOO) + (M[B] c M [A]

"Z" (:= op = OllOOl) + (M[B] c M [A]

[ch .s]) ;

(ch.z.1; nex t

M[B] c f (M [B]) (ch .s)) ;

"L" (:= op IOOOll) + (M[B] c M [A] (ch.51); load characters t o A word mnrk

"E" (:= op = IlOlOl) --t (M[B] c f (M [A] , M [B] , { c h . s \)) ; moue characters and e d i t

This i n s t r u c t i o n moues t h e A f i e l d s t r i n g t o t h e B , f i e l d s t r i n g under contro l of an e d i t character stm'ng i n the o r i g i n a l R f i e l d .
"/" (:= op = OlOOOl) --f (M[B] c 0 (ch.s.mod.1001;

-. Bdddress,present --f :
B,address,present + I - A) :

character s t r i n g , { c h . s I , ar i thmet ic :
"A" (:= op = 110001) + (Ov,M[B] +M[B] + M[A] (ch .s l)

".j" (: = op = 010010) + (Ov,M[B] c M [B l - M I A] {ch.s))

, 1 1 1 1 . (:= op = 101010) + (M[B] e 0 - M [A] (ch.s))

"?" (:= op = l l1010) + (M [B] e 0 + M[A] (ch.5))
I , I , (:= op = 0 0 1 1 0 0) + (0 v , M [E] -M[B] x M[A] { c h . ~]) ;

"%" (:= op = OlIlOO) + (O v , M [E] t M [B] / M[A] I ch .5)) ;

"#" (:= op = OOlOll) + (M[B] e M [B] + M[A] (3.chl ;

B c B - 3 : A + A - 3) ;
branches, h a l t , no-operation:

"N" (:= op = 100101)+ ;
* '." (:= op = l l l O l l) + (Run e o ;

Laddressupresen t + ;

A,address,present + I * A) ;

, IB" (: = op = 110010) + (

(l B,address,present

(1 B,address,present A

d,char,present) + I c A ;

d,char,present) + (

I n d i c a t o r [f(d,char)] - (I + A) ;

I nd i c a t o r [f (d,char) 1 t- 0) ;

(B g d d r e s e p r e s e n t A d-char-present) + (

B c B - 1 ;

(M [E] = d,char) + I t A) ! :

c l e a r storage, ipnores t h e
100 address

c l e a r storage
c l e a r storage ant'bnanch

mark and moves t o nex t modulo

add

subtrac t

zero and subtrac t

zero and add
mul t ip ly ; f u l l l ength p,roduct in U [B], spec ia l harduare ODtion

d i v i d e ; auot ien t and remainder both end U D i n M [B l .

vac'ifi, address

no ooeration

h a l t

h a l t and branch

branch

branch i . f inc' icator on

branch if char eaual

234 Part 3 1 The instruction-set processor level: variations in the processor

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)

Section 3 I Processors for variable-length-string data

I,"" (:= op = 010101) + fB C B - 1 ;

M[B]d(d,char)> + (I + A)) ;
'IC" (:= op = IlOOll) + (

I n d i c a t o r s t M [A] = M[B] [c h . s)) :

subroutine ca l l ing:
"Q" (:= op = 101000) -+ (

M[A - Z:A] ,A[1:3]; A + A - 3) ;
"H" (:= op = 1 1 1000) 4 (

M[A - 2:A] + B [1 : 3] ; A ,A - 3) ;

s ingle character operations
"," (:= op = O l l O l l) --f (M [A] < D c l ; M [B] < P c l ;

A + A - 1 ; B t B - I) ;

I g , , (:= op = l l1100) -+ (M[A]<F> t o : M[R]<F> t o ;
A c A - 1 ; B t B - I) ;

"0" (:= op = 110100) + (M[B]G3,4,2,1> t M [A] d , 4 , 2 , 1 > ;

A + A - 1 : B t B - 1) ;

"Y" (:= op = 011000) + (M[B]<B',A'> tM[A]<Bl ,A '> ;

A t A - 1 ; B t B - I) ;

)

branch if u o d m a r k and/or zona

compare

s tore A address reg i s t e r

s tore B address reg i s t e r

s e t word mark

c lear word mark

move nwnerical

move zone

end Instruction,-execution

Section 4

Desk calculator computers:
keyboard programmable processors
with small memories

These stored program computers have interesting features.
For example, the keyboard is utilized several ways:

1 T.console mode; a conventional console for entering data
in response to a stored program

Program entry mode; a device for creating stored pro-
grams

Desk calculator mode; a part of the arithmetic (data)
element by issuing direct instructions and thus obtaining
results directly independent of a program

2

3

Uses 2 and 3 are both internally and externally programmed.
The data types are decimal (both fixed and floating) because
of the intimate interface they require to the user. Some calcu-
lators interpret nested (parenthesized) algebraic expressions.

These calculators easily meet the definition for a stored-
program computer. It is apparent their designers know a great
deal about general purpose stored-program computers. The
machines are cleverly designed and make efficient use of the
hardware they possess. Eventually there may be more of these
computers than conventional stored program computers. The
reader should note that not all “electronic desk calculators”
are computers; most are electronic versions of their mechanical
or electromechanical ancestors.

The OLlVETTl UNDERWOOD PROGRAMMA 101 desk calculator

The Programma 101 (Chap. 19) is at the limit of what we call
a stored program computer. It has a sufficient instruction set
to be classified as a computer, but the storage for temporary
data, constants, and programs is limited. The machine’s in-
struction set is interesting because memory is not addressed
explicitly. A jump, for example, is executed by scanning the
program for a particular marker which was named in the jump
instruction. The Programma 101 uses an Mp.cyclic.

The program library for the Programma 101 is extensive and
provides an indication of its capability.

The Hewlett-Packard Model 9100A computing calculator

The HP 9100A (Chap. 20), like the Programma 101 (Chap. 19),
is a desk calculator. They are both stored program computers.
Programma is designed for simpler accounting and statistical-
tabulation tasks and has fixed-point decimal data. (Programma
101 costs somewhat less.) The HP9100A operates on both fixed-
and floating-point decimal data with scalar, rectangular, and
polar coordinate vectors and is designed for engineering and
scientific calculations. Thus, according to a measure based
on data types and operators, the HP 9100A is about the most
complete computer in the book. Its operations are given in the
PMS diagram of Fig. 1.

Mp(read,wri te; co re ; 368 w; 6 b/w)

T . consol e (keyboard) c

T.console(CRT; d i s p l a y ; numeric; decimal; mixed, f l o a t i n g) +

; d a t a : (s c a l a r , rec tangu la r co -o rd ina te v e c t o r , p o l a r co-

- 1
o r d i n a t e v e c t o r) ; f i x e d , f l o a t i n g ; decimal; operat ions:(+,

-, x, /, cos, s i n , tan, s i n - ‘ , COS

tanh, s i n h - l , cosh-I , t a n h - I , I n , log,,, abs, e, s q r t ,

i n t e g e r p a r t , { r e c t a n g u l a r co -o rd ina te v e c t o r) c { p o l a r co-

o r d i n a t e v e c t o r) , { p o l a r co -o rd ina te v e c t o r] c { rec tangu la r

co -o rd ina te v e c t o r))

t
, t a n - ‘ , s i nh , cosh,

c 6 b/program&tep 3

-T.numer I i c g r i n te r+

-T. p I o t ter-,

-L .ex te rna l dev i ce -
LT-M magnet ic ca rd ; 2 programs; 196 program&teps/prograrn; -

i. !mi croprogramrned (H. processor s t a t e (40 b)) 1 ’Pc := Mp(read on ly ; 512 w, 64 b /w)

‘P.microprogrammed := P.rnicroprogrammed
I
Mp(contro1; read only; 800 ns/w;

64 w ; 29 b/w)

Fig. 1. Hewlett-Packard Model 9100A Computing Calculator PMS
diagram.

235

236 Part 3 I The instruction-set processor level: variations in the processor

The implementation has approximately 36.2 kb of memory,
including the read-only and read-write parts. The design is
physically outstanding, and its use of microprogramming is
superb. The reader should note there are two levels of M(read
only). We could draw the PMS structure of Pc as a P.micro-
programmed within a P.microprogrammed. HP rightfully re-
gards the two ISP's (29-bit and 64-bit word) a.s proprietary and
carefully avoids discussing these points in the article (Chap. 20).
It might be noted that an IBM System/360 Model 30 requires
about 2.9 milliseconds for a floating-point square root, whereas
the HP 9100A requires 19 milliseconds. By way of evidence of
its outstanding packaging, its cost is about five-eighths that
of a PDP-8/1 for about the same amount of physical hardware.
The cost difference, though trulydifficult to compare, is partially
the result of a design from an instrument maker (Hewlett-
Packard) versus a design from a computer manufacturer (DEC).
The TV-like construction of the HP 9100A is an important les-
son that computer manufacturers have not learned. In other

Section 4 I Desk calculator computers: keyboard processors with small memories

words, a Henry Ford has yet to emerge from the computer field.
(Our guess is that he may come from Japan.)

Whereas many computers in this book are included because
they are typical of points in the computer space, the HP 9100A
is included because it is innovative. It is worthy of note that
only one of the engineers had some computer design experi-
ence; Cochran, who did the programming, had prior experience
with circuitry and instrumentation. Had he been a programmer
by training, a larger Mp might have been required. By way of
comparative evidence, the IBM 1800 floating-point arithmetic
functions + , - , X , / , sin, cos, tan-', fl, log, exponential,
tanh, binary to decimal, and decimal to binary require approxi-
mately 1,425 16-bit words, or 23 kb. On the other hand, the
FOCAL1 interactive calculator program for a 4,096-word PDP-8
(49 kb) provides the user with all but polar-rectangular coordi-
nates and hyperbolic functions, but it does have a complete
program editing capability, text handling, control structure, and
1,600-character Mp.

'Similar in scope to Dartmouth's BASIC.

Chapter 19

The OLlVETTl Programma 101 desk
calcu latorl

The Programma 101 is manufactured by the Olivetti Underwood
Corporation. The cost of Programma 101 is about $3,500 (in 1968).
Several thousand are currently in use. Unlike conventional
stored program computers it has instructions which can be exe-
cuted directly as commands from a keyboard or instructions which
can be stored in a program and interpreted by the processor. The
processor uses the decimal representation for mixed numbers. The
decimal point location is controlled manually. Although informa-
tion is stored in character strings, the maximum length is 22 digits
or 24 instructions for a register. A program can be up to 120
characters long and is stored as a continuous string. The internal
encoding of a character is 8 bits. There are no absolute addresses
for instructions, and jump instructions are programmed by placing
labels or references in the string to transfer to. The Programma 101
is composed of the following elements.

Memory. The memory stores nnmeric data and program instruc-
tions.

Keyboard. The keyboard has four functions: It is used for operator
control of the calculator (power on, off, etc); in manual mode the
instructions are executed immediately as in a conventional desk
calculator (e.g., add); the keys write a program’s instructions in
the memory, and the instructions are executed when the program
is run; and numeric data may be entered to a running program.

Printing unit. Serial printing is from right to left, at 30 characters
per second; this unit prints all keyboard entries, programmed
output, and instructions.

Magnetic-card reader/recorder. This device permits instructions
and constants for a program to be stored and retrieved from
magnetic cards.

Control and arithmetic units. The control unit is the administrative
section of the computer. It receives the incoming information,
determines the computation to be performed, and directs the

lThe description is partially taken from the Programma 101 Programming
Manual.

arithmetic unit where to find the information and what operation
to perform.

The PMS diagram shown below is, of course, very simple. It
conforms closely to the classic diagram of what a digital computer
looks like:

Mp-Pc T-M.magnetic-card- TT
I LT.printer+
LT.keyboard +

Primary memory and processor memory

The memory has 10 registers; eight are for general storage and
two are used exclusively for instructions. A character can have
several meanings, depending on the register and its use.

The two instruction registers, 1 and 2, each store 24 instruc-
tions. An instruction is one character long.

The eight storage registers, M, A, R, B, C , D, E, and F, have
a capacity of 22 decimal digits, plus decimal point and sign. The
sign and decimal point do not require character space. Alterna-
tively, D, E, and F hold 24 instructions. M, A, and R are operating
registers and take part in all arithmetic operations. They are
considered to be the arithmetic unit.

The M register is the Median (or distributive) register. All
keyboard figure entries are held in the M register and distributed
to the other registers as instructed.

The A register functions with the arithmetic unit to form the
Accumulator. Arithmetic results are developed and retained in the
A register. A result of up to 23 digits can be produced in the A
register.

The R register retains the complete results in addition and
subtraction, the complete product in multiplication, the remainder
in division, and a remainder in square root. B, C , D, E, and F
are storage registers. Each can be split into two registers, each
with a capacity of 11 digits, plus decimal point and sign. When
storage registers are split, the right portion of the split register
retains its original designation, and the left side is identified with
the corresponding lowercase letter. Thus these registers become

237

238 Part 3 1 The instruction-set processor level: variations in the processor Section 4 1 Desk calculator computers: keyboard processors with small memories

b, B, c, C, d, D, e, F, f and F. The lowercase designation is
obtained by first entering the corresponding uppercase letter and
then depressing the "/" key, for example, c G C/.

The registers D, E, and F or their splits have the additional
capability of storing either instructions or constants to be used
within programs. Thus they can store 1 signed 22-digit number,
2 signed 11-digit numbers, 1 signed 11-digit number, and 11
instructions, or 24 instructions. Programs of up to 120 instructions
can be stored internally (Fig. 1). When registers D, E, and F and
their splits are not used for instructions, they are free to store
constants or intermediate results.

The relationship of memory, keyboard, printer, and magnetic
card is shown in Fig. 1. Registers are referenced explicitly. Pro-
grams do not use explicit addresses in instruction. Thus, special
marker characters are placed in the instructions to serve as jump
reference addresses (program labels).

Fig. 2. Programma 101. (Courtesy of Olivetti Underwood Corporation.)

Structure

The calculator parts are described briefly below. The parts corre-
spond to both the numbers (Fig. 2) and the lettered keyboard (Fig.
3) . The following parts are, in effect, the console. Some of the keys
are used for control of the calculator, and some can be used either
as programmed instructions or as commands which are executed
directly. The following section discusses their instruction function.

The on-off key (1). This is a dual-purpose switch for both the
on and off positions. (Note: The OFF position automatically clears
all stored data and instructions.)

The error (red) light (2). This lights when the computer is turned
on and whenever the computer detects an operational error, e.g.,
exceeding capacity, division by zero.

The general reset key (3) . This key erases all data and instruc-
tions from the computer and turns off the error light.

The correct-performance (green) light (4). This light indicates
the computer is functioning properly. A steady light indicates that
the computer is ready for an operator decision; a flickering light
indicates that the computer is executing programmed instructions
and that the keyboard is locked.

The decimal wheel (5). This determines the number of decimal
places (0, 1,. , . , 15) to which computations will be carried out
in the A register and the decimal places in the printed output,

~ i ~ . 1. programma 101 functional block diagram. (Courtesy ,,f oli-
vetti Underwood Corporation.)

except for results from the R register. u p to 22 decimal digits may
be developed in, and printed from, the R register.

Chapter 19 I The OLlVETTl Programma 101 desk calculator 239

Fig. 3. Programma 101 keyboard. (Courtesy of Olivetti Underwood
, Corporation.)

' The record program switch (6) . When this switch is off, the
commands pressed on the keyboard are executed directly. When
this switch is on, it directs the computer to store instructions either
in the memory from the keyboard or onto a magnetic program
card from the memory.

The record program switch must be off to load instructions from
a magnetic program card into the memory.

The print program switch (7). When this switch is on (in), it
directs the computer to print out the instructions stored in memory
from its present location in the program to the next Stop instruc-
tion (S), whenever the print key (20) is depressed.

The magnetic program card (8). This is a plastic card with a
ferrous oxide backing, used to record programs for external storage.
The card is inserted into a magnetic reader/writer (9) to record
instructions and/or constants into or from the computer memory.
Once inserted, the card may be removed from the computer (10)
without disturbing the stored instructions.

(Note: The magnetic-card reader/writer uses only half the

magnetic card at a time; consequently, two sets of 120 instructions
and/or constants may be stored on a single card.)

The keyboard release key (11). This key reactivates a locked
keyboard. If two or more keys are depressed simultaneously, the
keyboard will lock to indicate a misoperation. Because the opera-
tor does not know what entry was accepted by the computer, after
touching the keyboard release key, the clear entry key (16) must
be depressed and the complete figure reentered.

Tape advance (12). This advances the printing paper tape.
Tape release lever (13). This enables adjustment when changing

tape rolls.
The routine selection (keys V, W, Y, and 2). These keys direct

the computer to the proper program or subroutine.
The numeric keyboard (keys 0, 1,. . . , 9 , . , -). This keyboard

allows entry of a signed, mixed decimal number. Keyboard entries
are automatically stored in the M register.

The clear entry key. This key clears the entire keyboard entry.
When keying in the program, a depression of the clear key will
erase the last instruction that has been entered into the memory.
The printing tape will be spaced.

The start key (S) . This key restarts the computer in programmed
operation; it is used to code a stop instruction when keying in
programs.

The register address (keys A, B, C, D, E, F, and R). These keys
identify the corresponding registers. The operating register M has
no keyboard identification since the computer automatically re-
lates all instructions to the M register unless otherwise instructed.

The split key (/). This key combined with a register (for exam-
ple, C/) divides that register into two equal parts. When storage
registers are split, the right portion of the split register retains
the original designation, and the left side is identified on the tape
with the corresponding lowercase letter (for example, C/ G c).

The print key (0). This key prints the contents of an addressed
register.

The clear key ("). This key clears the contents of an addressed
register. When the computer is operated manually, a depression
of this key will print the number in the register and clear it.

The transfer keys (i, T, $). These keys perform transfer opera-
tions between the storage registers and the operating registers.

The arithmetic keys (-, + , x , t , 6). These keys perform
their indicated arithmetic function.

Keyboard and stored-program operations

All the following keys can be used as direct instructions (Le.,
manually) if the record program switch is off. Alternatively, if the

240 Part 3 1 The instruction-set processor level: variations in the processor Section 4 1 Desk calculator computers: keyboard processors with small memories

record program switch is on, the keys specify the instruction to
be recorded in the program memory. Finally, the descriptions
specify the instruction's behavior as it is executed within a pro-
gram.

Start S. The instruction S (used in creating a program) directs
the computer to stop and release the keyboard for the entry of
figures or the selection of a subroutine. After figure entry, the
program is restarted by touching the start key (S).

The program can also be restarted by touching a routine selec-
tion key. When the S instruction stops the program, the computer
may also be operated in the manual mode without disturbing the
program instructions in the memory. Any figures entered on the
keyboard before depression of start or an operation key will be
printed automatically.

Clear *. The clear operation ' directs the computer to clear
the selected register. The M and R registers cannot he cleared
with this instruction.

When the computer is operated manually this key will cause
it to print the contents of the selected register, r. (r t o)
Data-transfer operations

To A J. An instruction containing the operation J, directs the
computer to transfer contents of the addressed register, r, to A
while retaining them in the original register. The contents of M
and R are not affected. The previous contents of A are destroyed.

From M t. An instruction containing the operation t directs
the computer to transfer the contents of M to the addressed regis-
ter while retaining them in M. The contents of registers A and
R are unaffected by this instruction. The original contents of the
addressed register are destroyed. (r t M)

Exchange $. An instruction containing the operation $ directs
the computer to exchange the contents of the A register with the
contents of the addressed register. The contents of M are not
affected except by the exchange between A and M. The contents
of the R register are not affected. (A t r ; r + A)

D-R exchange RS. The instruction RS directs the computer to
exchange the contents of D (both D and d registers) with the
contents of the R register. (D t R; R t D)

This instruction has a special use in multicard programs to store
temporarily the contents of the D (d,D) register in R, when a new
card has to be read to continue the program. During this tem-
porary storage no instruction affecting the R register should be
executed.

Decimal part to M /$. The instruction /t directs the computer
to transfer the decimal portion of the contents of A to the M

(A + r)

register while retaining the entire contents in A. The original
contents of the M register are destroyed. The R register is not
affected by this instruction. (M t fraction,part(A))

Arithmetic operations

All arithmetic operations are performed in the operating registers
M, A, and R. An arithmetic operation is performed in two phases:

The contents of the selected register are automatically
transferred to the M register. The M register is selected
automatically if no other register is indicated.

The operation is carried out in the M, A, and R registers.

1

2

Programma 101 can perform these arithmetic operations: +,
-, X, i, fl, and absolute value. Figures are accepted and
computed algebraically. A negative value is entered by depressing
the negative key at any time during the entry of a figure. If there
is no negative indication, the computer will accept the figure as
positive.

The subtract operation key is separate from the numeric key-
board and is used exclusively for subtraction (not negation).

Addition + . An instruction containing the operation + directs
the computer to add the contents of the selected register (addend)
to the contents of the A register (augend). Addition is executed
in two phases:

1

2

Transfer the contents of the selected register (addend)
to M.

Add the contents of M to the contents of A (augend) ob-
taining in A the sum truncated according to the setting of
the decimal wheel. The complete sum is in R. M contains
the addend. (M t r; next R t A + M; next A t f(R,deci-
mal-wheel))

Multiplication x . An instruction containing the operation x
directs the computer to multiply the contents of the selected
register (multiplicand) by the contents of the A register (multi-
plier).

1

2

Transfer the contents of the addressed register to M.

Multiply the contents of M by the contents of A, obtaining
in A the product truncated according to the setting of the
decimal wheel. The complete product is in R. M contains
the multiplicand. (M t r; next R t A x M; next A t f(R,
decimal-wheel))

Chapter 19 I The OLlVETTl Programma 101 desk calculator 241

Subtraction - . An instruction containing the operation -
directs the computer to subtract the contents of the selected
register (subtrahend) from the contents of the A register (minuend).

1 Transfer the contents of the selected register (subtrahend)
to M .

Subtract the contents of M from the contents of A (minu-
end), obtaining in A the difference truncated according to
the setting of the decimal wheel. The complete difference is
in R. M contains the subtrahend. (M t r; next R t A - M;
next A t f(R,decimal,wheel))

2

Division i . An instruction containing the operation i directs
the computer to divide the contents of the selected register
(divisor) into the contents of the A register (dividend).

1

2

Transfer the contents of the addressed register to M.

Divide the contents of M into the contents of A, obtaining
in A the quotient truncated according to the setting of the
decimal wheel. The decimally correct fractional remainder
is in R. M contains the divisor. (M c r; next A t A - M;
R c A mod M)

Syuare Root <. An instruction containing the operation \r
directs the computer to:

1

2

Transfer the contents of the selected register to M

Extract the square root of the contents of M, as an absolute
value, obtaining in A the result truncated according to the
setting of the decimal wheel. The R register contains
a nonfunctional remainder. At the end of the operation,
M contains double the square root. (M c r ; next
M,R t sqrt(abs(M)) x 2; next A c f(M/2, decimal-wheel))

Absolute Value AI. The absolute-value instruction A t changes
the contents of the A register, if negative, to positive. (A t abs(A)

Jump operations

The jump operation directs the computer to depart from the
normal sequence of step-by-step instructions and jump to a pre-
selected point in the program.

These instructions provide both internal and external (manual)
decision capability and are useful to create “loops” that allow
repetitive sequences in a program to be executed; routines or
subroutines to be performed at the discretion of the operator;
and automatically to “branch” to alternate routines or subroutines
according to the value in the A register.

The jump process consists of two related instructions or char-
acters:

1 The reference point or label, 1, is where the program begins
or where the jump is to start. The sequence is restarted at
this point. This label has no effect when interpreted.

The jump instruction specifies the label for the instruction
sequence.

2

There are two types of jump instructions: unconditional jumps
and conditional jumps.

Unconditional jumps. These jumps are executed whenever the
instruction is read. The labels or reference points for unconditional
jumps, L, and the corresponding jump instructions, j, are given
as (L,j). The permissible jump labels and jump constructions are:

(AV,V), (AW,W), (AY,Y), (AZ,Z), (BV,CV), . . . ,
(BZ,CZ), (EV,DV), . . . , (EZ,DZ), (FV,RV), . . . , (FZ,RZ)

All programs must begin with reference parts of an uncondi-
tional jump instruction. Reference points AV, AW, AY, AZ are
used so that these program sequences can be started by touching
the routine selection keys V, W, Y, or Z.

Conditional Jumps. If the contents of the A register are:

Greater than zero: the program jumps to the corresponding
reference point (label).

Zero or less: the program continues with the next in-
struction in sequence.

The labels or reference points for conditional jumps, L, and
the corresponding conditional jump instruction, cj, are given as
(L,cj). The permissible jump labels and jump instructions are

(aV,/V), . . . , (az,/z), (bV,cV), . . . ,
(bZ,cZ), (eV,dV), . . . , (eZ,dZ), (f V,rV),
. . . , (fZ,rZ)

Constants as instructions A/?. A one-digit constant can be gener-
ated by a special instruction. The results of the instruction place
the digit in M. The digit value of the constant must follow A/T.

Instructions and data i n the same register. An instruction can be
considered to be data and, therefore, used as both a constant and
an instruction. Another technique allows the computer to interpret

242 Part 3 1 The instruction-set processor level: variations in the processor

data as null instructions so that both data (for reading and writing)
and instructions can be stored in the same register.

ExawLpZes. A program to take values for the numbers A, B, C, and
D from the keyboard and then print the value of the expression
[(A + B) x C]/D would be written as follows:

instruction

+AV
S
J or JM1
S
+ M
S
X M
S
t M
A 0

-V

comments

label to allow the program to be started by key, V
wait; enter A from keyboard into M
A value goes to A register
wait, enter B from keyboard
a register contains A + B
wait, enter C from keyboard
a register X C or (A + B) x C
wait, enter D from keyboard
a register has expression
print A register
jump back to beginning label to recalculate ex-
pression for new variables

1 M is implied if left blank.

The following program computes and prints n!. n is entered
from the keyboard, where n 2 1, and an integer. The program is
started by pressing key Z.

Section 4 1 Desk calculator computers: keyboard processors with small memories

comments

program start, label
stop, enter n from keyboard into M
D t n; D holds n! or n x (n - 1) x
A t n ; A h o l d s n , n - 1 , n - 1 , . . . , 1
label
generate 1 in M

A c A - 1; (n t n - 1)
test if n 2 0
print result
get next n from keyboard
begin to update n!, label
A holds n!; D holds n - 1 after execution
A holds n x (n - 1) x
D holds n!; A holds n - 1 after execution
return to compute n - 2

Conclusion

Many algorithms have been written for Programma 101, being
coded in impressively small space. The techniques have sometimes
been borrowed from conventional computer programming. For
example, multiple card programs operate by using chains in the
same way as large FORTRAN programs. The significant fact to
the reader is that the Programma 101 calculator is a nicely de-
signed stored program computer.

Chapter 20

The HP Model 9100A computing
calculator1

Richard E. Monnier / Thomas E . Osborne /
David S. Cochran

A new electronic calculator with computerlike capabilities operations on two numbers, one in X and one in Y, appear in the

Many of the day-to-day computing problems faced by scientists
and engineers require complex calculations but involve only a
moderate amount of data. Therefore, a machine that is more than
a calculator in capability but less than a computer in cost has a
great deal to offer. At the same time it must be easy to operate
and program so that a minimum amount of effort is required in
the solution of typical problems. Reasonable speed is necessary
so that the response to individual operations seems nearly instan-
taneous.

The HP Model 9100A Calculator, Fig. 1, was developed to fill
this gap between desk calculators and computers. Easy interaction
between the machine and user was one of the most important
design considerations during its development and was the prime
guide in making many design decisions.

CRT display

One of the first and most basic problems to be resolved concerned
the type of output to be used. Most people want a printed record,
but printers are generally slow and noisy. Whatever method is
used, if only one register is displayed, it is difficult to follow what
is happening during a sequence of calculations where numbers are
moved from one register to another. It was therefore decided that
a cathode-ray tube displaying the contents of three registers would
provide the greatest flexibility and would allow the user to follow
problem solutions easily. The ideal situation is to have both a CRT
showing more than one register, and a printer which can be at-
tached as an accessory.

Figure 2 is a typical display showing three numbers. The X
register displays numbers as they are entered from the keyboard
one digit at a time and is called the keyboard register. The Y
register is called the accumulator since the results of arithmetic

_ _
Y register. The Z register is a particularly convenient register to
use for temporary storage.

Numbers

One of the most important features of the Model 9100A is the
tremendous range of numbers it can handle without special atten-
tion by the operator. It is not necessary to worry about where
to place the decimal point to obtain the desired accuracy or to
avoid register overflow. This flexibility is obtained because all
numbers are stored in ‘floating point’ and all operations performed
using ‘floating point arithmetic.’ A floating point number is ex-
pressed with the decimal point following the first digit and an
exponent representing the number of places the decimal point
should be moved-to the right if the exponent is positive, or to
the left if the exponent is negative.

‘This chapter is a compilation of three articles [Monnier, 1968; Osborne,
1968; Cochran, 19681, reprinted from Hewlett-Puckurd Journul, vol. 20,
no. 1, pp. 3-9, 10-13, 14-16, September, 1968.

Fig. 1. This new HP Model 9100A calculator is self-contained and is
capable of performing functions previously possible only with larger
computers.

243

244 Part 3 I The instruction-set processor level: variations in the processor Section 4 1 Desk calculator computers: keyboard processors with small memories

explained and key codes are listed. Some simple examples are
provided to assist those using the machine for the first time or
to refresh the memory of an infrequent user. Most questions re-
garding the operation of the Model 9100A are answered on the
card.

Data entry

The calculator keyboard is shown in Fig. 4. Numbers can be
entered into the X register using the digit keys, the v key or the
ENTER EXP key. The ENTER EXP key allows powers of 10 to
be entered directly which is useful for very large or very small
numbers. 6.02 x loz3 is entered @ @ @ @ 0. If the

ENTER EXP key is the first key of a number entry, a 1 is auto-

Fig. 2. Display in fixed point with the decimal wheel set at 5. The Y
register has reverted to floating point because the number is too large
to be properly displayed unless the digits called for by the DECIMAL-
DIGITS setting are reduced.

4.398 364 291 x = .004 398 364 291

The operator may choose to display numbers in FLOATING
POINT or in FIXED POINT. The FLOATING POINT mode
allows numbers, either positive or negative, from 1 x lopgg to
9.999 999 999 x 10gg to be displayed just as they are stored in the
machine.

The FIXED POINT mode displays numbers in the way they
are most commonly written. The DECIMAL DIGITS wheel allows
setting the number of digits displayed to the right of the decimal
point anywhere from 0 to 9. Figure 2 shows a display of three
numbers with the DECIMAL DIGITS wheel set at 5. The number
in the Y register, 5.336 845 815 x 105 = 533 684.5815, is too big
to be displayed in FIXED POINT without reducing the DECI-
MAL DIGITS setting to 4 or less. If the number is too big for
the DECIMAL DIGITS setting, the register involved reverts
automatically to floating point to avoid an apparent overflow. In
FIXED POINT display, the number displayed is rounded, but full
significance is retained in storage for calculations.

To improve readability, 0’s before the displayed number and
un-entered 0’s following the number are blanked. In FLOATING
POINT, digits to the right of the decimal are grouped in threes.

Pull-out instruction card

A pull-out instruction card, Fig. 3, is located at the front of the
calculator under the keyboard. The operation of each key is briefly

Fig. 3. Pull-out instruction card is permanently attached to the calcula-
tor and contains key codes and operating instructions.

Chapter 20 1 The HP Model 91WA computing calculator 245

Functions available from the keyboard

The group of keys at the far left of the keyboard, Fig. 4, gives
a good indication of the power of the Model 9100A. Most of the
common mathematical functions are available directly from the
keyboard. Except for @ the function keys operate on the number

in X replacing it with the function of that argument. The numbers

in Y and Z are left unchanged. @ is located with another group

of keys for convenience but operates the same way.
The circular functions operate with angles expressed in RADI-

ANS or DEGREES as set by the switch above the keyboard. The
sine, cosine, or tangent of an angle is taken with a single keystroke.
There are no restrictions on direction, quadrant or number of
revolutions of the angle. The inverse functions are obtained by
using the 0 key as a prefix. For instance, two key depressions

are necessary to obtain the arc sin x: @ @ . The angle obtained
will be the standard principal value. In radians:

Fig. 4. Keys are in four groups on the keyboard, according to their
function.

matically entered into the mantissa. Thus only two keystrokes

@ @ suffice to enter 1,000,000. The CHG SIGN key changes

the sign of either the mantissa or the exponent depending upon
which one is presently being addressed. Numbers are entered in
the same way, regardless of whether the machine is in FIXED
POINT or FLOATING POINT. Any key, other than a digit key,
decimal point, CHG SIGN or ENTER EXP, terminates an entry;
it is not necessary to clear before entering a new number. CLEAR
X sets the X register to 0 and can be used when a mistake has
been made in a number entry.

Control and arithmetic keys

ADD, SUBTRACT, MULTIPLY, DIVIDE involve two numbers,
so the first number must be moved from X to Y before the second
is entered into X. After the two numbers have been entered, the
appropriate operation can be performed. In the case of a DIVIDE,
the dividend is entered into Y and the divisor into X. Then the

0 key is pressed causing the quotient to appear in Y, leaving

the divisor in X.
One way to transfer a number from the X register to the Y

register is to use the double sized key, 0, at the left of the digit
keys. This repeats the number in X into Y, leaving X unchanged;

the number in Y goes to Z, and the number in Z is lost. Thus,
when squaring or cubing a number, it is only necessary to follow
0 with @ or Q 0. The 0 key repreats a number in Z
to Y leaving Z unchanged, the number in Y goes to X, and the
number in X is lost. The @ key rotates the number in the X
and Y registers up and the number in Z down into X. @ rotates
the numbers in Z and Y down and the number in X up into Z.
@ interchanges the numbers in X and Y. Using the two ROLL

keys and @, numbers can be placed in any order in the three

registers.

- _ -n < Sin-' x 5
2 - 2

0 5 Cos-' x 5 $7

< Tan-' x < ?T
2 2
71 _ _

The hyperbolic sine, cosine, or tangent is obtained using the
@ key as a prefix. The inverse hyberbolic functions are obtained
with three key depressions. Tanh-' x is obtained by @ @ @ .
The arc and hyper keys prefix keys below them in their column.

Log x and In x obtain the log to the base 10 and the log to
the base e respectively. The inverse of the natural log is obtained
with the e' key. These keys are useful when raising numbers to
odd powers as shown in one of the examples on the pull-out card,
Fig. 3.

Two keys in this group are very useful in programs. 0 takes
the integer part of the number in the X register which deletes
the part of the number to the right of the decimal point. For
example int(-3.1416) = -3. @ forces the number in the Y
register positive.

Storage registers

Sixteen registers, in addition to X, Y, and Z, are available for
storage. Fourteen of them, 0, 1, 2 , 3 , 4, 5, 6, 7, 8, 9, a, b, c, d,
can be used to store either one constant or 14 program steps per
register. The last registers, e and f, are normally used only for
constant storage since the program counter will not cycle into

246 Part 3 1 The instruction-set processor level: variations in the processor Section 4 I Desk calculator computers: keyboard processors with small memories

them. Special keys located in a block to the left of the digit keys
are used to identify the lettered registers.

To store a number from the X register the key @ is used. The
parenthesis indicates that another key depression, representing the
storage register, is necessary to complete the transfer. For example,
storing a number from the X register into register 8 requires two
key depressions: @ @ . The X register remains unchanged. To
store a number from Y register the key @ is used.

The contents of the alpha registers are recalled to X simply
by pressing the keys a, b, c, d, e, and f. Recalling a number from
a numbered register requires the use of the @ key to distinguish

the recall procedure from digit entry. This key interchanges the
number in the Y register with the number in the register indicated
by the following keystroke, alpha or numeric, and is also useful
in programs since neither number involved in the transfer is lost.

The CLEAR key sets the X, Y, and Z display registers and the
f and e registers to zero. The remaining registers are not affected.
The f and e registers are set to zero to initialize them for use with
the 0 and @ keys as will be explained. In addition the CLEAR

key clears the FLAG and the ARC and HYPER conditions, which
often makes it a very useful first step in a program.

Coordinate transformation and complex numbers

Vectors and complex numbers are easily handled using the keys
in the column on the far left of the keyboard. Figure 5 defines
the variables involved. Angles can be either in degrees or radians.
To convert from rectangular to polar coordinates, with y in Y and
x in X, press @. Then the display shows 0 in Y and R in X. In

Y

y = R sin 0

Fig. 5. Variables involved in conversions between rectangular and polar
coordinates.

converting from polar to rectangular coordinates, 6' is placed in

Y, and R in X, @ is pressed and the display shows y in Y and
x in X.

ACC+ and ACC- allow addition or subtraction of vector
components in the f and e storage registers. ACC+ adds the
contents of the X and Y register to the numbers already stored
in f and e respectively; ACC- subtracts them. The RCL key
recalls the numbers in the f and e registers to X and Y.

Illegal operations

A light to the left of the CRT indicates that an illegal operation
has been performed. This can happen either from the keyboard
or when running a program. Pressing any key on the keyboard
will reset the light. When running a program, execution will
continue but the light will remain on as the program is completed.
The illegal operations are:

Division by zero
fi where x < 0
In x where x 5 0; log n where x 5 0
s i x 1 x where 1x1 > 1; c0s-I x where (. X I > 1
cosh-' x where x < 1; tanh-' x where 1x1 > 1

Accuracy

The Model 9100A does all calculations using floating point arith-
metic with a twelve digit mantissa and a two digit exponent. The
two least significant digits are not displayed and are called guard
digits.

The algorithms used to perform the operations and generate
the functions were chosen to minimize error and to provide an
extended range of the argument. Usually any inaccuracy will be
contained within the two guard digits. In certain cases some in-
accuracy will appear in the displayed number. One example is
where the functions change rapidly for small changes in the argu-
ment, as in tan x where x is near 90". A glaring but insignificant
inaccuracy occurs when an answer is known to be a whole number,
but the least significant guard digit is one count low:
2.000 000 000 N 1.999 999 999.

Accuracy is discussed fnrther in the 'Internal Programming'
section in this chapter. But a simple summary is: the answer result-
ing from any operation or function will lie within the range of
true values produced by a variation of i l count in the tenth digit
of the argument.

Programming

Problems that require many keyboard operations are more easily
solved with a program. This is particularly true when the same

Chapter 20 I The HP Model 9100A computing calculator 247

operations must be performed repeatedly or an iterative technique
must be used. A program library supplied with the Model 9100A
provides a set of representative programs from many different
fields. If a program cannot be found in the library to solve a
particular problem, a new program can easily be written since
no special experience or prior knowledge of a programming lan-
guage is necessary.

Any key on the keyboard can be remembered by the calculator
as a program step except STEP PRGM. This key is used to ‘debug’
a program rather than as an operation in a program. Many indi-
vidual program steps, such as ‘sin x’ or ‘to polar’ are comparatively
powerful, and avoid the need of sub-routines for these functions
and the programming space such sub-routines require. Registers
0, 1 , 2, 3, 4, 5, 6, 7 , 8, 9, a, b, c, d can store 14 program steps
each. Steps within the registers are numbered 0 through d just
as the registers themselves are numbered. Programs can start at
any of the 196 possible addresses. However 0-0 is usually used for
the first step. Address d-d is then the last available, after which
the program counter cycles back to 0-0.

Registers f and e are normally used for storage of constants only,
one constant in each register. As more constant storage is required,
it is recommended that registers d, then c, then b, etc., are used
starting from the bottom of the list. Lettered registers are used
first, for the frequently recalled constants, because constants stored
in them are more easily recalled. A register can be used to store
one constant or 14 program steps, but not both.

Branching

The bank on the far right of the keyboard, Fig. 4, contains program

oriented keys. @ is used to set the program counter. The two

sets of parentheses indicate that this key should be followed by
two more key depressions indicating the address of the program
step desired. As a program step, ‘GO TO’ is an unconditional
branch instruction, which causes the program to branch to the
address given by the next two program steps. The ‘IF’ keys in this

group are conditional branch instructions. With @ @ , and@

the numbers contained in the X and Y registers are compared.
The indicated condition is tested and, if met, the next two program
steps are executed. If the first is alphameric, the second must be
also, and the two steps are interpreted as a branching address.
When the condition is not met, the next two steps are skipped

and the program continues. @ is also a very useful conditional

branching instruction which tests a ‘yes’ or ‘no’ condition inter-
nally stored in the calculator. This condition is set to ‘yes’ with
the SET FLAG from the keyboard when the calculator is in the

display mode or from a program as a program step. The flag is
set to a ‘no’ condition by either asking IF FLAG in a program
or by a CLEAR instruction from the keyboard or from a program.

Data input and output

Data can be entered for use in a program when the machine is
in the display mode. (The screen is blank while a program is

running.) A program can be stopped in several ways. The @ key

will halt the machine at any time. The operation being performed
will be completed before returning to the display mode. As a
program step, STOP stops the program so that answers can be
displayed or new data entered. END must be the last step in a
program listing to signal the magnetic card reader; when encoun-
tered as a program step it stops the machine and also sets the
program counter to 0-0.

As a program step, PAUSE causes a brief display during pro-
gram execution. Nine cycles of the power line frequency are
counted-the duration of the pause will be about 150 ms for a 60
Hz power line or 180 ms for a 50 Hz power line. More pauses
can be used in sequence if a longer display is desired. While a
program is running the PAUSE key can be held down to stop the
machine when it comes to the next PAUSE in the program. PAUSE
provides a particularly useful way for the user and the machine
to interact. It might, for instance, be used in a program so that
the convergence to a desired result can be observed.

Other means of input and output involve peripheral devices
such as an X-Y Plotter or a Printer. The PRINT key activates the
printer, causing it to print information from the display register.
As a program step, PRINT will interrupt the program long enough
for the data to be accepted by the printer and then the program
will continue. If no printer is attached, PRINT as a program step
will act as a STOP. The FMT key, followed by any other keystroke,
provides up to 62 unique commands to peripheral equipment. This
flexibility allows the Model 9100A to be used as a controller in
small systems.

Sample program-N!

A simple program to calculate N! demonstrates how the Model
9100A is programmed. Figure 6 (top) shows a flow chart to com-
pute N! and Fig. 6 (bottom) shows the program steps. With this
program, 60! takes less than ‘/z second to compute.

Program entry and execution

After a program is written it can be entered into the Model 9100A
from the keyboard. The program counter is set to the address of

248 Part 3 1 The instruction-set processor level: variations in the processor Section 4 1 Desk calculator computers: keyboard processors with small memories

Store N I np2 i

Fig. 6. Flow chart of a program to compute N! (top). Each step is shown
(bottom) and the display for each register. A new value for N can be
entered at the end of the program, since END automatically sets the
program counter back to 0-0.

the first program step by using the GO TO () () key. The RUN-
PROGRAM switch is then switched from RUN to PROGRAM and
the program steps entered in sequence by pushing the proper keys.
As each step is entered the X register displays the address and
key code, as shown in Fig. 7. The keys and their codes are listed
a t the bottom of the pull-out card, Fig. 3. Once a program has
been entered, the steps can be checked using the STEP PRGM
key in the PROGRAM mode as explained in Fig. 7. If an error

Fig. 7. Program step address and code are displayed in the X register
as steps are entered. After a program has been entered, each step can
be checked using the STEP PRGM key. In this display, step 2-d is 36,
the code for multiply.

is made in a step, it can be corrected by using the key without
having to re-enter the rest of the program.

To run a program, the program counter must be set to the
address of the first step. If the program starts at 0-0 the keys

@ @ @ are depressed, or simply just @ since this key auto-

matically sets the program counter to 0-0. CONTINUE will start
program execution.

Magnetic card reader-recorder

One of the most convenient features of the Model YlOOA is the
magnetic card reader-recorder, Fig. 8. A program stored in the
Model YlOOA can be recorded on a magnetic card, Fig. 9, about

Fig. 8. Programs can be entered into the calculator by means of the
magnetic program card. The card is inserted into the slot and the
ENTER button pressed.

Chapter 20 I The HP Model 9100A computing calculator 249

Fig. 9. Magnetic programming card can record two 196-step programs.
To prevent accidental recording of a new program over one to be saved,
the corner of the card is cut as shown.

the size of a credit card. Later when the program i s needed again,
i t can be quickly re-entered using the previously recorded card.
Cards are easily duplicated so that programs of common interest

can be distributed.
As mentioned earlier, the END statement i s a signal t o the

reader to stop reading recorded information from the card in to

the calculator. For this reason END should not be used in the

middle of a program. Since most programs start at location 0-0
the reader automatically initializes the program counter to 0-0
after a card i s read.

The magnetic card reader makes it possible to handle most
programs too long to be held in memory at one time. The f i rs t
entry of steps can calculate intermediate results which are stored
in preparation for the next part of the program. Since the reader

stops reading at the END statement these stored intermediate
results are not disturbed when the next set of program steps is
entered. The stored results are then retrieved and the program
continued. Linking of programs i s made more convenient i f each

part can execute an END when it finishes to set the program

counter t o 0-0. I t i s then only necessary to press CONTINUE after

each entry of program steps.

Hardware design of the Model 9100A calculator

A l l keyboard functions in the Model 9100A are implemented by
the arithmetic processing unit, Figs. 10 and 11. The arithmetic

unit operates in discrete time periods called clock cycles. A l l

Specifications of HP Model 9100A*

The HP Model 9100A is a programmable,
electronic calculator which performs opera-
tions commonly encountered in scientific
and engineering problems. Its log, trig and
mathematical functionsareeach performed
with a single key stroke, providing fast,
convenient solutions to intricate equa-
tions. Computer-like memory enables the
calculator to store instructions and con-
stants for repetitive or iterative solutions.
The easily-readable cathode ray tube in-
stantly displays entries, answers and inter-
mediate results.

Operations
Direct keyboard operations include:

Arithmetic: addition, subtraction, mul-
tiplication, division and square-root.

Logarithmic: log x, In x and eX.
Trigonometric: sin x, cos x, tan x,

sin-lx, cos-’x and tan-lx (x in de-
grees or radians).

Hyperbolic : sinh x, cosh x, tanh x,
sinh-lx, cosh-lx, and tanh-lx.

Coordinate transformation: polar-to-
rectangular, rectangular-to-polar,
cumulative addition and subtraction
of vectors.

Miscellaneous: other single-key opera-
tions include-taking the absolute
value of a number, extracting the
integer part of a number, and enter-
ing the value of ?r. Keys are also
available for positioning and storage
operations.

Programming
The program mode allows entry of
program instructions, via the keyboard,
into program memory. Programming
consists of pressing keys in the proper
sequence, and any key on the keyboard
is available as a program step. Program
capacity is 196 steps. No language or
code-conversions are required. A self-
contained magnetic card reader/re-
corder records programs from program
memory onto wallet-size magnetic
cards for storage. It also reads programs
from cards into program memory for

repetitive use. Two programs of 196
steps each may be recorded on each
reusable card. Cards may be cascaded
for longer programs.

Average times for total performance of
typical operations, including decimal-
point placement:

Speed

add, subtract: 2 milliseconds
multiply: 12 milliseconds
divide: 18 milliseconds
square-root: 19 milliseconds
sin, cos, tan: 280 milliseconds
In x: 50 milliseconds
eX: 110 milliseconds

These times include core access of
1.6 microseconds.

General
Weight: Net 40 Ibs, (18,l kg.); shipping

Power: 115or230V k 10%,50to60Hz,

Dimensions: 8%“ high, 16” wide, 19”

65 Ibs. (29,5 kg.).

400 Hz, 70 watts.

deep.

*Courtesy of Loveland Division.

250 Part 3 1 The instruction-set processor level: variations in the processor Section 4 I Desk calculator computers: keyboard processors with small memories

I J

No Memory

Activate
(Read only)

.e

I 825 ns
CLOCK

m m c c

0 0

m m c c

.e
2 2
C Y

C Y

- -

Activate
(Read - Write)

caF:iity
PROGRAM

I Activate
(Read only)

512 WORD
Description 64 BITIW

ADDRESS
FLIP FLOPS

CONTROL
WORD

coRNoTioL I I
64 WORD

800 ns
29 Bi r iw

\

CONTROL
LOGIC

ADDRESS
FLIP FLOP

.
COINCIDENT

CURRENT

MEMORY
1 CORE

368 WORDS
6 BIT/W

‘f

1
I

High Order
Memory

1161 FLIP D A T ~ ~ FLOPS 1-1 ADDRESS 1 LowOrder Memory

FLIP FLOPS

Fig. 10. Arithmetic processing unit block diagram. This system is a marriage of conventional, reliable diode-resistor logic to a 32,000-bit read-only
memory and a coincident current core memory.

operations are synchronized by the clock shown at the top center
of Fig. 10.

The clock is connected to the control read only memory (ROM)
which coordinates the operation of the program read only memory
and the coincident current core read/write memory. The former

Fig. 11. Arithmetic unit assembly removed from the calculator.

contains information for implementing all of the keyboard opera-
tions while the latter stores user data and user programs.

All internal operations are performed in a digit by digit serial
basis using binary coded decimal digits. An addition, for example,
requires that the least significant digits of the addend and augend
be extracted from core, then added and their sum replaced in core.
This process is repeated one BCD digit at a time until the most
significant digits have been processed, There is also a substantial
amount of ‘housekeeping’ to be performed such as aligning decimal
points, assigning the proper algebraic sign, and floating point
normalization. Although the implementation of a keyboard func-
tion may involve thousands of clock cycles, the total elapsed time
is in the millisecond region because each clock cycle is only 825
ns long.

The program ROM contains 512 64-bit words. When the pro-
gram ROM is activated, signals (micro-instructions) corresponding
t o the bit pattern in the word are sent to the hard wired logic
gates shown at the bottom of Fig. 10. The logic gates define the
changes to occur in the flip flops at the end of a clock cycle. Some
of the micro-instructions act upon the data flip flops while others
change the address registers associated with the program ROM,

Chapter 20 1 The HP Model 9100A computing calculator 2 5 1

control ROM and coincident current core memory. During the
next clock cycle the control ROM may ask for a new set of micro-
instructions from the program ROM or ask to be read from or
written into the coincident current core memory. The control
ROM also has the ability to modify its own address register and
to issue micro-instructions to the hard wired logic gates. This
flexibility allows the control logic ROM to execute special pro-
grams such as the subroutine for unpacking the stored constants
required by the keyboard transcendental functions.

Control logic

The control logic uses a wire braid toroidal core read only memory
containing64 29-bit words. Magnetic logic of this type is extremely
reliable and pleasingly compact.

The crystal controlled clock source initiates a current pulse
having a trapezoidal waveform which is directed through one of
64 word lines. Bit patterns are generated by passing or threading
selected toroids with the word lines. Each toroid that is threaded
acts as a transformer to turn on a transistor connected to the
output winding of the toroid. The signals from these transistors
operate the program ROM, coincident current core, and selected
micro-instructions.

Coincident current core read/write memory

The 2208 (6 x 16 x 23) bit coincident current memory uses wide
temperature range lithium cores. In addition, the X, Y, and inhibit
drivers have temperature compensated current drive sources to
make the core memory insensitive to temperature and power
supply variations.

The arithmetic processing unit includes special circuitry to
guarantee that information is not lost from the core memory when
power is turned off and on.

Power supplies

The arithmetic processing unit operates from a single -15 volt
supply. Even though the power supply is highly regulated, all
circuits are designed to operate over a voltage range of -13.5
to -16.5.

Display

The display is generated on an HP electrostatic cathode ray tube
only 11 inches long. The flat rectangular face plate measures
3y4 x 4l3/,, inches. The tube was specifically designed to gener-
ate a bright image. High contrast is obtained by using a low
transmissivity filter in front of the CRT. Ambient light that usually
tends to 'wash out' an image is attenuated twice by the filter, while
the screen image is only attenuated once.

All the displayed characters are 'pieces of eight.' Sixteen differ-
ent symbols are obtained by intensity modulating a figure 8 pattern
as shown in Fig. 12. Floating point numbers are partitioned into
groups of three digits and the numeral 1 is shifted to improve
readability. Zeros to the left of the most significant digit and
insignificant zeros to the right of the decimal point are blanked
to avoid a confusing display. Fixed point numbers are automati-
cally rounded up according to the decimal wheel setting. A fixed
point display will automatically revert to floating point notation
if the number is too large to be displayed on the CRT in fixed
point.

Multilayer instruction logic board

All of the hard wired logic gates are synthesized on the instruction
logic board using time-proven diode-resistor logic. The diodes and
resistors are located in separate rows, Fig. 13. All diodes are
oriented in the same direction and all resistors are the same value.
The maze of interconnections normally associated with the back
plane wiring of a computer are located on the six internal layers
of the multilayer instruction logic board. Solder bridges and acci-
dental shorts caused by test probes shorting to leads beneath
components are all but eliminated by not having interconnections
on the two outside surfaces of this multilayer board. The instruc-
tion logic board also serves as a motherboard for the control logic
board, the two coincident core boards and the two flip flop boards,
the magnetic card reader, and the keyboard. It also contains a
connector, available at the rear of the calculator, for connecting
peripherals.

Flip flops
The Model 9100A contains 40 identical J-K flip flops, each having
a threshold noise immunity of 2.5 volts. Worst case design tech-
niques guarantee that the flip flops will operate at 3 MHz even
though 1.2 MHz is the maximum operating rate.

I I / \ I

Fig. 12. Displayed characters are generated by modulating these figures.
The digit 1 is shifted to the center of the pattern.

Fig. 13. Printed-circuit boards which make up the arithmetic unit are, left to right at top, side board, control logic, flip flop, core and drivers, core
sense amplifiers and inhibit, flip flop, and side board. Large board at the lower left is the multilayer instruction board, and the program ROM is at
the right. The magnetic card reader and its associated circuitry are at the bottom. 14 I2 :I I , .. k

Chapter 20 1 The HP Model 9100A computing calculator 253

Program read only memory

The 32,768 bit read only program memory consists of 512 64-bit
words. These words contain all of the operating subroutines, stored
constants, character encoders, and CRT modulating patterns. The
512 words are contained in a 16 layer printer-circuit board having
drive and sense lines orthogonally located. A drive line consists
of a reference line and a data line. Drive pulses are inductively
coupled from both the reference line and data line into the sense
lines. Signals from the data line either aid or cancel signals from
the reference line producing either a 1 or 0 on the output sense
lines. The drive and sense lines are arranged to achieve a bit
density in the ROM data board of 1000 bits per square inch.

The program ROM decoder/driver circuits are located directly
above the ROM data board. Thirty-two combination sense ampli-
fier, gated-latch circuits are located on each side of the ROM data
board. The outputs of these circuits control the hard wired logic
gates on the instruction logic board.

Side boards

The program ROM printed circuit board and the instruction logic
board are interconnected by the side boards, where preliminary
signal processing occurs.

The keyboard

The keyboard contains 63 molded plastic keys. Their markings will
not wear off because the lettering is imbedded into the key body
using a double shot injection molding process. The key and switch
assembly was specifically designed to obtain a pleasing feel and
the proper amount of tactile and aural feedback. Each key operates
a single switch having gold alloy contacts. A contact closure acti-
vates a matrix which encodes signals on six data lines and generates
an initiating signal. This signal is delayed to avoid the effects of
contact bounce. An electrical interlock prevents errors caused by
pressing more than one key at a time.

Magnetic card reader

Two complete 196 step programs can be recorded on the credit
card size magnetic program card. The recording process erases
any previous information so that a card may be used over and
over again. A program may be protected against accidental erasure
by clipping off the corner of the card, Fig. 9, page 249. The missing
corner deactivates the recording circuitry in the magnetic card
reader. Program cards are compatible among machines.

Information is recorded in four tracks with a bit density of 200
bits per inch. Each six-bit program step is split into two time-

multiplexed, three-bit codes and recorded on three of the four
tracks. The fourth track provides the timing strobe.

Information is read from the card and recombined into six bit
codes for entry into the core memory. The magnetic card reading
circuitry recognizes the ‘END’ program code as a signal to end
the reading process. This feature makes it possible to enter sub-
routines within the body of a main program or to enter numeric
constants via the program card. The END code also sets the
program counter to location 0-0, the most probable starting loca-
tion. The latter feature makes the Model 9100A ideally suited to
‘linking’ programs that require more than 196 steps.

Packaging and servicing

The packaging of the Model BlOOA began by giving the HP indus-
trial design group a volume estimate of the electronics package,
the CRT display size and the number of keys on the keyboard.
Several sketches were drawn and the best one was selected. The
electronics sections were then specifically designed to fit in this
case. Much time and effort were spent on the packaging of the
arithmetic processing unit. The photographs, Figs. 11 and 14,
attest to the fact that it was time well spent.

The case covers are die cast aluminum which offers durability,
effective RFI shielding, excellent heat transfer characteristics, and
convenient mechanical mounts. Removing four screws allows the
case to be opened and locked into position, Fig. 14. This procedure
exposes all important diagnostic test points and adjustments. The
keyboard and arithmetic processing unit may be freed by removing
four and seven screws respectively.

Any component failures can be isolated by using a diagnostic
routine or a special tester. The faulty assembly is then replaced
and is sent to a service center for computer assisted diagnosis and
repair.

Reliability

Extensive precautions have been taken to insure maximum relia-
bility. Initially, wide electrical operating margins were obtained
by using ‘worst case’ design techniques. In production all transis-
tors are aged at 80% of rated power for 96 hours and tested before
being used in the Model Y100A. Subassemblies are computer tested
and actual operating margins are monitored to detect trends that
could lead to failures. These data are analyzed and corrective
action is initiated to reverse the trend. In addition, each calculator
is operated in an environmental chamber at 55°C for 5 days prior
to shipment to the customer. Precautions such as these allow
Hewlett-Packard to offer a one year warranty in a field where 90
days is an accepted standard.

254 Part 3 1 The instruction-set processor level: variations in the processor

Fig. 14. Internal adjustments of the calculator are easily accessible by
removing a few screws and lifting the top. ~ ‘I 100 A

Internal programming of the 9100A calculator

Extensive internal programming has been designed into the HP
Model 9100A Calculator to enable the operator to enter data and
to perform most arithmetic operations necessary for engineering
and scientific calculation with a single key stroke or single program
step. Each of the following operations is a hardware subroutine
called by a key press or program step:

Basic arithmetic operations
Addition
Subtraction
Multiplication
Division

Extended arithmetic operations
Square root
Exponential-ex
Logarithmic-ln x, log x
Vector addition and subtraction

Section 4 1 Desk calculator computers: keyboard processors with small memories

Trigonometric operations
Sin x, cos x, tan x
Arcsin x, arccos x, arctan x
Sinh x, cosh x, tanh x
Arcsinh x, arccosh x, arctanh x
Polar to rectangular and rectangular to

polar coordinate transformation

Miscellaneous
Enter TI

Absolute value of y
Integer value of x

In the evolution of internal programming of the Model 9100A
Calculator, the first step was the development of flow charts of
each function. Digit entry, Fig. 15, seemingly a trivial function,
is as complex as most of the mathematical functions. From this
functional description, a detailed program can be written which
uses the microprograms and incremental instructions of the calcu-
lator. Also, each program must be married to all of the other
programs which make up the hard-wired software of the Model
9100A. Mathematical functions are similarly programmed defining
a step-by-step procedure or algorithm for solving the desired
mathematical problem.

The calculator is designed so that lower-order subroutines may
be nested to a level of five in higher-order functions. For instance,
the ‘Polar to Rectangular’ function uses the sin routine which uses
multiply which uses add, etc.

Addition and subtraction

The most elementary mathematical operation is algebraic addi-
tion. But even this is relatively complex-it requires comparing
signs and complementing if signs are unlike. Because all numbers
in the Model 9100A are processed as true floating point numbers,
exponents must be subtracted to determine proper decimal align-
ment. If one of the numbers is zero, it is represented in the calcu-
lator by an all-zero mantissa with zero exponent. The difference
between the two exponents determines the offset, and rather than
shifting the smaller number to the right, a displaced digit-by-digit
addition is performed. It must also be determined if the offset is
greater than 12, which is the resolution limit.

Although the display shows 10 significant digits, all calculations
are performed to 12 significant digits with the two last significant
digits (guard digits) absorbing truncation and round-off errors. All
registers are in core memory, eliminating the need for a large
number of flip-flop registers. Even with the display in ‘Fixed Point’
mode, every computed result is in storage in 12 digits.

Chapter 20 I The HP Model 9100A computing calculator 255

ENTRY 0
Functions

A REGISTER

From EXP

From CLEAR

CLEAR KEYBOARD
REGISTER

SHIFT EXPONENT
DIGITS LEFT

I I

STORE DIGIT I N STORE DIGIT I N
LEAST SIGNIFICANT MOST SIGNIFICANT

EXPONENT LOCATION 1 I LOCATION

POINT SET ?

I 1 Yes I I

EXPONENT FROM EXPONENT

REA0 MOST

DIGIT LOCATION
y SIGNIFICANT 1 I EXIT I --

MOST SIGNIFICANT
DIGIT LOCATION THIS LOCATION

Fig. 15. Flow chart of a simple digit entry. Some of these flow paths
are used by other calculator operations for greater hardware efficiency.

Multiplication

Multiplication is successive addition of the multiplicand as deter-
mined by each multiplier digit. Offset in the digit position flip-flops
is increased by one after completion of the additions by each
multiplier digit. Exponents are added after completion of the
product. Then the product is normalized to justify a carry digit
which might have occurred.

Division

Division involves repeated subtraction of the divisor from the
dividend until an overdraft occurs. At each subtraction without
overdraft, the quotient digit is incremented by one at the digit
position of iteration. When an overdraft occurs, the dividend is
restored by adding the divisor. The division digit position is then
incremented and the process continued. Exponents are subtracted
after the quotient is formed, and the quotient normalized.

Square root

Square root, in the Model YlOOA, is considered a basic operation
and is done by pseudo division. The method used is an extension
of the integer relationship.

5 2 i - 1 = n2

In square root, the divisor digit is incremented at each iteration,
and shifted when an overdraft and restore occurs. This is a very
fast algorithm for square root and is equal in speed to division.

Circular routines

The circular routines (sin, cos, tan), the inverse circular routines
(arcsin, arccos, arctan) and the polar to rectangular and rectangu-
lar to polar conversions are all accomplished by iterating through
a transformation which rotates the axes. Any angle may be repre-
sented as an angle between 0 and 1 radian plus additional infor-
mation such as the number of times m/2 has been added or sub-
tracted, and its sign. The basic algorithm for the forward circular
function operates on an angle whose absolute value is less than
1 radian, but prescaling is necessary to indicate quadrant.

To obtain the scaling constants, the argument is divided by 2m,
the integer part discarded and the remaining fraction of the circle
multiplied by 257. Then m / 2 is subtracted from the absolute value
until the angle is less than 1 radian. The number of times m/2
is subtracted, the original sign of the argument, and the sign upon
completion of the last subtraction make up the scaling constants.
To preserve the quadrant information the scaling constants are
stored in the core memory.

i = l

256 Part 3 1 The instruction-set processor level: variations in the processor

The algorithm produces tan 0. Therefore, in the Model 9100A,
cos 8 is generated as

1
d iTGx
and sin8 as

tan 8
vTFi&z

Sin0 could be obtained from the relationship sin8 =
d-, for example, but the use of the tangent relationship
preserves the 12 digit accuracy for very small angles, even in the
range of 0 < 10-12. The proper signs of the functions are assigned
from the scaling constants.

For the polar to rectangular functions, cos 0 and sin 0 are com-
puted and multiplied by the radius vector to obtain the X and
Y coordinates. In performing the rectangular to polar function,
the signs of both the X and Y vectors are retained to place the
resulting angle in the right quadrant.

Prescaling must also precede the inverse circular functions,
since this routine operates on arguments less than or equal to 1.
The inverse circular algorithm yields arctangent functions, making
it necessary to use the trigonometric identity.

If cos-l(x) is desired, the arcsin relationship is used and a scaling
constant adds m/2 after completion of the function. For arguments
greater than 1, the arccotangent of the negative reciprocal is found
which yields the arctangent when m/2 is added.

Exponential and logarithms

The exponential routine uses a compound iteration .algorithm
which has an argument range of 0 to the natural log of 10 (In 10).
Therefore, to be able to handle any argument within the dynamic
range of the calculator, it is necessary to prescale the absolute
value of the argument by dividing it by In 10 and saving the integer
part to be used as the exponent of the final answer. The fractional
part is multiplied by In 10 and the exponential found. This number
is the mantissa, and with the previously saved integer part as a
power of 10 exponent, becomes the final answer.

Section 4 I Desk calculator computers: keyboard processors with small memories

The exponential answer is reciprocated in case the original
argument was negative, and for use in the hyperbolic functions.
For these hyperbolic functions, the following identities are used:

e" - e-" sinh x = ___ 2

Natural logarithms

The exponential routine in reverse is used as the routine for natural
logs, with only the mantissa operated upon. Then the exponent
is multiplied by In 10 and added to the answer. This routine also
yields these loglo and are hyperbolic functions:

In x
In 10

Loglox = -

cosh-l(x) = ln(x + d m)
tanh-l(x) = l n p

1 - x

The sinh-l(x) relationship abdve yields reduced accuracy for
negative values of x. Therefore, in the Model YlOOA, the absolute
value of the argument is operated upon and the correct sign affixed
after completion.

Accuracy

It can be seen from the discussion of the algorithms that extreme
care has been taken to use routines that have accuracy commensu-
rate with the dynamic range of the calculator. For example; the
square root has a maximum possible relative error of 1 part in
lo1" over the full range of the machine.

There are many algorithms for determining the sine of an angle;
most of these have points of high error. The sine routine in the
Model 9100A has consistent low error regardless of quadrant.
Marrying a full floating decimal calculator with unique mathe-
matical algorithms results in accuracy of better than 10 displayed
digits.

Section 5

Processors with stack memories
(zero addresses per instruct ion)

This section contains only computers which use a stack memory
in their Pc and hence are denoted Pcstack. Although the im-
plementation details differ, they are based on the common idea
of a stack as described in Chap. 3, page 62. Several theory or
language-based processors-IPL-VI and EULER-use a stack in
Mp. However, for these language-based machines the stack is

not the main design theme as it is with the other computers
in Table 1. In fact, data in IPL-VI are organized (Chap. 30) about
lists, which are a more general data structure than stacks. A
stack permits push and pop operations to be performed on the
top of the stack; a list permits push and pop operations to be
performed on each cell of the list (they are then called insert

Table 1 Pcstack computers

Company or basis Disclosure Delivery Relative
computer name autea date Ancestry power References

English Electric KDF 9 /60 4/63 Georgec . . . AllmR62, DaviG60,

Burroughs (Paoli, Pa.)
HambC62

/6 1 AndeJ62 D825*
D830* extended performance

B 85OOe 4/66* developed at labora-
D825

tory producing D825,
0830

Burroughs (Pasadena, Calif.)
B 5000

B 5500
B 6500

B 7500

Theory or language-
based:

IPL-VI
EULER
ALGOL

I PL -vc
Argonne Laboratory

/62

1/67/ 20-30

2/63

11/64
1 /68/

/67

successor to B 5000
B 5500 based wi th
improved mult i- and
shared-programmed
mapping
extended performance
B 6500

language: IPL-IV, V
language: EU LER(ALG0L +)
1anguage:ALGOL

1 /2 AllrnR62. BartR61,
Bock R63, Ca rlC63,

1-1.78-1.98 LoneW61, HaucE68
5-6

10

ShawJ58
We beH 67, W I r t N 66a, b
AndeJ61

language: IPL-V HodgD64

a First edition of manual, or a paper, or the appearance in Adoms Computing Characteristics Quarterly.
hStill evolving. B 8501 was discontinued in 1968.
.George, University of New South Wales, interpreter using Polish notation and a stack. Circa 1957 [Hamblin, 19621.
dProduced for command and control (military) applications.
* B 8500 IS a system name: the Pc is a B 8501.
‘Reported. Actual delivery unknown.
p Dual processor.

2 57

258 Part 3 I The instruction-set processor level: variations in the processor

T.console -
M p (# 0 : 7) k 3 dc'(#A:B)

I K i o (# 1 : 4) - S 4 K-T(console; t y p e w r i t e r) -
K-T(#I :2; ca rd ; reader)+

K-T(#1:2; paper tape; reader)+

K-T(card; punch)+

K-T(#I:Z l i n e ; p r i n t e r) +

K-Ms(#I : 2 ; drum) I K-Ms(#1:16; magnet ic tape) -

'Mp(core; 4 p s / w ; 4096 w; (48.3) b/w)

'Pc(stack; 12 b / s y l l a b l e ; 6 b/char; da ta : s i ,sf ,bv,w,char.

s t r i n g ; (I - 2) s y l l a b l e / i n s t r u c t i o n ; Mps(- 4 w) an te -

cedents: 'ALGOL language; descendants; ' 6 5000, B 6500,

B 7500; technology: t r a n s i s t o r ; -41961 ... 1963))

'S(from: 2 P c , ~ K; t o : 8 Mp; concurrency: 4)

4S(from: 4 Kio; t o : KT,KMs; concurrency: 4)

Fig. 1. Burroughs B 5000 PMS diagram.

Section 5 1 Processors with stack memories (zero addresses per instruction)

and delete, respectively). Thus a list is like a nested set of
overlapping stacks. EULER (Chap. 32) uses a stack to store
temporary data and subroutine calls both when compiling and
when interpreting the compiled program. However, the lan-
guage-based machines can still be studied profitably with the
stack in mind.

The following comments will be directed to the P.stack com-
puters manufactured by both English Electric and Burroughs.
There are three basic P.stack computer families: B 5000 + B
5500 4 B 6500/B 7500; D825 + D830 + B 8500; and KDF9.
Each root member was made available at about the same time
by Burroughs (Pasadena, Calif.), Burroughs (Paoli, Pa.), and
English Electric. The IBM Corporation later responded with a
proposed Pc.stack, but the machine never entered the produc-
tion phase.

The Pc.stack is a major alternative to the main line organi-
zation of 1 address per instruction (augmented with index reg-
isters or general registers). It tries to capitalize on the hierarchi-
cal character of computation to avoid having to give memory
shuffling instructions explicitly. In Chap. 3, page 64, we gave
a comparison of a trivial computation using a stack and a
general-register organization, in order to make clear the case

.P~(#A)~ -T .conso le -

-Pc(#B)3-S,consoIe-

L ('Rea l Time Device)-

K (# l :4)-C4-S-K(#l :4)-S-K(#1

- SET

'Mp((core; 1.2 us/w)] (t h i n f i l m ; . 6 ps/w); 16 kw; 51 b/w)

'S(32 Mp; 4(Pc,K,S); concurrency: 4)
3 P ~ (s t a ~ k ; technology: i n t e g r a t e d c i r c u i t s ; .- 1969; da ta : s f , d f , i , c h a r . s t r i n g ,

boolean v e c t o r , address i n t e g e r ; 4,6,8 b/char)

4~ ('Data Communi c a t ions Processor)

' I d e n t i c a l p e r i p h e r a l s t r u c t u r e s p o s s i b l e w i t h two switches

6See Figures 3, 4, and 5 .
' K i o (' I n p u t / O u t p u t Mu1 t i p l e x o r)

'Kio('Rea1 Time Adapter)

Fig. 2. B 6500, B 7500 PMS diagram.

Section 5 I Processors with stack memories (zero addresses per instruction) 259

-L- K-S

b . 1 K f o r 2 Ms(disk)

-L-KK7S(2K; 5x1
- L - K

c . 2 K f o r 5 Ms(d i sk)

' L (t o : K io (' I npu t /Ou tpu t M u l t i p l e x o r))

K (' D i s k Per iphe ra l C o n t r o l l e r)

' X := (-K('E1ectronics Uni t) -S---Ms(#1:5)4)

46 m s : (2161395) kby/s; 1
Fig. 3. Burroughs B 6500, B 7500 Ms (disk) PMS diagrams.

for stacks. However, we did not there attempt any analysis. It
has been asserted [Amdahl et al., 1964al that the Pc.stack
derives its power only from its having some fast-working mem-
ory in the Pc, thus that it is dominated by the general-register
organization. Our own feeling is that the compile and compiled
program execution times for the Pc.stack are indeed impressive.
However, no definitive analysis has been published, as far as
we know. Pcstack iscertainly an organization that rates serious
study by any computer designer.

The PMS structure of the examples

The PMS structure diagram of the B 5000 and B 6500/B 7500
(Figs 1 to 5) should be compared with Burroughs own structure
representation (Chap. 22, page 268). The D825 structure is
similar; it is given in Chap. 36, page 447. All the Burroughs
computers in Table 1 have the multiprocessor structure.

Burroughs was probably the first computer company to take
matters of the structure and organization seriously. The D825
hardware and software were designed for military command

and control applications which demand very high uptime and
availability. As various computer components in the structures
fail, continuous operation is possible at a reduced level through
the fail-soft design. However, to our knowledge, no published
account exists on how well this design works in practice from
a performance and reliability viewpoint. The philosophy and
details of the D825 software and hardware are discussed in
Chap. 36.

The structures in the B 6500, especially, allow Kio's to be
freely assigned to any T or Ms, thereby achieving better equip-
ment utilization. The S(16 Mp; 16 P) is probably overdesigned
in the Burroughs B 6500 computers. These structures generally
have a maximum 4(P + Kio), although the design is based on
16(P + Kio). The Kio's (Chap. 22) may be overdesigned, too,
since a K capable of controlling a simple T.card,reader can
also control a complex Ms.disk or Ms.magnetic,tape.

The PMS structure of the English Electric KDF9 (Fig. 6)
is fairly simple. The 16 K's for direct memory access appear

-L'-K2-S3- M #0:7; maqnetic tape;

9 - 144 kchar/s; 6lR
b/char; 200155618001

1600 cha r / i n ; ,forward
and reverse motion I

a. 1 K f o r 8 Ms(rnagnetic tape)

S(2 K; IO Ms)-Ms(#0:9: magnetic tape)-
- - L-K L-Ki-
b . 2 K f o r IO Ms(magnetic tape)

- L - K S(4 K; 16 Ms)-Ms(#0:15; magnetic tape)-

- L- K

- - L- L- K

c . 4 K f o r 16 Ms(magnetic tape)

'L (t o : K io (' I nput/Output Mu1 t i p l exo r))

'K('Per iphera1 C o n t r o l l e r)

3S(1K; 8 Ms; bus)

Fig. 4. Burroughs B 6500, B 7500 Ms (magnetic tape) PMS diagrams.

260 Part 3 1 The instruction-set processor level: variations in the processor

-L'- K-T(console; keyboard, p r i n t e r &

- L __ K--(card; reader) t

-L __ K-T(card; punch) --f

- L - K - T(paper tape; reader) t

- L __ K - T(paper tape: punch) *
- L ~ K - T(CRT; d i s p l a y) +

- L- K - T (l i n e ; p r i n t e r) --f

' L (t o : K i o ('Small Pe r iphe ra l Con t ro l))

Fig. 5. Burroughs B 6500, B 7500 peripheral K-T PMS diagrams.

to be both overdesigned (or overly general) and there are too
few of them. The limit of only 16(T + Ms) components is small,
especially considering that the KDF9 is to be time-shared from
several consoles.

The ISP of the examples

The comparison of Pc.stack, Pc.laddress, and Pc.general,reg-
isters (page 64) makes the assumption that an unlimited

+ - - K (# I)-S-Ms (magnetic tape) -

T (t ypewr i t e r) -

T(paper tape)-

'Mp(core; 6 p s / w ; 4 - 32 kw; 48 b/w)

2S(16 Mp; 16(P,K); concurrency: 1)

3Pc (s tack ; 8 b / s y l l a b l e ; 0 - 1 a d d r e s s / i n s t r u c t i o n ; 6 b/char;

technology: t r a n s i s t o r ; data: s y l l a b l e , char, w , bv, s i ,

d i , s f , d f , hw; 1-3 s y l l a b l e s / i n s t r u c t i o n ; o p e r a t o r s : +,

-, x , /, A , v, @,+ i c h a r . s t r i n g 1 , Mp t s tack , s tack t Mp;

Mps ('Subrou t i ne Jump Nes t ing StoreCO; 7]<n: 1 ?> s tack:

'Nest i nq Store[0: l5]<0: 47> a?;thmetic stack;
'Q-store[O:15]<0:17,18:31 ,32:48> &store i s used f o r
indexing, and contains a counter, an increment, and a
modifier) 1

Fig. 6. English Electric KDF9 PMS diagram.

Section 5 I Processors with stack memories (zero addresses per instruction)

hardware stack resides in Pc. The B 5500 has a local M.stack
in Pc of 4 words. The size and number of stacks, and their
use by software, are most important. The IPL-VI machine
has any number of stacks since the front of each list is a stack.
The KDF9 (Fig. 6) has two independent stacks: one for arith-
metic expression evaluation and one for holding subroutine
return addresses. The DEC 338 P.display (Chap. 25) uses a
stack for storing subroutine return addresses.

Unfortunately, we have not been able to include a discussion
of the "cactus stack" of the B 6500, which is a data structure
more like a list [Hauck and Dent, 19681. The Hauck and Dent
paper describes both the relationship to a Pc.stack and its
relevance to program mapping and memory management for
multiprogramming.

The C('D825) parameters are given in Fig. 7. The D825 ISP
differs from other Pc.stack computers in that the data, d, for
operations can be in either of two places, the stack or Mp.
Consider the unary or binary operations:

C (' Burroughs D825; mu1 t i processor s t r u c t u r e ;

S (c ross -po in t ; 16 M; Ib(Pc,Kio))

Mp(4.33 JLS/W; 65 kw; (48, l p a r i t y) b/w);

S (c ross -po in t ; 4 Kio; 64 (T,Ms));

T(console, paper tape, p r i n t e r , ca rd , t ime, communication

l i n k) ;

Ms(drum, d i s k , magnet ic tape);

K i o (# l :4) ;
Pc(#1:2; 12 b / s y l l a b l e ; s tack ; 0 - 3 a d d r e s s e s / i n s t r u c t i o n ;

multiprogrammed; data: (i n t e g e r , f l o a t i n g , s i n g l e char-

a c t e r , f r a c t i o n a l p r e c i s i o n word, boolean v e c t o r) ; opera-

t i o n s : (+, -, x , /, A , v , @, 7 , round, { s i) c { s f) , abs,

negate, -abs) :
i n s t r u c t i o n - s i z e : (I - 7) s y l l a b l e ;

ope ra t i on -code-s i ze : 5/12 s y l l a b l e ;

address-size: (7/12 + 0 - 6) s y l l a b l e ;

o p e r a t i o n forms: (d3 t d l b d2, d2 t u d l) ;

v a r i a b l e addresses: (s tack , MpCsyl lable + BAR],Mp[syllable

+ BAR + X[A] + X [E] + X [C]]);

Mps ('S tack /S , Index Reg is te rs [I : 15]/X[I : 151,
' I n d e x Comparison L i m i t Registers[1:151,

'Base Address Registers/BAR,

'Program Address Register/PAR,

'Program Counter/PC)))

Fig. 7. Burroughs D825 PMS diagram.

Section 5 I Processors with stack memories (zero addresses per instruction) 261

d, t u d,
d , td lbd2

In either of these cases d,, d,, or d, can be the top of Stack/S;
or Mp[Address + Base Address + [Xindex registers [A,B,C]]].
This flexibility allows the Pc to behave as a 0, 1, 2, or 3 address
per instruction processor.

The 6 5000 is more conventional than the D825 in its use
of stacks (see references, Table 1). There are only load and
store (that is, push and pop instructions) to transfer data be-
tween Mp and one stack. Actually, the B 5000 has several im-
portant features that make it worthy of study:

1 The stacks.

2 Data-type specification. A data type is declared by placing
a type identifier with the data. Thus, for example, there
is one add operation for both fixed and floating point,
the data telling which addition is to take place.

3 Multiprogram mapping. Descriptors are used to access
variables (scalars, vectors, and arrays). This indirect

addressing technique allows multiprogramming; how-
ever, the reader should note that the data are not pro-
tected against other accesses (corrected in the B 6500).

Failure of the Pc.stack for character processing. The
B 5000 has a character mode to allow processing of
string data, and the stack is not used in this mode. In
effect, a separate string processing ISP is incorporated
in the Pc.

Multiprocessing. A B 5000 can have two Pc’s.

A command structure for complex information processing

The IPL-VI (Chap. 30) is discussed in Part 4, Sec. 4 page 348
as a language-based processor.

Microprogrammed implementation of EULER
on IBM System/360

EULER (Chap. 32) is discussed in Part 4, Sec. 4 page 348 as
a microprogrammed, language-based processor.

Chapter 21

Design of an arithmetic unit
incorporating a nesting storel

R . H . Allmark / 1. R . Lucking

Summary This paper describes the arithmetic unit of a computer whose
order code is based on the Reverse Polbh algebraic notation. The order
code has been realised by causing the arithmetic unit to operate on data
stored in the most accessible registers of a nesting store; these registers
are of the transistor flip-flop type but are backed up by sixteen fast magnetic
core registers. The functions are performed as micro-programmes of trans-
fers between the registers in the arithmetic unit, and the necessary arrange-
ment of transfer paths, logical gates and arithmetic circuits is described.
The number system is binary, using the two's-complement representation
of negative numbers. Automatic floating-point operations are included
which use an autonomous unit to perform the shifts required.

introduction

The arithmetic unit of a general purpose digital computer contains
circuits to perform at least the basic operations of addition, sub-
traction, multiplication and division. In many machines it is possi-
ble to use some of the registers in the arithmetic unit as temporary
storage for the partial results arising during a calculation; thus
the accumulator of a one-address machine is used to store the
result of the last arithmetic operation. The arithmetic unit de-
scribed in this paper uses a nesting store, operating on the last-
in-first-out principle, for the storage of its data and partial results.
The nesting store consists of a stack of cells, of which only the
most accessible supply data to the arithmetic unit, the results are
automatically returned to the most accessible cells and the original
operands erased, less accessible information being moved into the
cells made vacant by the operation.

The computer and its order code

on the Reverse Polish algebraic notation, and contains four groups
of operations:

a

b

Transfers between the arithmetic unit and the main store.

Arithmetic, logical and manipulative functions on data in
the nesting store.

Conditional and unconditional jump instructions used to
interrupt the normal sequencing of instructions.

Instructions for controlling the operation of the various
peripheral devices which may be attached to the machine.

c

d

Main store transfers include instructions for transferring half
and full-length words to the most accessible cell of the nesting
store, information already in the stack being retained by transfer
to the less accessible cells. The contents of the most accessible
cell of the stack may be stored in the main store; they are then
automatically erased from the stack while information is moved
from the less accessible cells to a more accessible position.

Arithmetic operations also feature the transfer of data in the
nesting store so that the operands are destroyed, the results are
left in the most accessible cell (or cells), and data not involved
in the operation are moved to fill any vacated cells.

Thus the programme for evaluating

f = (a - b) / (c + de)

may be written:

fetch a,
fetch b,
subtract (forming a - b in the most accessible cell

The arithmetic unit is part of a general purpose synchronous
system, working in the parallel mode, with main core storage of
(up to) 32, 768 48-bit words, and provision for the time sharing of
up to 4 programmes. The order code of the computer is based

'Proc. IFIP Congr. 62, pp. 694-698, 1962.

and erasing both a and b from the stack),
fetch d,
fetch e,

(forming de in the most
erasing d and e, and thus leaving a - b in the
second most accessible cell),

262

Chapter 21 I Design of an arithmetic unit incorporating a nesting store 263

fetch c,
add (forming c + de)
divide (forming f) ,
store as f(1eaving the nesting store in the same state

as before the fetch a instruction).

For instructions, the 48-bit word has been divided into 6 sylla-
bles of eight bits each, and these are then treated as a continuous
sequence of variable length instructions. Arithmetic operations are
specified by single syllable instructions, but main store transfers
require three syllables to accommodate both the address and the
address modifying information of the word to which they refer;
jump instructions also have three syllables. Two-syllable instruc-
tions include the peripheral transfers, and instructions for process-
ing address modifiers and performing shifts. The first syllable of
every instruction contains two bits whose values specify the length
of the instruction; the redundant case being used to differentiate
between main store transfers and jump instructions. The first syl-
lable of an instruction contains enough information to specify any
arithmetic unit operation required; thus in the machine, each
instruction is treated by two controls; the first or Store Control
organising the fetching and storing of information in advance of
the second or Arithmetic Unit Control which completes the in-
struction on the information in the first syllable.

Range of functions

The allocation of bits to the instructions described above allows
64 possible functions, of which 59 are used to specify the wide
range of operations needed in a general purpose computer.

As well as the normal single-length fixed-point arithmetic oper-
ations, functions have been provided for the addition and subtrac-
tion of double-length numbers. These simplify the programming
of multi-length operations as well as giving increased accuracy.
For normal scientific and engineering calculations automatic float-
ing-point facilities are available. A single length word may repre-
sent a floating-point number with a 40-bit fractional part f , and
an 8-bit characteristic c; the value of the number is then f2c-128.
The fractional part is limited to the range -1 5 f < -y2, or

1 > .f 2 y2, or f = 0 when c is also zero. All floating-point opera-
tions assume that operands are in this standard form and give
correctly rounded results in standard form. Functions for the addi-
tion and subtraction of double-length floating-point numbers have
been provided, as these give increased accuracy and stability in
many matrix operations.

An increase in operating speed and a saving of instructions are
effected by the use of instructions which re-order the position of
information in the most accessible cells of the nesting store, in-
cluding reversing and cycling operations. The normal logical oper-
ations are provided.

All arithmetic operations in the arithmetic unit are carried out
on binary numbers using the two’s-complement notation for nega-
tive numbers; instructions being provided for the conversion to
and from binary of information stored as 6-bit characters in other
radix systems. For the convenience of the programmer, double-
length numbers are stored in the arithmetic unit with their more
significant half in a more accessible cell; the sign of the less sig-
nificant half is ignored and is set positive after all double-length
operations.

The nesting store

Although the concept of a nesting store is similar to that of a rifle
magazine where the addition of a cartridge displaces those already
there, movement of information only occurs in the three most
accessible cells of the nesting store, which are transistor flip-flop
registers forming part of the arithmetic unit. The less accessible
cells are core registers which are addressed in a sequential manner
by a reversible counter. Reading from these cores reduces the
count by one, thus selecting the next word; the read-out is de-
structive so that the cores are in the correct state for a subsequent
writing operation, which is the reverse of a read. The access time
of the cores is reduced by providing separate counters and reading
and writing mechanisms for the odd and even numbered rows of
cores; thus when reading or writing from odd rows the addressing
mechanism for the next even row is set, so that it is available for
immediate use. Thus with a simple one core per bit system suc-
cessive reads can be made at 1 p e c intervals and writes at 2 p e c
intervals; as these operations are performed in parallel with the
functioning of the arithmetic unit, their times do not increase the
time required to complete the functions.

The arithmetic unit

As shown in Fig. 1, there are six full length transistor flip-flop
registers in the arithmetic unit; there are also two 8-bit registers
used when performing floating-point operations. The main facili-
ties associated with these registers are as follows.

W1, W2 and W3 are the three most accessible cells of the
nesting store; transfers to the core part of the nesting store, being

264 Part 3 I The instruction-set processor level: variations in the processor

MAIN TRANSFERS
A.U CONTROL PULSES

COUNTER
. / / I I #’ # t

_ -

I
SET FROM

ONES I C L f A R 1 STORE
CONTROL

TO STOPE CONTROL CLEAR

AUXILIARY TRANSFERS AND SHlFTS
RIGHT SHIFTS OF

0,1 ,2 ,S .8 OR-8

CHARACTERISTIC MODIFIER

Fig. 1. Block diagram of the arithmetic unit. Full lines represent infor-
mation transfers; dotted lines represent control pulses. All registers are
48-bits long unless otherwise stated.

made via W3. W1 and W2, together with B1 and B2, form a
double-length shifting register which may be used as two inde-
pendent single-length shifting registers.

B1 and B2 are the inputs to the 48-bit adder whose output may
be routed to W1, W2, or to the characteristic difference register
CD.

The adder contains 13 carry-skip stages which reduce the carry
propagation time to a maximum of 150 nsec. Subtraction is per-

Section 5 I Processors with stack memories (zero addresses per instruction)

formed by adding the minuend’s complement to the subtrahend
with a carry inserted into the right-most adder stage.

N b acts as a buffer between store control and the arithmetic
unit, and together with B1 and B2, is used in nearly every function.

Arithmetic unit control interprets each instruction as a se-
quence of timed pulses along lines which activate the various
transfers etc., between the registers. The sequences have been
constructed so that many operations are performed simultaneously,
reducing the overall time to a minimum; thus the function sin-
gle-length fixed-point add is performed by:

i Transferring W1, W2, W3 to B2, B1 and Nb respectively,
simultaneously commencing a read from the nesting store,
clearing the carry inserted into the right-most adder stage
and switching the adder’s output to W1.

Adding and simultaneously transferring Nb to W2. ii

Each step takes 0.5 psec and by the end of the last step, W3
has been refilled from the core nesting store.

To speed up multiplication and division, these functions are
carried out in a separate unit employing the stored carry principle,
but the results are finally assimilated within the arithmetic unit.

A similar arithmetic unit operating only on single-length num-
bers could be designed using only four full-length registers. At least
five registers are required to perform the function which inter-
changes the contents of the two most accessible cells in the nesting
store with those of the next most accessible pair. The sixth register
enables all double-length arithmetic operations to be performed
without writing information back into the nesting during the func-
tion; this would have complicated the sequences and increased
the time for the functions.

When determining the arrangement of transfer paths between
the various registers, it was found sufficient to consider only the
double-length functions which required complicated or lengthy
sequences; in particular the function for adding two double-length
Hoating numbers had great influence.

An overflow indication is set on fixed-point addition and sub-
traction if the sign of the result differs from that expected, and
on floating-point operations if the characteristic exceeds the
maximum allowable; shifting may also cause overflow.

Shift control

Shifting operations are effected by transfers between W1 (and/or
W2) and B1 (and/or B2), and back again. The shift transfer paths
from the W to the B registers provide right shifts of 0, 1, 2, 5

Chapter 21 1 Design of an arithmetic unit incorporating a nesting store 265

or 8 places, and a left shift of 8 places; the paths from the B to
the W registers provide the same shifts in the reverse direction.
The two sets of shift paths are used alternately, those from the
W registers being used first; all shifts are terminated using a path
into the W registers. Shifts of a large number of places are accom-
plished by a series of shifts of eight places in the appropriate
direction until the number of places remaining is less than eight;
if necessary the number is then transferred back into the W regis-
ters: the remaining shifts, or the whole shift if the number of places
is less than eight, is then completed by a transfer to the B registers
and back again using two appropriate paths. With the shifts avail-
able, extension of the B registers by two bits at the right-most
end enables any shift to be performed without loss of accuracy.
In double-length arithmetic shifts, the sign digit of the less sig-
nificant word is by-passed. When a shift is to be performed, the
number of places and the type of shift are transferred into a semi-
autonomous unit, called the shift control, which is then supplied
with a string of command pulses by the arithmetic unit control;
shift control then re-routes these pulses to perform the transfers
necessary to obtain the shift.

When performing floating-point addition and subtraction, shifts
are required to equalize the characteristics of the two numbers;
the amount of shift is calculated by a modified subtraction, oper-
ating on the characteristic positions of the two numbers. After the
addition, the shift required to restore the result to standard form
is determined by logical circuits which interpret the pattern of
bits in W1 into shift information. The number of shifts performed
during this standardising operation is made available to the arith-
metic unit control for use in forming the correct characteristic
of the result.

The character conversion operations to, and from, binary are
accomplished by shift control, using a method involving successive
shifting of the character word, and adding or subtracting portions
of the radix word.

Examples of sequences

To illustrate the working of the arithmetic unit, two sequences
are described.

a -D, (i.e. subtract the double-length fixed-point number in
W1 and W2 from the number in W3 and the most accessible
core register of the nesting store).

Transfer W1, W2, W3 to B2, B1 and N b respectively,
simultaneously reading from the core nesting store.

i

ii A dummy pulse.

iii

iv
2)

vi

Transfer the complement of W2 to B2 (but setting the
sign of B2 positive), transfer W3 directly to B1 (W3
has by now been filled with fresh data), switch the
adder’s output to W2, inserting a carry into the right-
most adder stage, and read from the nesting store.
Add.
Transfer the complement of W1 to B1 and N b to B2,
switch the adder’s output to W1 and insert a carry
into the right-most adder stage if W2 is negative.
Add, simultaneously clearing the sign of W2.

b + F (i.e. add the two single-length floating numbers in W1
and W2).

i

ii

iii

iv

21

vi

vii

viii

ir

X

Transfer the complement of W1 to B1, transfer W2
to B2 and switch the adder’s output to register CD.
Store the characteristic of W1 in the eight-bit register
C and add.
Clear the characteristic positions of W1, simultane-
ously transferring CD into the shift number register
in shift control. This latter operation is such that the
shift register contains minus the difference in charac-
teristics.
Clear the characteristic of W2, and if W1 is about
to be shifted, determined by the sign digit of CD,
replace the contents of C by the characteristic of B2;
thus C contains the larger Characteristic.
Supply control pulses to shift control and thus perform
the required right-shift of eight W1 or W2.
Having completed the shift, transfer W1, W2 and W3
to B2, B1 and N b respectively, simultaneously switch-
ing the adder’s output to W1, clearing the carry into
the right-most adder stage and reading from the core-
nesting store.
Add the fractional parts, simultaneously transferring
N b to W2.
Supply control pulses to shift control so as to cause
it to enter the standardization procedure and perform
the shifts required.
Store the complement of the number of left-shifts
performed in (viii) in the characteristic position of B2,
transfer C to the characteristic position of B1, switch
the adder to W1.
Perform a special add operation which only affects
the characteristic positions of W1.

The sum is thus formed in W1. Rounding the answer is carried
out using two special control pulses which complete all floating-
point operations, these call up logic to deal with the cases when
the rounding operation necessitates re-standardization of the re-
sult.

266 Part 3 1 The instruction-set processor level: variations in the processor

Conclusions

The advantages of a machine incorporating a nesting store in the
arithmetic unit are:-

i

ii

The machine is simple to programme using the machine
language.
Programmes are faster, since many main store transfers are
eliminated, and the access time of the nesting store is
virtually zero. They are more compact because less infor-
mation is required to specify many instructions.

Section 5 1 Processors with stack memories (zero addresses per instruction)

iii As the operation of the arithmetic unit is largely inde-
pendent of the main store, their controls may readily be
separated. This allows store control to process instructions
whilst the arithmetic unit control processes a prior instruc-
tion, thereby leading to faster execution of the programme.

The main disadvantage is an increase in the order of complexity
involved.

References

AllmR62; DaviC60; HaleA62

Chapter 22

Design of the B 5000 system1

William Lonergan / Paul King

Computing systems have conventionally been designed via the
‘hardware’ route. Subsequent to design, these systems have been
handed over to programming systems people for the development
of a programming package to facilitate the use of the hardware.
In contrast to this, the B 5000 system was designed from the start
as a total hardware-software system. The assumption was made
that higher level programming languages, such as ALGOL, should
be used to the virtual exclusion of machine language programming,
and that the system should largely be used to control its own
operation. A hardware-free notation was utilized to design a proc-
essor with the desired word and symbol manipulative capabilities.
Subsequently this model was translated into hardware specifica-
tions at which time cost constraints were considered.

Design objectives

The fundamental design objective of the B 5000 system was the
reduction of total problem through-put time. A second major
objective was facilitation of changes both in programs and system
configurations. Toward these objectives the following aspects of
the total computer utilization problem were considered:

Statement of problems in higher-level machine-independent
languages; efficiency of compilation of machine language; speed of
compilation of machine language; program debugging in higher-
level languages; problem set-up and load time; efficiency of
system operation; ease of maintaining and making changes in
existing programs, and ease of reprogramming when changes are
made in a system configuration.

Design criteria

Early in the design phase of the B 5000 system the following
principles were established and adopted:

Program should be independent of its location and unmodified
as stored at object time; data should be independent of its location;
addressing of memory within a program should take advantage
of contextual addressing schemes to reduce redundancy; provisions

‘Datamation, vol. 7, no. 5, pp. 28-32, May, 1961.

should be made for the generalized handling of indexing and
subroutines; a full complement of logical, relational and control
operators should be provided to enable efficient translation of
higher-level source languages such as ALGOL and COBOL; pro-
gram syntax should permit an almost mechanical translation from
source languages into efficient machine code; facilities should be
provided to permit the system to largely control its own operation;
input-output operations should be divorced from processing and
should be handled by an operating system; multi-programming and
true parallel processing (requires multiple processors) should be
facilitated, and changes in system configuration (within certain
broad limitations) should not require reprogramming.

System organization

The B 5000 system achieves its unique physical and operational
modularity through the use of electronic switches which function
logically like telephone crossbar switches. Figure 1 depicts the
basic organization of the system as well as showing a maximum
system.

Master control program

A master control program will be provided with the B 5000 system.
It will be stored on a portion of the magnetic drum. During normal
operations, a small portion of the MCP will be contained in core
memory. This portion will handle a large percentage of recurrent
system operations. Other segments of the MCP will be called in
from the magnetic drum, from time to time, as they are required
to handle less frequently-occurring events, or system situations.
Whenever the system is executing the master control program,
it is said to be in the Control State. All entries to the Control
State are made via ‘interrupts.’ A special operation is provided,
which can only be executed when the system is in the Control
State, to permit control to return to the object program it was
executing at the time the ‘interrupt’ occurred.

The following are a few typical occurrences which cause an
automatic ‘interrupt’ in the system: An input-output channel is

267

268 Part 3 [The instruction-set processor level: variations in the processor Section 5 1 Processors with stack memories (zero addresses per instruction)

Fig. 1. Organization of the B5000 system.

available, an input-output operation has been completed or an
indexing operation was attempted which violated the storage
protection features built into the system.

In addition to processing interrupt conditions, the master con-
trol program handles fundamental parts of the total system opera-
tion such as the initiation of all input-output operations, tanking
of input-output areas when required, file control, allocation of
memory, scheduling of jobs (priority ratings, system requirements
of each object program, and the present system configuration are
considered), maintenance of an operations log and maintenance
of a system description.

Operating modes

The B 5000 can either operate with fixed-length words or with
variable-length fields. These two modes of operation are called the

word mode and the character mode. For certain operations, a
processor operating on words is most desirable and for other opera-
tions, a variable field length mode of operation is most desirable.
By combining both abilities in one processor, a processor can
operate in the mode most desirable for the operation at hand. In
a B 5000 system, it is even possible for one processor to be operat-
ing in the word mode and the other in the character mode.

When operating in the word mode, a standard format for the
data word is used as illustrated in Fig. 2.

Note that the standard word is an octal floating point word.
However, the mantissa is treated as an integer rather than as a
fraction (heretofore the reverse has been common practice). This
provides two benefits: first, an integer has the same internal repre-
sentation as its unnormalized floating point correspondent; and,
second, the range of numbers that can be expressed, rather than
being from S+64 to 8-63, is 8+76 to S-51. The first feature eliminates

Chapter 22 1 Design of the B 5000 system 269

First
Char-
acter

Integer Part

Second Third Fourth Fifth Sixth Seventh Eighth
Char. Char- Char- Char- Char- Char- Char-
acter acter acter acter acter acter acter

F-Flag (1 bit)
SE-Sign of Exponent (1 bit)
Exponent (6 bits)

Fig. 2. Data word - word mode.

SO-Sign of Operand (1 bit)
Integer Part (39 bits)

the need for fixed-to-floating point conversion; integers and floating
point numbers can be mixed in arithmetic calculations. The second
expands the range where trouble with range is most often en-
countered, namely, in numbers with extremely large magnitude.

The flag serves a dual purpose. The function of the flag depends
on how the program references the data word. If the data word
is a single variable and not an element of an array, the flag identi-
fies the word as being operand, that is, a data word. If the word
is an element of an array, the flag may be used to identify this
particular element as an element of data which is not to be proc-
essed by the normal program (for example, a boundary point in
mesh calculations).

When operating in the character mode, each data word consists
of eight alphanumeric characters as illustrated in Fig. 3. Programs
in the character mode can address any character in a word. Fields
can start at any position in a word. A processor in a single opera-
tion can operate on fields of any length up to 63 characters long;
operations on fields of greater length can easily be programmed.
For example, two 57 character fields could be compared in a single
operation.

There are two instances when the character mode operates with
words of the type used in the word mode. Operations are provided
in the character mode for converting numeric information in the
alphanumeric representation to the standard word type of the
word mode and vice versa. In both of these instances, the length
of the alphanumeric fields being converted to or from the word
mode type of word can be no greater than eight characters long.
Again, conversion of fields of greater length can easily be pro-
grammed.

The purpose of the word mode is to provide the advantages
of high-speed parallel operations, floating-point abilities and the
inherent information density possible in a binary machine. In the
first case, it is economically feasible to provide parallel operations
in a word machine; the cost of parallel operations on variable
length fields would be prohibitive. In the last case, a given size
memory can contain over twenty percent more numeric informa-
tion if that information is expressed in binary rather than binary-

coded decimal, and over eighty percent more information than
can be expressed in six-bit alphanumeric representation.

The purpose of the character mode is to provide editing, scan-
ning, comparison and data manipulative abilities (although addi-
tion and subtraction are also provided). The type of editing facili-
ties provided obviate the need for the artificial “add-shift-extract-
store” type of editing. For example, operations are provided for
generalized insertion of editing symbols (such as blanks, decimal
points, floating dollar signs, etc.) and for the substitution or sup-
pression of any unwanted characters. For those interested in the
new area of Information Processing Languages, the character mode
is particularly well suited to list structures.

Program organization

Programs in the B 5000 are composed of strings of syllables. A
syllable is the basic unit of the program and is twelve bits in
length. The term “syllable” is used rather than instruction to
distinguish it from conventional single-address or multi-address
instructions. Each program word contains four syllables and they
are executed sequentially in a left-to-right order within the pro-
gram word, and sequentially by word. Branching is allowed to any
syllable within a word. Before delving into some of the details
of the internal operation of the B 5000 processor, it is necessary
to discuss stacks, Polish notation, and the Program Reference
Table.

The stack

The internal organization of single-address computers forces the
wasting of both programming and running time for the storage
and recall of the intermediate results in the sequence of compu-
tation. The data must be placed into the proper registers and
memory cells before the operation can be executed, and their
contents must often be completely rearranged before the next
operation can be performed. Multi-address computers are con-
structed to make the execution of a few selected operations more
efficient, but at the expense of building inefficiencies into all the
rest. Automatic programming aids attack this problem indirectly:
they relieve the programmer of the need to laboriously code his

270 Part 3 1 The instruction-set processor level: variations in the processor

Executed

way around machine design, but they still must provide object
coding to accomplish the storage and recall functions. In brief,
conventionally designed computers, with or without automatic
programming aids, require the wasteful expenditure of program-
ming effort, memory capacity, and running time to overcome the
limitations of their internal organization.

The problem is attacked directly in the B 5000 by incorporation
of a “pushdown” stack, which completely eliminates the need for
instructions (coded or compiled) to store or recall intermediate
results.

In a B 5000 processor, the stack is composed of a pair of regis-
ters, the A and B registers, and a memory area. As operands are
picked up by the programs, they are placed in the A register. If
the A register already contains a word of information, that word
is transferred to the B register prior to loading the operand into
the A register. If the B register is also occupied by information,
then the word in B is stored in a memory area defined by an
address register S. Then the word in A can be transferred to B
and the operand brought into the A register. The new word coming
into the stack has pushed down the information previously held
in the registers. As each pushdown occurs, the address in the S
register is automatically increased by one. The information con-
tained in the registers is the last information entered into the stack;
the stack operates on a “last in-first out” principle. As information
is operated on in the stack, operands are eliminated from the stack
and results of operations are returned to the stack. As information
in the stack is used up by operations being performed, it is possible
to cause “pushups,” i.e., a word is brought from the memory area
addressed by the S register, and the address in the S register is
decreased by one.

To eliminate unnecessary pushdowns and pushups, the A and
B registers both have indicators used for remembering whether
the registers contain information or are empty. When an operand
is to be placed in the stack and either of the registers is empty,
no pushdown into memory occurs. Also, when an operation leaves
one or both of the registers empty, no automatic pushup occurs.

Polish notation

The Polish logician, J. Lukasiewicz, developed a notation which
allows the writing of algebraic or logical expressions which do not
require grouping symbols and operator precedence conventions.
For example, parentheses are necessary as grouping symbols in
the expression A(B+ C) to convey the desired interpretation of the
expression. In the expression A + B/C, the normal interpretation
is A + (B/C), rather than (A + B)/C, because of the convention that

Section 5 I Processors with stack memories (zero addresses per instruction)

the / operator is of higher precedence than the + operator. The
right-hand Polish notation used in the B 5000 is based on placing
the operators to the right of their operands: A + B becomes AB+
in Polish notation. A + B + C can be written either as AB + C + ,
or as ABC+ +. In the expression ABC+ +, the first + operator
says to add the operands B and C. The second + operator says
to add A to the sum of B and C. Returning to the first examples
above, A(B + C) can be written as BC + A X or ABC + x in Polish.
The second example is written as BC/A+ or ABC/+. The exten-
sion of Polish notation to handle equations is shown in the follow-
ing example:

Conventional notation Z=A(B-C)/(D+E)
Polish notation ABC - x DE + /Z=

The stack in use

To illustrate the functioning of the stack, two simple examples
are shown in Figs. 4 and 5. In the examples, the letters P, Q and
R represent syllables in the program that cause the operands P,
Q, and R to be picked up and placed in the stack. The symbols
+ and x represent syllables that cause the add and multiply
operations to occur. The two examples represent different ways
of writing P(Q+R) in Polish notation. The first example in Fig.
4 does not require pushdowns or pushups. The second example,
shown in Fig. 5, requires a pushdown in the execution of the
syllable R, and a pushup in the execution of the syllable x. The
columns in the table represent the contents of the various registers
after execution of the syllable listed in the first column.

Independence of addressing

One of the goals set in the design of the B 5000 was to make the
programs independent of the actual memory locations of both the
program itself and the data, in order to provide really automatic

Polish Notation QR + P x

~ ~-

Fig. 4

Chapter 22 1 Design of the B 5000 system 271

Syllable
Executed

P

Q
Pushdown

Execute
R

Polish Notation PQR + x

Contents of

Register A Register B Register S Cell 101

100 -

P 100 -

P Empty

Q

Empty Q 101 P

R Q 101 P

X
100

Fig. 5

program segmentation. Through automatic program segmentation,
it is possible to have program size practically independent of the
size of core memory. The systems analyst or programmer intending
to do multi-processing is then no longer faced with the difficult
task of planning what jobs are to be run together in order that
system storage capacities are not exceeded.

In achieving independence of addressing, a solution requiring
large contiguous areas of memory was not deemed satisfactory.
Each segment of the program and each data area should be com-
pletely relocatable without modification to the program. It is then
possible to load all the segments of a program or programs onto
the drum at load time and call in the segments to any available
space in core memory as needed during run time. If some segment
of a program is overlaid by a subsequent segment of a program,
the segment of the program destroyed in core memory is still
available on the drum to be called in again if needed.

Due to the very high program densities in the B 5000, the
availability of high capacity drum storage on every system and
automatic segmentation, a minimum B 5000 system has the capa-
city for a program or programs equivalent to approximately 40,000
to 60,000 single address instructions. Of course, if an installation
normally ran such large programs, the system would very likely
not be a minimum system. However, the installation having an
occasional need to run very large programs is not prevented from
doing so by storage capacity.

Processing speed now becomes a function of the size of core
memory. If large programs are run in a system with small core
memory, time will be consumed in recalling program segments

from drum to core. If the core memory is expanded, less time will
be spent in such activity and the program or programs will be
speeded up, and no reprogramming is required.

Program reference table

The means of achieving independence of addressing in the B 5000
is called a Program Reference Table (PRT). The PRT is a 1,025
word relocatable area in memory used primarily for storing con-
trol words that locate data areas or program segments. There are
also control words for describing input-output operations. These
control words, called descriptors, contain the base address and size
of data areas, program segments and input-output areas. A descrip-
tor specifying an input-output operation also contains the desig-
nation of the unit to be used and the type of operation to be
performed. Operands may also be stored in the PRT, providing
direct access to single values such as indices, counts, control totals,
etc.

In the word mode of the B 5000, every item of data is con-
sidered to be either a single value or an element of an array of
data. If it is a single value, it will be obtained directly by indexing
a descriptor contained in the PRT.

Program segments are described by program descriptors. In
addition to core base address, the program descriptor contains the
location in drum storage of the program segment and an indication
if the program segment is currently in core memory starting at
the address specified in the descriptor. Entry to a program segment
is made via its program descriptor contained in the PRT. If the
program segment is in core memory, entry will be made to the
program segment. However, when entry is attempted to a program
segment whose descriptor indicates that the segment is not in core
memory, automatic entry to the Master Control Program will occur
and the desired segment will then be brought in from the drum.
Notice that in moving from one segment to another, it is not
necessary to know whether the segment to be entered is currently
in core memory. Branching within a program segment is self-
relative, i.e., the distance to jump either forward or backward is
specified, not the address to be jumped to.

As a result of keeping all actual addresses of data and program
in the PRT, the program itself does not contain any addresses,
but only references to the PRT. To specify one of the 1,024 posi-
tions in the PRT requires only 10 bits which contributes greatly
to the high program density achieved in the B 5000. Since the
PRT is relocatable, references to the PRT contained in the pro-
gram are to relative locations, thus completely freeing the program
from any dependence whatsoever on actual memory locations.

272 Part 3 I The instruction-set processor level: variations in the processor Section 5 1 Processors with stack memories (zero addresses per instruction)

Word mode program For (3) , indexing of the descriptor by the item that is now the

operand is obtained from the indexed address; for the descriptor
action is after the indexing.

In the case of (4), subroutine entry occurs to the subroutine
addressed. A word of the three previous types may be left in the

The word mode of the B 5000 processor has four types of syllables, second item in the stack occurs. For an 'Perand sY1lable, the

The syllable is distinguished by the two high-order bits of
each 12-bit syllable. The types of syllable and the identification
bits are:

00-Operator Syllable
01-Literal Syllable
10-Operand Call Syllable
11-Descriptor Call Syllable

The first of these, the operator syllable, causes operations to be
performed. The remaining ten bits of the operator syllable are the
operation codes. There are approximately sixty different operations
in the word mode. For those operations requiring an operand or
operands, the processor checks for sufficient operands in the regis-
ters; if they are not there, pushups from the stack in memory occur
automatically.

The literal syllable is used for placing constants in the stack
to be used as operands. The ten bits of the literal syllable are
transferred to the stack. This allows the program to contain inte-
gers less than 1,024 as constants.

The operand call syllable, and the descriptor call syllable ad-
dress locations in the program reference table. The purpose of the
operand call syllable is to place an operand in the stack; the
purpose of the descriptor call syllable is to place the address of
an operand, a descriptor, in the stack. There are four situations
that arise, depending on the word read from the program reference
table.

1

2

The word is an operand.

The word is a descriptor containing the address of the
operand.

The word is a descriptor containing the base address of the
data area in which the operand resides.

The word is a program descriptor containing the base ad-
dress of a subroutine.

3

4

For (l), the operand call syllable has completed its action by
placing an operand in the stack. The descriptor call syllable will
cause the construction of a descriptor of the operand, replacing
the operand by the constructed descriptor.

For (2), the operand call syllable then reads the operand from
the cell addressed. The descriptor call syllable has completed its
action.

registers upon return from the subroutine, in which instance the
actions described above will take place, depending upon the type
of syllable which initiated the subroutine.

Essentially, the four types of action that occur for an operand
call syllable are obtaining an operand directly, indirectly, from
an array, or by computation. Sometimes in the use of the call
syllables, it is not known which type of action will occur for a
particular syllable when the program is created. This is particu-
larly true for call syllables in subroutines.

Programs in the word mode consist of strings of syllables which
follow the rules of Polish notation. Variable length strings of call
syllables and literal syllables, which place items of information
in the stack, are followed by operator syllables which perform their
operations on information in the stack.

The indexing features of the B 5000 allow generalized indexing
and at the same time provide complete storage protection. Data
areas and program segments of different programs may be inter-
mingled, but a program is prevented from storing outside of its
data areas. The method of indexing allows any of the 1,024 words
of the program reference table to be considered index registers.
Multilevel indexing is provided, i.e., indices of arrays can them-
selves be elements of arrays.

The subroutine control provided in the B 5000 allows nesting
of subroutines-even recursive nesting (a subroutine is a subrou-
tine of itself)-arbitrarily deep. Dynamic allocation of storage for
parameter lists and temporary working storage simplify the use
of subroutines. Storage is automatically allocated and deallocated
as required.

Character mode program

In the character mode of the B 5000 Processor, there is only one
type of syllable, called the operator syllable. Program segments
in the character mode are constructed of strings of these syllables.
The character mode is designed to provide editing, formatting,
comparison, and other forms of data manipulation. In doing so,
the processor uses two areas of memory-the source and desti-
nation areas. When a program switches from word mode to char-
acter mode, two descriptors containing the base addresses of these
areas are supplied. The source area or destination area may be

Chapter 22 1 Design of the B 5000 system 273

changed at any time during character mode so that the program
may act on several areas.

parts; the last part specifies the 'peration to be performed and

Conclusion

The Burroughs B 5000 system has been designed as an integrated

in the memory space required to store equivalent object programs;

The character mode 'perator is into two hardware-software package which offers such benefits as savings

the first part 'pecifies the number Of times the 'peration is to be multi-processing and parallel processing; and identical
performed. Operations are provided for the transferring, deletion,
comparison, and insertion of characters or bits. Also, there are
operations which allow the repetition of syllable strings. This is
quite useful for complex table look-up operations and for editing
information which contains repeated patterns.

programs on systems with different size memories and different
system configurations with no loss in individual system

References
LoneW61; BartR61; BockR63; CarlC63; MaheR6l

Section 6

Processors with mu I ti programm i ng

The processors in this section have features which allow mult i-
ple programs to exist in the primary memory at the same time.
The programs can be executed alternately by a single processor
without having to wait for new programs to be input. The cost
is only that of changing the processor state, which involves only
a few instructions at most (and only one instruction on some
systems, such as the CDC 6600). Since programs are subject
to numerous unpredictable delays within a single run for inter-
change with the external environment (either via Ms or T),
substantial increases in Pc utilization can be achieved by multi-
programming. If more than a single processor has access to
Mp, the system is called a multiprocessor system.

Time-shared computers are generally multiprogrammed.
Alternatively, time-shared systems can be implemented by
swapping programs, one at a time, into primary memory for
interpretation. The Berkeley Time-sharing System (Chap. 24)
uses both multiprogramming and program swapping. The
Burroughs B 5000 (Chap. 22) is an early computer to have
multiprogram capability. The idea of multiprogramming is so
fundamental that it should be among the first concepts to be
understood by the student of computing systems. A very nice
review of memory mapping and storage allocation is presented
in the paper Dynamic Storage Allocation Systems [Randell and
Kuehner, 19681.

Atlas

The Atlas is one of the most important machines described in
this book. The prototype was originally designed and con-
structed at Manchester University. The Atlas 1 and Atlas 2 were
produced by Ferranti Corp. (prior to becoming part of 1.C.T.l).
Atlas 1 is the most interesting; it incorporates most of the
features of the Atlas prototype. The Lincoln Laboratory TX-2
[Clark, 19571 influenced some Atlas features: multiple index
registers and interrupt processing of input/output devices.
Atlas' detailed internal structure is described in a paper [Sum-
ner et al., 19621.

International Computers and Tabulators, U. K.

Two original features, one-level storage and extracodes, have
been copied in many other machines. A one-level store is com-
mon to most new computers which are time-shared or multi-
programmed; the scheme for memory paging in the SDS 940
is essentially that of Atlas.

The extracodes feature allows ordinary machine operation
codes to be used to call subroutines. Commonly used complex
instructions (such as sin, cos, and monitor calls) can be written
in a common operating system accessible to all users. Initially
these subroutines were stored in a read-only memory.

The ISP is straightforward and extremely nice. The extra-
code idea appears in the SDS 900 series and was used in the
SDS 940 system for defining common-user instructions. The
IBM Systeml360 SVC (supervisor call) instruction is an adapta-
tion of the extracode.

Atlas was about the earliest computer to be designed with
a software operating system and the idea of user machine in
mind. The operating system has been nicely described [Kilburn
et al., 19611 and evaluated [Morris et al., 19671.

In a letter to the authors of this book, F. H. Sumner makes
the following comments on Atlas.

The initial ideas and the preliminary research on the Atlas computer
system started in the Department of Computer Science of the Uni-
versity of Manchester in 1956. The team, under the direction of
Professor T. Kilburn, was later supplemented by several members
of the I.C.T. Computer Research Department, and the prototype
machine was working in the department by the Autumn of 1961.
The first production model became operational in January 1963.

The significant features of the system can be summarised as:

1 The provision of a virtual address field greater than the real
address space.

2 The implementation of a "one-level" store using a mixture
of core store and drum store.

3 The interrupt system and the method of peripheral control.

4 The realisation at the design stage that there would be a
complex operating system and the provision in the hardware
of specific features to assist such an operating system.

274

Section 6 I Processors with multiprogramming ability 275

The method of peripheral control permitted the attachment of
a large number of on-line peripherals with rapid response and entry
into the operating system for a peripheral requiring attention. This,
together with the multiprogramming features, makes the design
ideal for the attachment of keyboards for the provision of multi-
access operation. In the original design, provision for several such
on-line typewriters was made, but at the production stage it was
decided to remove these as an economy measure. In view of the
subsequent development of on-line operation, this was rather an
unfortunate decision.

The Atlas computer at the University has now been in continuous
operation for four years and it is expected to provide for the major
part of the University's computing needs until 1971.

During the period of its operation the provision of extensive
monitoring and logging information has permitted the behaviour of
the system to be studied in detail. The results of these studies have
been extremely valuable in the design of a successor to the Atlas.

Design of the B 5000 System

The Burroughs B 5000 computer is described in Part 3, Sec. 5,
page 257, Chap. 22.

A user machine in a time-sharing system

The Berkeley Time-sharing Computer (Fig. 1) is based on the
SDS 930 (Chap. 24). The hardware modifications to the SDS

930, together with the operating system software, were sold by
Scientific Data Systems as the SDS 940. The operating system
and hardware modifications for multiprogramming make the
940 one of the first commercially available combined hardware-
software time-sharing computers.'

The description in Chap. 24 is concerned with the machine
as it appears to the user. That is, the hardware and the oper-
at ing system software are both presented in the context in
which they contribute to form a user machine.

The 940 uses a memory map which is almost a subset of
that of Atlas but is more modest than that of the IBM 360/67
[Arden et al., 19661 and GE 645 [Dennis, 1965; Daley and
Dennis, 19681. A number of instructions are apparently built
in via the programmed operator calling mechanism, based on
Atlas extracodes (Chap. 23). The software-defined instructions
emphasize the need for hardware features. For example, float-
ing-point arithmetic is needed when several computer-bound
programs are run. The SDS 945 is a successor to the 940, with
slightly increased capability but at a lower cost.

'Time-shared computers consist of both hardware and a complex software operat-
ing system. Adams Compute+ Chamcteristics Quarterly lists the deliveries of gen-
eral-purpose time-shared computers as DEC PDP-6 hardware, October, 1964
(software in early 1965); SDS 940 hardware (and Berkeley software) April, 1966;
GE 635, 645 hardware, May, 1965 (M.I.T.'s project MULTICS software, around
1969); IBM System/360 Model 67 hardware, March, 1966 (software, around
1968).

M(content addressable; f l i p f l o p)

M p (# 0 : 3) ' 4 (4 Mp; 3 (P,K)) i('Map)-F'c2-S K--Ms(magnet ic tape)-

L T (p a p e r tape)-

K-S-T (Teletype)-

K--Ms(drum: 2 d w ; 1.3 x 10 w)

K-Ms(moving head d i s k : 1.5 x 10' w)

6

E
P i 0

'Mp(core; 1.75 us /w; 16384 w; (24,l p a r i t y) b/w)

"Pc ('Mod i f i ed SDS 930). see Chgpter 42

Fig. 1. University of California (Berkeley) time-shared-computer PMS diagram.

Chapter 23

One-level storage system1

T. Kilburn / D. B. G. Edwards / M . J. Lanigan
F. H . Surnner

Summary After a brief survey of the basic Atlas machine, the paper
describes an automatic system which in principle can be applied to any
combination of two storage systems so that the combination can be regarded
by the machine user as a single level. The actual system described relates
to a fast core store-drum combination. The effect of the system on instruc-
tion times is illustrated, and the tape transfer system is also introduced
since it fits basically in through the same hardware. The scheme incor-
porates a “learning” program, a technique which can be of greater impor-
tance in future computers.

requisite transfers of information taking place automatically. There
are a number of additional benefits derived from the scheme
adopted, which include relative addressing so that routines can
operate anywhere in the store, and a “lock out,, facility to prevent
interference between different programs simultaneously held in
the store.

2. The basic machine

1. Introduction

In a universal high-speed digital computer it is necessary to have
a large-capacity fast-access main store. While more efficient oper-
ation of the computer can be achieved by making this store all
of one type, this step is scarcely practical for the storage capacities
now being considered. For example, on Atlas it is possible to
address lo6 words in the main store. In practice on the first instal-
lation at Manchester University a total of lo5 words are provided,
but though it is just technically feasible to make this in one level
it is much more economical to provide a core store (16,000 words)
and drum (96,000 words) combination.

Atlas is a machine which operates its peripheral equipment on
a time division basis, the equipment “interrupting” the normal
main program when it requires attention. Organization of the
peripheral equipment is also done by program so that many pro-
grams can be contained in the store of the machine at the same
time. This technique can also be extended to include several main
programs as well as the smaller subroutines used for controlling
peripherals. For these reasons as well as the fact that some orders
take a variable time depending on the exact numbers involved,
it is not really feasible to “optimum” program transfers of infor-
mation between the two levels of store, i .e., core store and drum,
in order to eliminate the long drum access time of 6 msec. Hence
a system has been devised to make the core drum store combi-
nation appear to the programmer as a single level of storage, the

The arrangement of the basic machine is shown in Fig. 1. The
available storage space is split into three sections; the private store
which is used solely for internal machine organization, the central
store which includes both core and drum store, in which all words
are addressed and is the store available to the normal user, and
finally the tape store, which is the conventional backing-up large
capacity store of the machine. Both the private store and the main
core store are linked with the main accumulator, the B-store, and
the B-arithmetic unit. However the drum and tape stores only have
acces5 to these latter sections of the machine via the main core
store.

The machine order code is of the single address type, and a
comprehensive range of basic functions are provided by normal
engineering methods. Also available to the programmer are a
number of extra functions termed “extracodes” which give auto-
matic access to and subsequent return from a large number of
built-in subroutines. These routines provide

1 A number of orders which would be expensive to provide
in the machine both in terms of equipment and also time
because of the extra loading on certain circuits. An example
of this is the order:
Shift accumulator contents +n places where n is an integer.

The more complex mathematical operations, e.g., sin x,
logx, etc.,

Control orders for peripheral equipments, card readers,
parallel printers, etc.,

2

3

‘ I R E Truns., EC-II , vol. 2, pp. 223-235, April, 1962. 4 Input-output conversion routines,

276

r--- -----1

I
! i-i

!

Fig. 1. trysut of I#dc mrelrina.

5 Special programs concerned with storage allocation to
different programs being run sknuftaneously, monitoring
routines for fault finding and costing purposes, and the
detailed organization of drum and tape transfers.

All this information is permanently required and hence is kept
in part of the private store termed the “fixed store” [Kilburn and
Grimsdale, l W a] which operates on a “read only” basis. This store
consists of a woven wire me& into which a pattern of small
“linear” ferrite slugs are inserted to represent digitai information.
The information content can only be changed manually and will
tend to differ only in detail between the different versions of the
Atlas computer. In Muse this store is arranged in two units each
of 4096 words, a unit consisthg of 16 columrrs of 256 words, each
word being 50 bits. The access time to a word in any one column
is about 0.4 psec. If a change of column address is required, this
figure increases by about 1 p e c due to switching w e n t s in the
read amp&rs. s\tbsequent accsssssin the new c th ru~ revert to
0.4 pec . The store operates in mnj with a subsidiary core
store of 1024 words which provides working space for the b e d
store programs, and has a cycle time of about 1.8 pec. There are
certain safeguards a g h t a normal machine user
to addre- in either part of the privstc store, thcwgh in effect
he makes use of this stom &rot& the extracode facility.

The central store of the madthe consists of a dnun and core
store combination, whiuh Bas a maxi- edclPcssoble oopcity of

about 10s weds.];n R(ue the central store c&paoi2y is about !it@W
words
ferred ha b l a h 81 !W wads -/from the main core stom, which
am&& of four mpuate stacks, each stack hwbg a wpadty of
4088Wonaa

The &ip system provides a veay large capacity baddag store
for the machine. The user aua &e@ transfers of v@&kr Lpmaunts

of informWon between this store and the eatad &om In octual
fa& suoh &ansfen are o r @ d by a fixedstcue program which
initiates -c transfers of blocks of 512 WQlCdio W e e n the

OB 4 drums. Any part afthis *re CBn be trans-

main core store. “he system cpn
sima€-ly, each prodw.@gor dem

thus be PmyMad $onr sither
the an& m c k e , tfiG drum, or the tape systepl.
is no between t b s e addrema, h e
priority system t o allocate add~esses to the core stom, The dh.lsm
has top prbxity sbce it delhrsrs a word every 4 pet, the trpe
next prio%itv since ~rdsopn.cuise every 11 pec h 8 ddcs

u6es the core s t ~ r e for the reat of the available
system newswily takes time to establish its

at ea& cinnn ar tapa request. Thus the madhe is not slowed
dmm in payway when aodnug or tape trunshs take place. Thtt

of &am aad tape t r a d e r s on machine speed is given in
Appendix 1.
To simplt€y the aontrol commands given t o the drum, t ip. and

PBzfpherpaaqUtpHIent in tbs msrchiae, the rdtm all take the b
b+ S or a+ B d the identification of t$e mquired eonmaad
register is p v k ? d by the address S, This type of storpgeis daatly
widely Soaapered in &e machine but is termed col lecthly the
v-s tm.

En ilye o~ntnh machine &e main accumulator conbins a fast
uMar [Uhrn -et at., 1tHhi~J d has built-in nrrtwplication nnd
diviJiciH &&ties. ft cwn dasal with fked or hating poi& numbers
and its operation is completely independent of the B-store and
& ~ ~ c unit, Tbe B-store is a fast core store. (cycle time 0.7
pee) Qf 1W twenty-four bit words operating in a wosd selected

‘‘fast’’

B lines u;e+olso provided ia the hm of flipflo these,
thwe am uwd as cm&ol lines, terbped mojn, extrscode, d inter-
rupt con&& raapectively. The arrangement has the advantage
that the &td hnmbers can be m a a t p W b y &e Mwmai &type
orders, and the existence of three controb permits the machine
t~ swit&b wpidiy from one to another without having to transfer
e m t d &rs to the core store. Main control is used when the

pridty, ead 90 &E? bWn fSlWlg0d thoz 00- b t b 8- .81y

partial flw wwitclbing mock [Edwards et al.,

278 Part 3 I The instruction-set processor level: variations in the processor

Exponent
V,8 bits

including sgn

central machine is obeying the current program, while the extra-
code control is concerned with the fixed store subroutines. The
interrupt control provides the means for handling numerous pe-
ripheral equipments which “interrupt” the machine when they
either require or are providing information. The remaining “fast”
B lines are mainly used for organizational procedures, though B124
is the floating point accumulator exponent.

The operating speed of the machine is of the order of 0.5 x lo6
instructions per second. This is achieved by the use of fast tran-
sistor logic circuitry, rapid access to storage locations, and an
extensive overlapping technique. The latter procedure is made
possible by the provision of a number of intermediate buffer stor-
age registers, separate access mechanisms to the individual units
of core store and parallel operation of the main accumulator and
B-arithmetic units. The word length throughout the machine is
48 bits which may be considered as two half-words of 24 bits each.
All store transfers between the central machine, the drum and tape
stores are parity checked, there being a parity digit associated with
each half-word. In the case of transfers within the central store
(i e . , between main core store and drum) the parity digits associ-
ated with a given word are retained throughout the system. Tape
transfers are parity checked when information is transferred to
and from the main core store, and on the tape itself a check sum
technique involving the use of two closely spaced heads is used.

The form of the instruction, which allows for two B-modifica-
tions, and the allocation of the address digits is shown in Fig. 2a.
Half of the addressable store locations are allocated to the central
store which is identified by a zero in the most significant digit
of the address. (See Fig. 2b.) This address can be further subdivided
into block address, and line address in a block of 512 words. The
least significant digits, 0 and 1, make it possible to address 6 bit
characters in a half word and digit 2 specifies the half word.

The function number is split into several sections, each section
relating to a particular set of operations, and these are listed in
Fig. 2c. The machine orders fall into two broad classes, and these
are

1 B codes: These involve operations between a B line specified
by the BA digits in the instruction and a core store line
whose address can be modified by the contents of a B line
determined by the B, digits. There are a total of 128 B
lines, one of which, Bo, always contains zero. Of the other
lines 90 are available to the machine user, 7 are special
registers previously mentioned, and a further 30 are used
by extracode orders.

A codes: These involve operations between the Accumulator
and a core store line whose address can now be doubly

2

Mantissa
x

40 bits lnc(uding sign

Section 6 1 Processors with multiprogramming ability

(0)

23 22 2 1 ~ 2 0 19 18 17 46 15 14 I3 12 1i1 IO 9 8 7 6 5 4 3 2 I

- L i n e address .. O d B l o c k address- ~ .!-
(core store and d r u m)

I
1 I 0 O 1 0 0 t 0 0 O - C o l u m n - L L i n e a d d r e s s

1 MeshA address ’
1 M e s h 8 A d d r e s s in fixed store . 1

A d d r e s s in subsidiary s tore ___ ~ ~ ~ _ _ _ _ _ _ _

A d d r e s s in V s t a r e

Most signilicant hall word 0
Least significant half-word I

Mast significant character 0 0
Least significant character I I

47 46 45 44 43 42 41 40 39 38
0 0 0 0 8 8 8 8 8 8 ___
0 0 0 1 B codes

0 0 4 0 8 t e s t codes

0 0 1 t A codes

O f 0 0
O I O I
O f 1 0
0 1 I 1 4 codes and extrocode r e t u r n
0 o s 8

i l 8 6

__
8 codes and extrocode return
__

B t y p e extracode

A t y p e extrocode

(C)

(d)

Fig. 2. Interpretation of a word. (a) Form of instruction. (b) Allocation
of address digits. (c) Function of decoding. (d) Floating-point number
X8’.

modified first by contents of B , and then by the contents
of BA. Both fixed and floating point orders are provided, and
in the latter case numbers take the form of X S Y , the digit
allocation of X and Y being shown in Fig. 2d. When fixed
point working occurs, use is made only of the X digits.

3. 0rrcl-kiwl.toreconobpt

The choice of system for the fast access store in a large scale
computer is governed by a number of emdicting factom which
include speed ard size requirements, eapnomic and technical
difficulties. Previously the probkm bas been r e s o w in two ex-
treme cuses either by the provision of a very large core store, e.g.,
the 2.5 m e b i t [Papian, 19571 store at M.I.T., or by the use of
a small core store (40,000 bits) eapanded to &10,000 bits by a dnun
store as in the Ferranti Mercury [Lonsdale and Warburton, 19%;
Kilbwn et al., 19561 computer. Each of these m e t h d has its
disadvantages, in the first case, that of expense, snd in the second
case, that of inconvenience to the user, who is obliged to program
t r a d e r s of information between the two types of stom and this
can be time consuming. In some instances it is W b l e for an
expert mechine user to m g e his program so thnt the amwnt
of time lost by the transfers in the two-level storage mangemcBt
is not significant, but this sort of ‘‘optimtun’’ p q p m a i n g is aot
very desirable. Suitable interpretative coding [Brooker, 19601 can
permit the two-level system to appear as one level. The effect is,
however, accompanied by an effective loss of machine speed
which, in some programs and dependhg on details of machine
design, can be quite w e r e , varying typically, for example, be-
tween one and three.

The two-level storage s a k e has obvious economic advan-
tages, and bconvenience to the machine user can be ellminated
by &g the transfer arrangements completely automatic. In
Atlas a c o m p h d y automatic system has been provided with t d -
niques for minimizing the transfer times. In this way the core
and drum are merged iato an appBpent single level of storage with
good performance and at moderate cost. Some details of this ar-
rangement on the Muse are now provided.

The central store is subdivided into blocks of 512 words as
shown by ttre address arrangeumnts in Fig. %b. The main cere store
is also partitioned into blocks of th is size which for identifiuation
purposes are called pages. Assodated with each of these core store
page positions is a “page address register” (P.A.R.) which contains
the address of the block of information at present Occupying that
page position. When access to any w01d in the central store is
required the digits of the demanded block address are compared
with the contents of all the page address registers. If an “equiva-
lence” indication is obtained then access to that particular page
position is permitted. Since B block can occupy any one of the
32 page positions in the core store it is necessary to modify some
digits of the demanded block address to conform with the page
positions i s which an equivalence was obtained.

Thaw processes are necesearily time consum@ but by provid-
ing a by-pass of t h i s procedure for instruction acoews (since, in
genera& instntctioa loops are all amtained ia the w n e block) then
most of &is t i m ~ cpn be overlapped with a UeeM p”tion of the
machine or corn store rhythm. in thia wsly infomation in the core
store is available to the mschine at the full speed d &e awe store
and only rarely is the over-all machine speed rrffeeted by delays
in the equivdwoe circuitry.

If P “not equivalence” indication is obtakred when the de-
manded k k address is c o ~ l i p ~ ~ ~ d with the conte~~ts of the
P.A.R.’s &en tht address, which may have b n B-modiiBe& is
first stored in a register which can be a c d as a Iiw of the
V-store. Thip permits the central machine easy access to this ad-
dress. An “intempt” also occurs which swikcherr operntion of the
machine over te the interrupt control, wbidh fh d the
ciwe of tbc intarnapt and &en, in thtp h t a c e , enters a b d
store routisk ta organize the necessary trmdbm of infonaation
between dkun and core store.

A. Dficnrtm*

On each drcun, one track is used to identify absolute bloak psi-
tions around the dnmr periphery. The records on these tracks are
read into the B registers which can be a c c d as lines of the
V-store and this permits the present anglular ckum pit ion to be
detmmbd, though d y in units of one blook. In this way the
ti- Ildeded to tmnsbr m y Mock while reading hoin &e drwns

the dFnrn malation time is L2 msec a d the actual transfer time
2 msec.

The time of a writing transfer to the drums hss been r e d d
by writing the b l d of idormation to the h t wailable empty
bloak pitian oa any dmm. Thus the access time of the drum
can be e l h i n d pvkkd there are a masorable number of
empty blocks on the dnun. This means, however, that transfers
to/from the drtffn have to be carried out by refesenoe to a direc-
tory and this is stored in the subsidiary store and up-dated when-
ever a transfer occurs.

&st action is
to determine the absolute position on a dmm of the required block.
The order is then given to carry out the transfer to an empty page
position in the core store. The transfer occurs automatically as
soon as the drum reaches the correct angular position. The page
address regirtsr in the vacant @ion in the core store is Set to
*specific block number for dram transfers. This technique sim-
plifies the engineering with regard to the provision of this number

~ a n b e ~ ~ ~ t i m e ~ u i e ~ b e t \ m s e n 2 a n d 1 4 m g e ~ ~ i n ~ e

Whrta the dwm transfer routine is eatered

280 Part 3 I The instruction-set processor level: variations in the processor

from the drum and also provides a safeguard against transferring
to the wrong block.

As soon as the order asking for a read transfer from the drum
has been given the machine continues with the drum transfer
program. It is now concerned with determining a block to be
transferred back from the core store to the drum. This is necessary
to ensure an empty core store page position when the next read
transfer is required. The block in the core store to be transferred
has to be carefully chosen to minimize the number of transfers
in the program and this optimization process is carried out by a
learning program, details of which are given in Sec. 5. The opera-
tion of this program is assisted by the provision of the “use” digits
which are associated with each page position of the core store.

To interchange information between the core store and drums,
two transfers, a read from and a write to the drum are necessary.
These have to be done sequentially but could occur in either order.
The technique of having a vacant page position in the core store
permits a read transfer to occur first and thus allows the time for
the learning program to be overlapped either into the waiting
period for the read transfer or into the transfer time itself. In the
time remaining after completion of the learning program an entry
is made into the over-all supervisor program for the machine, and
a decision is taken concerning what the machine is to do until
the drum transfer is completed. This might involve a change to
a different main program.

A program could ask for access to information in a page position
while a drum or tape transfer is taking place to that page. This
is prevented in Atlas by the use of a “lock out” (L.O.) digit which
is provided with each Page Address Register. When a lock out
digit is set at 1, access to that page is only permitted when the
address has been provided either by the drum system, the tape
system, or the interrupt control. The latter case permits all trans-
fers from paper tape, punched card, and other peripheral equip-
ments, to be handled without interference from the main program.
When the transfer of a block has been completed the organizing
program resets the L.O. digit to zero and access to that page

Section 6 I Processors with multiprogramming ability

position can then be made from the central machine. It is clear
that the L.O. digit can also be used to prevent interference be-
tween programs when several different ones are being held in the
machine at the same time.

In Sec. 3 it was stated that addresses demanding access to the
core store could arise from three distinct sources, the central
machine, the drum, and the tape. These accesses are complicated
because of (1) the equivalence technique, and (2) the lock out digit.
The various cases and the action that takes place are summarized
in Table 1.

The provision of the Page Address Registers, the equivalence
circuitry, and the learning program have permitted the core store
and drum to be Legarded by the ordinary machine user as a one-
level store, and the system has the additional feature of “floating
address” operation, Le., any block of information can be stored
in any absolute position in either core or drum store. The minimum
access time to information in this store is obviously limited by
the core store and its arrangement and this is now discussed.

B. Core store arrangement

The core store is split into four stacks, each with individual address
decoding and read and write mechanisms. The stacks are then
combined in such a way that common channels into the machine
for the address, read and write digits are time shared between
the various stacks. Sequential address positions occur in two stacks
alternately and a page position which contains a block of 512
sequential addresses is thus arranged across two stacks. In this way
it is possible to read a pair of instructions from consecutive ad-
dresses in parallel by increasing the size of the read channel. This
permits two instructions to be completely obeyed in three store
“accesses.” The choice of this particular storage arrangement is
discussed in Appendix 2.

The coordination of these four stacks is done by the “core stack
coordinator” and some features of this are now discussed, starting
with the operation of a single stack.

Table 1 Comparison of demanded block address with contents of the P.A.R.’s resultant state of equivalence and lock out circuits

Equivalence
Lock out = 0

Sourw of address lE.Q.1
Not equivalence
[N.E.Q.]

[Equioalence)
Lock out = 1

[E.Q. 6- L.O.]
~ ~ ~~~~

1 Central Machine Access to required page position Enter drum transfer routine Not available to this program
2 Drum System Access to required page position Fault condition indicated Fault condition indicated
3 Tape System Access to required page position Fault condition indicated Fault condition indicated

C. Operation Of U &@e rtedr Of corC8rt0rc

The storage system employed is a cdncident currant M.I.T. system
arranged to give paralkl read out of 50 digits. The reading opera-
tion is de$tmctbe and each read phase of the stack cycle Is fol-
lowed by a write phase during which the infonnaton read ont
may be rewritten. This is achieved by a set of digit stpti&zors
which am loaded during the read phase and are a d to control
the inhibit current drivers d w k g the write phase. When new
information is to be written into the store a similar sequence is
followed, except that the digit staticizors are loaded with the MW

information during the read phase. A diagram indicating the
different t y p e s of stack cycle is shown in Fig. 3.

I
strobe I I Lg

I

I
phose

(0)

:::::St-p7

r

Rood
phase I 1 I
Write
strobe I U
Write
phase 1 I

I

,wo.l

S t n r k -

I
I

Write ! ‘
strobe I I U
Write phose ! I I l--r

@% b
I C)

r, = occess time; rc = cyclic time; Wo = woit for oddrens decoding
and loading of oddreu register; W w = woit for release of write hold
UP.

Rg. 3. Bask types of rtldr cycle. (a) Road orckr (s + A). (b) rmteonkr
(a + S). (c) Road-writ~ W (&I + s + S).

There is a small delay W, (N 100 mpec) between the “stack
request” signal, SR, and the start of the rtwd phase to allow for
setting of the address s t a b d the decodbg. The output
informath from the store appears in the read strobe period, which
is towards the end of the read phase. In general, the write phase
starts as soon UL the read phase ends. However, the start of the
write phase may be held up until the new information is available
from the central machine. This delay is shown as W, in Fig. 3c.
The interval T’ between the stack request and the read strobe
is termed &e stack access time, and in practice this is approxi-
mately one third of the cycle time T,. Both Tn and T, are functions
of the storage ryatem and resuming that W, is zero have typical
values of 0.7 and 1.9 p c respectively. A holdup gate in the
request channel prevents the next stack request occurring before
the end of the preceding write phase.

D. o p s r c l h of the muin w m store wit), the umtral machine

A s c h e m e diagram of the essentials of the main core store con-
trol system is shown in Fig. 4. The control signals SA, and SA,
indicate whether the address presented is that of a single word
or a pair of sequentially addressed instructions. Assuming that the
flip-flop F is in the reset condition, either of these signals results
in the loading of the buffer address register (B.A.R.). This loading
is done by the signal B.A.B.A. which also indicates that the buffer
register in the central machine has become free.

In dealing with the 5 s t request the block address digits in the
B.A.R. are compared with the contents of all the page address
registers. Then one of the indications summarized in Table 1 and
indicated in Fig. 4 is obtaimd. Assuming access to the required
store stack is permitted then a set C.S.F. signal is given which
resets the flip-flop F. If this occurs before the next access request
arises, then the speed of the system is not store-limited. In most
cases SET CSF is generated when the equivalence operation on
the demanded block address is complete, and the read phase of
the appropriate stack (or stacks) has swed. Until this time the
information held in the B.A.R. must not be allowed to change.
In Fig. 5 a f?mv diagram is shown for the various cases which can

When a single address request is accepted it is necesrary to
obtain an “equivalence” indication and form the page location
digits -re ttZe stack request can be generated. The SET CSF
sippnrl thm OCC\IES as soon as the read phase starto. zf a “not equiva-
lent” or ‘‘equivalent a& locked out” indication is a stack
request is not generated, and the contents of the 4A.R. are copied
in to a line of &e V-store before SET CSF is p n e r a t d .

When access to a pair of addresses is reqwsted &e., an instruc-

ariseinpmctice.

282 Part 3 I The instruction-set processor level: variations in the processor

Page oddress reg 0

Page oddress reg 1

E q u i v a l e n c e

E O NEQ EQEiLO

N o t ins t ruc t ion
address 1

I n s t r u c t i o n

addressbl
A

register

Cornporison
c i rcu i t

re

S t o c k 0 S t a c k 1

7w-j
M a i n c o r e s t o r e

1
S t a c k

Fig. 4. Main core store control.

tion pair) the stack requests are generated on the assumption that
these instructions are located in the same page position as the last
pair requested, Le., the page position digits are taken from the
page digit register. (See Fig. 4.) In this way the time required to
obtain the equivalent indication and form the page location digits
is not included in the over-all access time of the system. The
assumption will normally be true, except when crossing block
boundaries. The latter cases are detected and corrected by com-
paring the true position page digits obtained as a result of the

Section 6 1 Processors with multiprogramming ability

equivalence operation with the contents of the page digit register
and a “right page” or “wrong page” indication is obtained. (See
Fig. 4.) If a wrong page is accessed this is indicated to the central
machine and the read out is inhibited. The true page location
digits are copied into the page digit register, so that the required
instruction pair will be obtained when next requested. The read
out to the central machine is also inhibited for “not equivalent”
or “equivalent and locked out” indications.

In Fig. 5 the waiting time indicated immediately before the
stack request is generated can arise for a number of reasons.

1

2

The preceding write phase of that stack has not yet finished.

The central machine is not yet ready either to accept infor-
mation from the store, or to supply information to it.

SA1 OR SA2

1
Walt for
core store
f r e e

1
Wait f o r
equivalence
ond formotion
of page diglts

Not equivalent
or equivolent
ond locked

Woi t l see text1

Copy to V l i n e B A R requ,est Stack

SET CSF
S t a r t read

Dhose

WOlt fo r
equivalence
and formalion
o f page digits

i
Woit (see t e x t)

I t

l

or equivalent
compare page Not equivalent

and locked

I requests 1 digits with
contents o f I Page digit out I

1
SET CSF

Copy pede d ig i ts
to page digit

S E T CSF SET CSF SET CSF

Fig. 5. Flow diagram of main core store control.

3 It is necessary to ensure a certain minimum time between The eppro&mate times for various iastrustiono are given in
SUCCesSive read strobes &Om the core store ScScks to d O W Table 2. These figures relate to the times between completing
mtisfactoV operation of the PafitY CkCUib, Which take instructions when a long sequence of the same type of instruction

be reduced, but as it is only poSIsible to get such a condition in practice obNg one instruction is overlapped in time with

for a part Of the instruction timing it some part of three other instructions. This makes the detailed was not thought to be an economical proposition.
timing complicated, and so the timing sequence is developed

about 0.4 p e c to chwk the information. Thip time could is while this is not ideal, it is necessary because

The basic machine timing is now discussed.

4. Instruction times

In high-speed computers, one of the main factors limiting speed
of operation is the store cycle time. Here a number of tecbnlques,
e.g., splitting the core store into four separate stacks and extracting
two instructions in a single cycle, have been adopted despite a
fast basic cycle time bf 2 p e c in order to alleviate this situation.
The time taken to complete an instruetion is dependent upon

1 The type of instruction (which is defined by the function

2 The exact location of the instruction and operand in the
core or fixed store since this em affect the access time

3 Whether or not the operand address is to be modified

4 In the case of floating point accumulator orders, the actus1
numbers themselves

5 Whether dnun and/or tape transfers are taking place

~git.4

slowly by first considering instructions obeyed one after another.
It is convedient to make these instructiow a sequemce of floating
point additions with both instruction and operand in the core store
and with the operand address single B-modiW.
To obey this instruction the central machine makes two re-

quests to the core store, one for the instruction and the second
for the operand. After the instruction is received in the machine
the function part has to be dscaded and tlm operand address
modified by the contents of one of the B registers More the
operand request can be made. Finally, after the operand has been
obmned the actual accumulator addition takes place to complete
the instruction. The time from beginning to end of one instruction
is 6.05 pec and an approximate timing schedule is as follows in
Table 3.

If no other action is permitted in the time required to complete
the instruction (steps 1 to 8 in Table 3). then the different sections
of the machine uw being used very inefliciently, eg., the accumu-
lator adder is only used for less than 1.1 pec . However, the orga-
nization of the computer is such that the different sections such
as store stacks, accumulator and M t h m e t i c unit, can operate

Floating Point Addition

Floating Point Multiplication

Floating Point Division

Add Store Line to an Index Register

0
1
2

1.4
1.6
2.03

0. 1 or 2 4.7

0, 1 or 2 13.6

0
1

Add Index Register to Store Line and Rewrite to 0
Store Line 1

1.53
1 .$S

1.63
1.8

1.65
1.65
1.9

4.7

13.6

1.65
1.85

1.65
1.7

~

1.2
1.2
1.9

4.7

13.6

1.t5
1.85

284 Part 3 I The instruction-set processor level: variations in the processor

Table 3t
and operands in the core store)

Timing sequence for floating point addition (instructions

Time interval Total
between steps time

Sequence ELSec Pec

1. Add 1 to Main Control 0

2. Make Instruction Request 0.3
(Addition time) 0.3

(Transfer times, equivalence time
and stack access time) 1.75

3. Receive Instruction in Central Machine 2.05

4. Function decoding complete 2.25

5. Request Operand 3.10

(Load register and decode) 0.2

(Single address modification) 0.85

(Transfer times, equivalence time
and stack access time) 1.75

(Load register) 0.1
6. Receive Operand in Central Machine 4.85

7. Start Addition in Accumulator 4.95
(Average floating point addition,
including shift round and stand-
a rd i se) 1.1

8. Instruction complete 6.05

t In step 4, time is for single address modification. Times for no modification
and two modifications are 0.25 psec and 1.55 psec respectively.

at the same time. In this way several instructions can be started
before the first has finished, and then the effective instruction time
is considerably reduced. There have, of course, to be certain safe-
guards when for example an instruction is dependent in any way
on the completion of a preceding instruction.

In the time sequence previously tabulated, by far the longest
time was that between a request in the central machine for the
core store and the receipt in the central machine of the infor-
mation from that store. This effective access time of 1.75 psec is
made up as shown in Table 4. It has been reduced in practice
by the provision of two buffer registers, one in the central machine
and the other in the core stack coordinator. These allow the
equivalence and transfer times to be overlapped with the organi-
zation of requests in the central machine.

In this way, provided the machine can arrange to make requests
fast enough, then the effective access time is reduced to 0.8 p e c .
Further, since three accesses are needed to complete two instruc-
tions (one for an instruction pair and one for each of the two
operands) the theoretical minimum time of an instruction is 1.2
psec 3 ~ 0 . 8 / 2 and it then becomes store limited. Reference to

Section 6 1 Processors with multiprogramming ability

Table 3 shows that the arithmetic operation takes 1.2 psec to
complete so that, on the average, the capabilities of the store and
the accumulator are well matched.

Another technique for reducing store access time for instruc-
tions has also been adopted. This permits the read cycles of the
two stacks to start assuming that the same page will be referred
to as in the previous instruction pair. This, of course, will normally
be true and there is sufficient time to take corrective procedures
should the page have been changed. The limit of 1.2 psec per
instruction is not reduced by this technique, but the possibility
of reaching this limit under other conditions is enhanced.

A schematic diagram of the practical timing of a sequence of
floating point addition orders is shown in Fig. 6. The overlapping
is not perfect and in the time between successive instruction pairs
the computer is obeying four instructions for 25 per cent of the
time, three for 56 per cent and two for 19 per cent. It is therefore
to be expected that the practical time for the complete order is
greater than the theoretical minimum time; it is in fact approxi-
mately 1.6 psec.

For certain types of functions the reading of the next pair of
instructions before completing both instructions of the first pair
would be incorrect, e.g., functions causing transfer of control. Such
situations are recognized during the function decoding, and the
request for the next instruction pair is held up until a suitable
time.

In a sequence of floating point addition orders with the operand
addresses unmodified the limit is again 1.2 psec while the time
obtained is 1.4 p e c . For accumulator orders in which the actual
accumulator operation imposes a limit in excess of 2 psec then
the actual time is equal to this limit.

Perhaps a more realistic way of defining the speed of the com-
puter is to give the time for a typical inner loop of instructions.
A frequently occurring operation in matrix work in the formation
of the scalar product of two vectors, this requires a loop of five
instructions:

Table 4 Effective store access time

Total time
Sequence !J=c

1. Request in Central Machine 0

3. Equivalence complete and request made to selected
2. Request in Core Stack Coordinator 0.25

stack 0.95
4. Information in Core Stack Coordinator 1.65
5. Information in Central Machine 1.75

Chapter 23 1 on*lovel storage syskm 28!5

1 f y l j Accumulator busy
acc

Stack
request

Read f:lyj Accumulator busy 1
Operand
request I Equivalence I

2 1
Start second of pair Operand OCc Stack

request l F ~ ~ ~ ~ ~ l Bmodificatmn reqr(est I Equivalence I Read f::'\ Acwnulator busy I
3 OCC

Start Instruction Stock Operand Stack
next pair request 1.31 request , Function request request

I I Equivalence Read I decode I Bmodification I I Equivalence I
Start second

of pair
4

5 IFd":zl 8 modification

6

Start Instruction
next pair request

I I 1$1 Equivalence

Fig. 6. Timing diagram for a sequence of floating point addition orders. (Singleaddress modification.)

1 Element of first vector into accumulator. (Operand B-modi-
fied.)

Multiply accumulator by element of second vector. (Oper-
and B-modified.)

3 Add partial product to accumulator.

4 Copy accumulator to store line containing partial product.

5 Alter count to select next elements and repeat.

2

The time for this loop with instructions and operands on the
core store is 12.2 psec. The value of the overlapping technique
is shown by the fact that the time from starting the first instruction
to finishing the second is approximately 10 psec.

When the drum or tape systems are transferring information
to or from the core store then the rate of obeying instructions
which also use the core store will be affected. The affect is dis-
cussed in more detail in Appendix 1. The degree of slowing down
is dependent upon the time at which a drum or tape request occurs
relative to machine requests. It also depends on the stacks used
by the drum or tape and those being used by the central machine.
The approximate slowing down is by a factor of 25 per cent during
a drum transfer and by 2 per cent for each active tape channel.
(See Appendix 1.)

5. The drum transfer learning program

The organization of drum transfers has been described in Sec. 2A.
After the transfer of the required block from the drum to the core

store has been initiated, the organizing program examines the state
of the core store, and if empty pages still exist, no further action
is taken. However, if the core store is full it is necessary to arrange
for an empty page to be made available for use at the next non-
equivalence. The selection of the page to be transferred could be
made at random; this could easily result in many additional trans-
fers occurring, as the page selected could be one of those in current
use or one required in the near future. The ideal selection, which
would minimize the total number of transfers, could only be made
by the programmer. To make this ideal selection the programmer
would have to know (1) precisely how his program operated, which
is not always the case, and (2) the precise amount of core store
available to his program at any instant. This latter information
is not generally available as the core store could be shared by other
central machine programs, and almost certainly by some fixed store
program organizing the input and output of information from slow
peripheral equipments. The amount of core store required by this
fixed store program is continuously varying [Kilburn et al., 19611.
The only way the ideal pattern of transfers can be approached
is for the transfer program to monitor the behavior of the main
program and in so doing attempt to select the correct pages to
be transferred to the drum. The techniques used for monitoring
are subject to the condition that they must not slow down the
operation of the program to such an extent that they offset any
reduction in the number of transfers required. The method de-
scribed occupies less than l per cent of the operating time, and
the reduction in the number of transfers is more than sufficient
to cover this.

286 Part 3 1 The instruction-set processor level: variations in the processor

That part of the transfer program which organizes the selection
of the page to be transferred has been called the “learning” pro-
gram, In order for this program to have some data on which to
operate, the machine has been designed to supply information
about the use made of the different pages of the core store by
the program being monitored.

With each page of the core store there is associated a “use”
digit which is set to “1” whenever any line in that page is accessed.
The 32 “use” digits exist in two lines of the V-store and can be
read by the learning program, the reading automatically resetting
them to zero. The frequency with which these digits are read is
governed by a clock which measures not real time but the number
of instructions obeyed in the operation of the main program. This
clock causes the learning program to copy the “use” digits to a
list in the subsidiary store every 1024 instructions. The use of an
instruction counter rather than a normal clock to measure “time”
for the learning program is due to the fact that the operations
of the main program may be interrupted at random for random
lengths of time by the operation of peripheral equipments. With
an instruction counter the temporal pattern of the blocks used
will be the same on successive runs through the same part of the
program. This is essential if the learning program is to make use
of this pattern to minimize the number of transfers.

When a nonequivalence occurs and after the transfer of the
required block has been arranged, the learning program again adds
the current values of the “use” digits to the list and then uses
this list to bring up to date two sets of times also kept in the
subsidiary store. These sets consist of 32 values of t and T, one
of each for each page of the core store. The value of t is the length
of time since the block in that page has been used. The value of
T is the length of the last period of inactivity of this block. The
accuracy of the values of t and T is governed by the frequency
with which the “use” digits are inspected.

The page to be written to the drum is selected by the appli-
cation in turn of three simple tests to the values of t and T.

1

2

Any page for which t > T + 1, or

That page with t # 0 and (T - t) max, or

3 That page with T,, (all t = 0).

The first rule selects any page which has been currently out
of use for longer than its last period of inactivity. Such a page
has probably ceased to be used by the program and is therefore
an ideal one to be transferred to the drum. The second rule ignores
all pages with t = 0 as they are in current use, and then selects
the one which, if the pattern of use is maintained, will not be

Section 6 I Processors with multiprogramming ability

required by the program for the longest time. If the first two rules
fail to select a page the third ensures that if the page finally
selected is wrong, in that it is immediately required again, then,
as in this case, Twill become zero and the same mistake will not
be repeated.

For all the blocks on the drum a list of values of T is kept.
The values of T are set when the block is transferred to the drum:

T = time of transfer-value of t for transferred page

When a block is transferred to the core store the value of T is
used to set the value of T.

T = time of transfer-value of T for this block
= length of last period of inactivity

For the block transferred from the drum t is set to 0.
In order to make its decision the learning program has only

to update two short lists and apply at the most three simple rules;
this can easily be done during the 2 msec transfer time of the block
required as a result of the nonequivalence. As the learning program
uses only fixed and subsidiary store addresses it is not slowed down
during the period of the drum transfer.

The over-all efficiency of the learning program cannot be
known until the complete Atlas system is working. However, the
value of the method used has been investigated by simulating the
behavior of the one-level store and learning program on the
Mercury computer at Manchester University. This has been done
for several problems using varying amounts of store in excess of
the core store available. One of these was the problem of forming
the product A of two 80th order matrices B and C. The three
matrices were stored row by row each one extending over 14
blocks, only 14 pages of core store were assumed to be available.
The method of multiplication was

b,, x 1st row of C = partial answer to 1st row of A
b,, x 2nd row of C + partial answer = second partial answer,

etc.

Thus matrix B was scanned once, matrix C 80 times and each row
of matrix A 80 times.

Several machine users were asked to spend a short time writing
a program to organize the transfers for a general matrix multipli-
cation problem. In no case when the method was applied to the
above problem were fewer than 357 transfers required. A program
written specifically for this problem which paid great attention
to the distribution of the rows of the matrices relative to block
divisions required 234 transfers. The learning program required
274 transfers; the gain over the human programmer was chiefly

Chapter 23 1 One-level storage system 287

due to the fact that the learning program could take full advantage
of the occasions when the rows of A existed entirely within one
block.

Many other problems involving cyclic running of single or
multiple sets of data were simulated, and in no case did the learn-
ing program require more transfers than an experienced human
programmer.

A. Prediction of drum transfers
Although the learning program tends to reduce the number of
transfers required to a minimum, the transfers which do occur still
interrupt the operation of the program for from 2 to 14 msec as
they are initiated by nonequivalence interrupts. Some or all of
this time loss could be avoided by organizing the transfers in
advance. A very experienced programmer having sole use of the
core store could arrange his own transfers in such a way that no
unnecessary ones ever occurred and no time was ever wasted
waiting for transfers to be completed. This would require a great
deal of effort and would only be worthwhile for a program that
was going to occupy the machine for a long time. By using the
data accumulated by the learning program it is possible to recog-
nize simple patterns in the use made by a program of the various
blocks of the one-level store. In this way a prediction program
could forecast the blocks required in the near future and organize
the transfers. By recording the success or failure of these forecasts
the program could be made self-improving. For the matrix multi-
plication problem discussed above the pattern of use of the blocks
containing matrix C is repeated 80 times, and a considerable
degree of success could be obtained with a simple prediction
program.

6. Conclusions

A specific system for making a core-drum store combination appear
as a single level store has been described. While this is the actual
system being built for the Atlas machine the principles involved
are applicable to combinations of other types of store. For exam-
ple, a tunnel diode-fast core store combination for an even faster
machine. An alternative which was considered for Atlas, but which
was not as attractive economically, was a fast core-slow core store
combination. The system too can be extended to three levels of
storage, and indeed if 106 words of total storage had to be provided
then it would be most economical to provide it on a third level
of store such as a file drum.

The automatic system does require additional equipment and
introduces some complexity, since it is necessary to overlap the

time taken for address comparison into the store and machine
operating time if it is not to introduce any extra time delays.
Simulated tests have shown that the organization of drum transfers
are reasonably efficient and other advantages which accrue, such
as efficient allocation of core storage between different programs
and store lock out facilities are also invaluable. No matter how
intelligent a programmer may be he can never know how many
programs or peripheral equipments are in operation when his
program is running. The advantage of the automatic system is that
it takes into account the state of the machine as it exists at any
particular time. Furthermore if as in normal use there is some sort
of regular machine rhythm even through several programs, there
is the possibility of making some sort of prediction with regard
to the transfers necessary. This involves no more hardware and
will be done by program. However, this stage will probably be left
until results on the actual system are obtained.

It can be seen that the system is both useful and flexible in
that it can be modified or extended in the manner previously
indicated. Thus despite the increase in equipment, the advantages
which are derived completely justify the building of this automatic
system.

APPENDIX 1
TO THE CORE STORE

ORGANIZATION OF THE ACCESS REQUESTS

There are three sources of access requests to the core store, namely
the central machine, the drum, and the tape systems. In deciding
how the sequence of requests from all three sources are to be
serialized and placed in some sort of order, a number of facts have
to be considered. These are

1 All three sources are asynchronous in nature.

2 The drum and tape systems can make requests at a fairly
high rate compared with the store cycle time of approxi-
mately 2 psec. For example, the drum provides a request
every 4 p e c and the tape system every 11 p e c when all
8 channels are operative.

3 The drum and tape systems can only be stopped in multiples
of a block length, i.e., 512 words. This means that any system
devised for accessing the core store must deal with both
the average rates of drum and tape requests specified in 2.
Only the central machine can tolerate requests being stopped
at any time and for any length of time. From these facts a
request priority can be stated which is
a Drum request.
b Tape request.
c Central machine request.

288 Part 3 1 The instruction-set processor level: variations in the processor

I
1 S t a c k reques t o f

stored rnochine Order

A machine request can be accepted by the core store, but
because there is no place available to accept the core store
information, its cycle is inhibited and further requests held
up. In the case of successive division orders this time can
be as long as 20 psec, in which case 5 drum requests could
be made. To avoid having an excessive amount of buffer
storage for the drum two techniques are possible:
a When drums or tapes are operative do not permit ma-

chine requests to be accepted until there is a place
available to put the information.

h Store the machine request and then permit a drum or
tape request.

The latter scheme has been adopted because it can be
accommodated more conveniently and it saves a small
amount of time.

If the central machine is using the private store then it is
desirable for drum and tape transfers to the core store not
to interfere with or slow down the central machine in any
way.

When the central machine, drum and tape are sharing the
core store then the loss of central machine speed should
be roughly proportional to the activity of the drum or tape
systems. This means that drum or tape requests must
“break’ into the normal machine request channel as and
when required.

The system which accommodates all these points is now dis-
cussed. Whenever a drum or tape request occurs inhibit signals
are applied to request channel into the core stack coordinator and
also to the stack request channels from this coordinator. This
results in a “freezing” of the state of flip-flop F (Fig. 5) and this
state is then inspected (Fig. 7 , point X). If the state is “busy” this
means that a machine order has been stopped somewhere between
the loading of the buffer address register (B.A.R.) and the stack
request. Normally this time interval can vary from about 0.5 p e c
if there are no stack request holdups, to 20 psec in the case of
certain accumulator holdups. In either case sufficient time is al-
lowed after the inspection to ensure that the equivalence operation
has been completed. If an equivalence indication is obtained all
the information relevant to this machine order (i.e., the line ad-
dress, page digits, stack(s) required and type of stack order) are
stored for future reference. Use is made here of the page digit
register provided to allow the by-pass on the equivalence circuitry
for instruction accesses. The core store is then made free for access
by the drum or the tape. If the core store had been found to be
free on inspection, the above procedure is omitted.

i
F fl ip-f lop f rozen

1 x p -Inspect s t a t e o f
F f l i p - f l o p

I

i
1s there o stored
machine order 7

I

> -~

Busy

Wait for
equivalence
completed

1

i
1

Store machine order

F r e e F f l i p - f l o p

Drum tape access
to core s tore - Drum/tape priority

Remove stock request

Inhibit signals I- + Stock request
for drum / t o p

Drum/tape request I I

h m r t stack r e q u e s t
inhibits to reapply

A D P ~ Y inhibits t o
stack request channels
and to machine request
channels (i f these are
not already applied)

1
Has the stack request
o f 0 stored machine
order been Stopped i

No r - l x
i

Fig. 7. Drum and tape break in systems.

A drum or tape access (as decided by the priority circuit) to
the core store then occurs, which removes the inhibits on the stack
request channels. When the stack request for the drum or tape
cycle is initiated these inhibits are allowed to reapply. At this stage
(Fig. 7, point Y), if there is a stored machine order it is allowed
to proceed if possible. The inhibits on the machine request chan-
nels are removed when the stack request for the stored machine
order occurs. If there is no stored machine order this is done

Chapter 23 I One-level storage system 289

immediately, and the central machine is again allowed access to
the core store. However, another drum or tape request can arise
before the stack request of the stored machine order occurs, in
particular because this latter order may still be held up by the
central machine. If this is the case the drum or tape is allowed
immediate access and a further attempt is made to complete the
stored machine order when this drum or tape stack request occurs.

If the stored machine order was for an operand, the content
of the page digit register will correspond to the location of this
operand. The next machine request for an instruction pair will
then almost certainly result in a “wrong page” indication. This
is prevented by arranging that the next instruction pair access does
not by-pass the equivalence circuitry.

The effect on the machine speed when the drum or tapes are
transferring information to or from the core store is dependent
upon two factors. First, upon the proportion of time during which
the buffer register in the core coordinator is busy dealing with
machine requests, and secondly, upon the particular stacks being
used by the central machine and the drum or tape. If the computer
is obeying a program with instructions and operands on the fixed
or subsidiary store then the rate of obeying instructions is un-
affected by drum or tape transfers. A drum or tape interrupt
occurring when the B.A.R. is free prevents any machine address
being accepted onto this buffer for 1.0 psec. However, if the B.A.R.
is busy then the next machine request to the core store is delayed
until 1.8 psec after the interrupt if different stacks are being used,
or until 3.4 psec after the interrupt if the stacks are the same.

When the machine is obeying a program with instructions and
operands on the core store the slowing down during drum transfers
can be by a factor of two if instructions, operands, and drum
requests use the same stacks. It is also possible for the machine
to be unaffected. The effect on a particular sequence of orders
can be seen by considering the one discussed in Sec. 4 and illus-
trated in Fig. 6. in this sequence the instructions are on stacks
0 and 1 while the operands are on stacks 2 and 3. i f the drum
or tape is transferring alternately to stacks 0 and 1 then the effect
of any interrupt within the 3.2 psec of an instruction pair is to
increase this time by between 0.5 and 3.4 p e c depending upon
where the interrupt occurred. The average increase is 1.8 psec
and for a tape transfer with interrupts every 88 p e c the computer
can obey instructions at 98 per cent of the normal rate. During
drum transfers the interrupts occur every 4 psec which would
suggest a slowing down to 60 per cent of normal. However, for
any regular sequence of orders the requests to the core store by
the machine and by the drum rapidly become synchronized with

the result in this particular case that the machine can still operate
at 80 per cent of its normal speed.

APPENDIX 2 METHODS OF DIVISION OF THE MAIN
CORE STORE

The maximum frequency with which requests can be dealt with
by a single stack core store is governed by the cycle time of the
store. If the store is divided into several stacks which can be cycled
independently then the limit imposed on the speed of the machine
by the core store is reduced. The degree of division which is chosen
is dependent upon the ratio of core store cycle time to other
machine opqrations and also upon the cost of the multiple selec-
tion mechanisms required. ,

Considering a sequence of orders in which both the instruction
and operand are in the core store, then for a single stack store
the limit imposed on the operating speed by the store is two cycle
times per order, Le., 4 psec in Atlas. This is significantly larger
than the limits imposed by other sections of the computer
(Sec. 4). If the store is divided into two stacks and instructions and
operands are separated, then the limit is reduced to 2 p e c which
is still rather high. The provision of two stacks permits the ad-
dressing of the store to be arranged so that successive addresses
are in alternate stacks. i t is therefore possible by making requests
to both stacks at the same time to read two instructions together,
so reducing the number of access times to three per instruction
pair. Unfortunately such an arrangement of the store means that
operands are always on the same stacks as instruction pairs, and
the limit imposed by the cycle time is still 2 p e c per order even
if the two operand requests in the instruction pair are to different
stacks and occur at the same time.

Division into any number of stacks with the addressing system
working through each stack in turn cannot reduce the limit below
2 psec since successive instructions normally occur in successive
addresses and are therefore in the same stack. However, four stacks
arranged in two pairs reduces the limit to 1 psec as the operands
can always be arranged to be on different stacks from the instruc-
tion pairs. In order to reduce the limit to 0.5 psec it is necessary
to have eight stacks arranged in two sets of four and to read four
instructions at once, which would increase the complexity of the
central machine.

The limit of 1 p e c is quite sufficient and further division with
the stacks arranged in pairs only enables the limit to be more easily
obtained by suitable location of the instructions and operands.

The location of instructions and operands within the core store
is under the control of the drum transfer program; thus when there

290 Pari 3 1 The instruction-set processor level: variations in the processor

2 0

156

Number of pages of Operands

Fig. 8. Limit imposed by cycle time on operating speed for different
divisions of the core store.

Section 6 1 Processors with multiprogramming ability

are several stacks instructions and operands are separated
wherever possible. Under these conditions it is possible to calculate
the limit imposed on the operating speed by the cycle time for
different divisions of the core store. The results are shown in
Fig. 8, for stacks arranged in pairs instructions are read in pairs and
in all cases both instructions and operands are assumed to be on the
core store. Operands are assumed to be selected at random from the
operand space, for instance in the case of two stacks arranged as a
pair, successive operand requests have equal probability of being to
the same stack or to alternate stacks.

The limit imposed by a four stack store is never severe com-
pared with other limitations, for example the sequence of floating
point addition orders discussed in Sec. 4 required 1.6 psec per order
with ideal distribution of instructions and operands. Division into
eight stacks, although it reduces the limit, will not have an equiv-
alent effect on the over-all operating speed, and such a division
was not considered to be justified.

References

KilbT62; BrooR60; EdwaD6O; KilbT56; mu, 60b, 61; LonsK56; PapiW57;
FothJ61; HartD68; HowaDtil; 62, 63; MorrD67; SumnF62

Chapter 24

A user machine in a time-sharing
system1

B. W. Lampson / W. W. Lichtenbqm / M. W. Pirtb

Summoy This paper describes the design of the computer seen by a
machine-language programmer in a time-sharing system developed at the
University of California at Berkeley. Some of the instructions in this machine
are executed by the hardware, and some are implemented by software.
The user, however, thinks of them all as part of his machine, a machine
having extensive and unusual capabilities, many of which might be part
of the hardware of a (considerably more expensive) computer.

Among the important features of the machine are the arithmetic and
string manipulation instructions, the very general memory allocation and
configuration mechanism, and the multiple processes which can be created
by the program. Facilities are provided for communication among these
processes and for the control of exceptional conditions.

The input-output system is capable of handling all of the peripheral
equipment in a d o r m and convenient manner through files having sym-
bolic names. Programs can access files belonging to a number of people,
but each person can protect his own files from unauthorized access by
others.

Some mention is made at various points of the techniques of implemen-
tation, but the main emphasis is on the appearance of the user’s machine.

Introduction

A characteristic of a time-sharing system is that the computer seen
by the user programming in machine language differs from that
on which the system is implemented [Bright, 1964; Comfort, 1965;
Forgie, 1965; McCullogh et al., 1965; Schwartz, 19641. In fact,
the user machine is defined by the combination of the time-sharing
hardware running in user mode and the software which controls
input-output, deals with illegal actions which may be taken by
a user’s program, and provides various other services. If the hard-
ware is arranged in such a way that calls on the system have the
same form as the hardware instructions of the machine [Lichten-
berger and Pirtle, 19651, then the distinction becomes irrelevant
to the user; he simply programs a machine with an unusual and
powerful instruction set which relieves him of many of the prob-
lems of conventional machine-language programming [Lampson,
1965; McCarthy et al., 19631.

‘Pm. IEEE, 54, vol. 12, pp. 1766-1774, December, 1966.

In a time-sharing system which has been developed by and for
the use of members of Project Genie at the University of California
at Berkeley [Lichtenberger and Pirtle, 19651, the user machine
has a number of interesting characteristics. The computer in this
system is an SDS 930, a 24 bit, fixed-point machine with one index
register, multi-level indirect addressing, a 14 bit address field, and
32 thousand words of 1.75 ps memory in two independent modules.
Figure 1 shows the basic configuration of equipment. The memory
is interleaved between the two modules so that processing and
drum transfers may occur simultaneously. A detailed description
of the various hardware modifications of the computer and their
implications for the performance of the overall system has been
given in a previous paper [Lichtenberger and Pirtle, 19651.

Briefly, these modifications include the addition of monitor and
user modes in which, for user mode, the execution of a class of
instructions is prevented and replaced by a trap to a system rou-
tine. The protection from unauthorized access to memory has been
subsumed in an address mapping scheme: both the 16 384 words
addressable by a user program (logical addresses) and the 32 768
words of actual core memory (physical addresses) have been
divided into 2048-word pages. A set of eight six-bit hardware regis-
ters defines a map from the logical address space to the real memory
by speclfying the real page which is to correspond to each of the
user’s logical pages. Implicit in this scheme is the capability of
marking each of the user’s pages as unassigned or read-only, so that
any attempt to access such a page improperly will result in a trap.

All memory references in user mode are mapped. In monitor
mode, all memory references are normally absolute. It is possible,
however, with any instruction in monitor mode, or even within
a chain of indirect addressing, to specify use of the user map.
Furthermore, in monitor mode the top 4096 words are mapped
through two additional registers called the monitor map. The
mapping process is illustrated in Fig. 2.

Another si@cant hardware modification is the mechanism for
going between modes. Once the machine is in user mode, it can
get to monitor mode under three circumstances:

291

292 Part 3 I The instruction-set processor level: variations in the processor

Magnetic

m 1 processor I

II

interface Teletypes

I L--

Memory

175esec

I 3 x IO6 WORDS
51105 WDS/SEC

I 1 General 1

Graphic
display
and
light pen

Fig. 1. Configuration of equipment.

1

2

3

If a hardware interrupt occurs

If a trap is generated by the user program as outlined.

If an instruction with a particular configuration of two bits
is executed. Such an instruction is called a system pro-
grammed operator (SYSPOP).

In case 3, the six-bit operation field is used to select one of 64
locations in absolute core. The current address of the instruction
is put into absolute location zero as a subroutine link, the indirect
address bit of this link word is set, and another bit is set, marking
the memory location in the link word as having come from user-
mapped memory. The system routine thus invoked may take a
parameter from the word addressed by the SYSPOP, since its
address field is not interpreted by the hardware. The routine will

Section 6 I Processors with multiprogramming ability

address the parameter indirectly through location zero and, be-
cause of the bit marking the contents of location zero as having
come from mer mode, the user map will be applied to the re-
mainder of the address indirection. All calls on the system which
are not inadvertent are made in this way.

A monitor mode program gets into user mode by transferring
to an address with mapping specified. This means, among other
things, that a SYSPOP can return to the user program simply by
branching indirect through location zero.

As the above discussion has perhaps indicated, the mode-
changing arrangements are very clean and permit rapid and natu-
ral transfers of control between user and system programs. Advan-
tage has been taken of this fact to create a rather grandiose
machine for the user. Its features are the subject of this paper.

Basic features of the machine

A user in the Berkeley time-sharing system, working at what he
thinks of as the hardware language level, has at his disposal a
machine with a configuration and capability which can be con-
veniently controlled by the execution of machine instruction se-
quences. Its simplest configuration is very similar to that of a

POQ 3
0 4
I 5
2 6
3 7
4 8
5 9
6 10
7 1 1

I2
13
la l 6 K virtual core

u 1 5
32K real core

(0)

0 2 3 13

j 1 0 1 0 O 1 1 0 1 0 1 1 0 ~ Virtual effective address 24654e

joo01001(Mapping reglster 5 118

[go ,003 ; 0 7 m : Real effective address 4 4 6 5 4 a

Read-only bit o f f

(b)
fl

Fig. 2. The hardware memory map. (a) Relation between virtual and real
memory for a typical map. (b) Construction of a real memory address.

Chapter 24 I A user machine in a timesharing system 293

standard medium-sized computer. In this configuration, the
machine possesses the standard 930 complement of arithmetic and
logic instructions and, in addition, a set of software interpreted
monitor and executive instructions. The latter instructions, which
will be discussed more fully in the following, do rather complex
input-output of many different kinds, perform many frequently
used table lookup and string processing functions, implement
floating point operations, and provide for the creation of more
complex machine configurations. Some examples of the instructions
available are:

Load A, B, or X (index) registers from memory or store any
of the registers. Indexing and indirect addressing are avail-
able on these and almost all other instructions. Double word
load and store are also available.

The normal complement of fixed-point arithmetic and logic
operations.

Skips on various arithmetic and logic conditions.

Floating point arithmetic and input-output. The latter is
in free format or in the equivalent of Fortran E or F format.

Input a character from a teletype or write a block of arbi-
trary length on a drum file.

Look up a string in a hash-coded table and obtain its posi-
tion in the table.

Create a new process and start it running concurrently with
the present one at a specified point.

Redefine the memory of the machine to include a portion
of that which is also being used by another program.

It should be emphasized that, although many of these instruc-
tions are software interpreted, their format is identical to the
standard machine instruction format, with the exception of the
one bit which specifies a system interpreted instruction. Since the
system interpretation of these instructions is completely invisible
to the machine user, and since these instructions do have the
standard machine instruction format, the user and his program
make no distinction between hardware and software interpreted
instructions.

Some of the possible 192 operation codes are not legal in the
user machine. Included in this category are those hardware in-
structions which would halt the machine or interfere with the
input-output if allowed to execute, and those software interpreted
instructions which attempt to do things which are forbidden to
the program. Attempted execution of one of these instructions will

result in an ilkgal instruction violation. The effect of an illegal
instruction violation is described later.

Memory configuration

The memory size and organization of the machine is specified by
an appropriate sequence of instructions. For example, the user may
specify a machine which has 6K of memory with addresses from
0 to 13777,; alternatively, he may specify that the 6K should
include addresses 0 to 3777,, 14000, to 17777,, and 34oO0, to
37777,. The user may also specify the size and configuration of
the machine’s secondary storage and, to a considerable extent, the
structure of its input-output system. A full discussion of this capa-
bility will be deferred to a later section.

The next few paragraphs discuss the mechanism by which the
user’s program may specify its memory size and organization. This
mechanism, known as the process map to distinguish it from the
hardware memory address mapping, uses a (software) mapping
register consisting of eight 6-bit bytes, one byte for each of the
eight 2K blocks addressable by the 14 bit address field of an in-
struction. Each of these bytes either is 0 or addresses one of the
63 words in a table called the private memory table (PMT). Each
user has his own private memory table. An entry in this table
provides information about a particular 2K block of memory. The
block may be either local to the user or it may be shared. If the
block is local, the entry gives information about whether it is
currently in core or on the drum. This information is important
to the system but need not concern the user. If the block is shared,
its PMT entry points to an entry in another table called the shared
memory table (SMT). Entries in this table describe blocks of
memory which are shared by several users. Such blocks may con-
tain invariant programs and constants, in which case they will be
marked as read-only, or they may contain arbitrary data which
is being processed by programs belonging to two different users.

A possible arrangement of logical or virtual memory for a
process is shown in Fig. 3. The nature of each page has been noted
in the picture of the virtual memory; this information can also
be obtained by taking the corresponding byte of the map and
looking at the PMT entry specified by that byte. The figure shows
a large amount of shared memory, which suggests that the process
might be a compilation, sharing the code for the compiler with
other processes translating programs written in the same source
language. Virtual pages one and two might hold tables and tem-
porary storage which are unique to each separate compilation.
Note that, although the flexibility of the map allows any block
of code or data to appear anywhere in the virtual memory, it is
certainly not true that a program can run regardless of which pages

294 Part 3 I The instruction-set processor level: variations in the processor

Page

5 1 U N A S S I G N E D

6 1 SHARED BL 3

16 K virtuol
memory

Entry block

l : l : I
Process Pr ivo te

map memory table

Fig. 3. Layout of virtual memory for a typical process.

it is in. In particular, if i t contains references to itself, such as
branch instructions, then it must run in the same virtual pages
into which it was loaded.

Two instructions are provided which permit the user to read
and modify his process map. The ability to read the process
mapping registers permits the user to obtain the current memory
assignment, and the ability to write the registers permits him to
reassign memory in any way which suits his fancy. The system
naturally checks each new map as it is established to ensure that
the process is not attempting to obtain unauthorized access to
memory which does not belong to it.

When the user’s process is initiated, it is assigned only enough
memory to contain the program data as initially loaded. For in-
stance, if the program and constants occupy 3000, words, two
blocks, say blocks 0 and 1, will be assigned. At this point, the first
two bytes of the process mapping register will be nonzero; the
others will be zero. When the program runs, it may address memory
outside of the first 4K. If it does, and if the user has specified a
machine size larger than 4K, a new block of memory will be
assigned to him which makes the formerly illegal reference legal.
In this way, the user’s process may obtain more memory. In fact,
it may easily obtain more than 16K of memory simply by ad-
dressing 16K, reading and preserving the process mapping register,
setting it with some of the bytes cleared to zero, and grabbing
some more memory. Of course, only 16K can be addressed at one
time; this is a limitation imposed by the address field of the
machine.

Section 6 I Processors with multiprogramming ability

There is an instruction which allows a process to specify the
maximum amount of memory which it is allowed to have. If it
attempts to obtain more than this amount, a memory violation will
occur. A memory violation can also be caused by attempts to
transfer into or indirect through unassigned memory, or to store
into read-only memory. The effect of this violation is similar to
the effect of an illegal instruction violation and will be discussed.

The facilities just described are entirely sufficient for programs
which need to reorganize the machine’s memory solely for internal
purposes. In many cases, however, the program wishes to obtain
access to memory blocks which have been created by the system
or by other programs. For example, there may be a package of
mathematical and utility routines in the system which the program
would like to use. To accommodate this requirement, there is an
instruction which establishes a relationship between a name and
a certain process mapping function. This instruction moves the
PMT entries for the blocks addressed by the specified process
mapping function into the shared memory table so that they are
generally accessible to all users. Once this correspondence has
been established, there is another instruction which allows a
different user to deliver the name and obtain in return the associ-
ated process map. This instruction will, if necessary, make new
entries in the second user’s PMT. Various subsystems and programs
of general interest have names permanently assigned to them by
the system.

The user machine thus makes it possible for a number of proc-
esses belonging to independent users to run with memory which
is an arbitrary combination of blocks local to each individual
process, blocks shared between several processes, and blocks per-
manently available in the system. A complex configuration is
sketched in Fig. 4. Process 1.1 was shown in more detail in
Fig. 3. Each box represents a process, and the numbers within rep-
resent the eight map bytes. The arrows between processes show the
process hierarchy, which is discussed in the next section. Note that
the PMT’s belong to the users, not to the processes.

From the above discussion, it is apparent that the user can
manipulate the machine memory configuration to perform simple
memory overlays, to change data bases, or to perform other more
complex tasks requiring memory reconfiguration. For example, the
use of common routines is greatly facilitated, since it is necessary
only to adjust the process map so that (1) memory references
internal and external to the common routine are correct, and (2)
the memory area in which the routine resides is read-only. In the
simplest case, in which the common routine and the data base
fit into 16K of memory, the map is initially established and remains
static throughout the execution of the routine. In other cases where

Chapter 24 I A user machine in a time-sharing system 295

the routine and data base do not fit into 16K, or where several
common routines are concurrently employed, it may be necessary
to make frequent adjustment to the map during execution.

Multiple processes

An important feature of the user machine allows the user program,
which in the current context will be referred to as the controlling
process, to establish one or more subsidiary processes. With a few
minor exceptions, to be discussed, each subsidiary process has the
same status as the controlling process. Thus, it may in turn estab-
lish a subsidiary process. It is therefore apparent that the user
machine is in fact a multi-processing machine. The original sug-
gestion which gave rise to this capability was made by Conway
[Conway, 19631, more recently the Multics system has included
a multi-process capability [Corbato and Vyssotsky, 1965; Dennis
and Van Horn, 1966; Saltzer, 19661.

A process is the logical environment for the execution of a
program, as contrasted to the physical environment, which is a
hardware processor. It is defmed by the information which is re-
quired for the program to run; this information is called the state
vector. To create a new process, a given process executes an in-
struction which has arguments specifying the state vector of the
new process. This state vector includes the program counter, the
central registers, and the process map. The new process may have
a memory configuration which is the same as, or completely differ-
ent from, that of the originating process. The only constraint
placed on this memory specification is that the total memory
available to the multi-process system is limited to 128K by the
process mapping mechanism, which is common to all processes.
Each user, of course, has his own 128K.

This facility was put into the system so that the system could
control the user processes. It is also of direct value, however, for
many user processes. The most obvious examples are input-output
buffering routines, which can operate independently of the user’s
main program, communicating with it through memory and with
interrupts (see the following). Whether the operation being buff-
ered is large volume output to a disc or teletype requests for
information about the progress of a running program, the degree
of flexibility afforded by multiple processes far exceeds anything
which could have been built into the input-output system. Fur-
thermore, the overhead is very low: an additional process requires
about 15 words of core, and process switching takes about 1 ms
under favorable conditions. There are numerous other examples
of the value of multiple processes; most, unfortunately, are too
complex to be briefly explained.

A process may create a number of subsidiary processes, each

,

of which is independent of the others and equivalent to them from
the point of view of the originating process. Figure 4 shows two
simple multi-process structures, one for each of two users. Note
that each process has associated with it pointers to its controlling
process and to one of its subsidiary processes. When a process has
two immediate descendants, as in the case of processes 1.2 and
1.3, they are chained together on a ring. Thus, three pointers, up,
down, and ring, suffice to defme the process structure completely.
The up pointers are, of course, redundant, but are convenient for
the implementation. The process is identified by a process number
which is returned by the system when it is created.

A complex structure such as that in Fig. 5 may result from the
creation of a number of subsidiary processes. The processes in
Fig. 5 have been numbered arbitrarily to allow a clear description
of the way in which the pointers are arranged. Note that the user
need not be aware of these pointers; they are shown here to clarify
the manner in which the multiple process mechanism is imple-
mented.

A process may destroy one of its subsidiary processes by execut-
ing the appropriate instruction. For obvious reasons this operation
is not legal if the process being destroyed itself has subsidiary

PMT 1

1 M3
2 M4
3 M5
4 SMT1
5 SMT4
6 SMT2
7 M12
8 SMT6
9 SMT3

10

PMT 2
1 SMT1
2 SMT5
3 M7
4 M8
5 M9
6 SMT2
7 M13
8 SMT3
9 M14

I O M15

SMT

1 M1
2 MI6
3 M2
4 M1O
5 M11
6 M6

Fig. 4. Process and memory configuration for two users. (The processes
are numbered for each user and are represented by their process map
ping registers. Memory blocks are identified by drum addresses, which
are written M1, M2,)

296 Part 3 I The instruction-set processor level: variations in the processor Section 6 I Processors with multiprogramming ability

Fig. 5. Hierarchy of processes.

processes. It is possible to find out what processes are subsidiary
to any given one; this permits a process to destroy an entire tree
of sub-processes by reading the tree from the top down and de-
stroying it from the bottom up.

The operations of creating and destroying processes are entirely
separate from those of starting and stopping their execution, for
which two more operations are provided. A process whose execu-
tion has been stopped is said to be suspended.

To assure that these various processes can effectively work
together on a common task, several means of interprocess com-
munication exist. The first allows the controlling process to obtain
the current status of each of its subsidiary processes. This status
information, which is read into a table by the execution of the
appropriate system instruction, includes the current state vector
and operating status. The operating status of any process may be

1 Running

2 Dismissed for input-output

3 Terminated for memory violation

4

5

Terminated for illegal violation, or

Terminated by the process itself

A second instruction allows the controlling process to become
dormant until one of its subsidiary processes terminates. Termina-
tion can occur in the following four ways:

1

2

3 Because of self-termination

Because of a memory violation

Because of an illegal instruction violation

Interactions described previously provide no method by which
a process can attract the attention of another process which is
pursuing an independent course. This can be done with a program
interrupt. Associated with each process is a 20-bit interrupt mask.
If a mask bit is set, the process may, under certain conditions (to
be described in the following), be interrupted; Le., a transfer to
a fixed address will be simulated. The program will presumably
have at this fixed address the location of a subroutine capable of
dealing with the interrupt and returning to the interrupted com-
putation afterwards. The mechanism is functionally almost identi-
cal to many hardware interrupt systems.

A process may cause an interrupt by delivering the number
of the interrupt to the appropriate instruction. The process causing
the interrupt continues undisturbed, but the nearest process which
is either on the same level as the one causing the interrupt or
above it in the hierarchy of processes, and which has the appro-
priate interrupt armed, will be interrupted. This mechanism pro-
vides a very flexible way for processes to interact with each other
without wasting any time in the testing of flags or similar frivolous
activities.

Interrupts may be caused not only by the explicit action of
processes, but also by the occurrence of several special conditions.
The occurrence of a memory violation, attempted execution of
an illegal instruction, an unusual input-output condition, the ter-
mination of a subsidiary process, or the intervention of a user at
a console (by pushing a reserved button) all may cause unique
interrupts (if they have been previously armed). In this way, a
process may be notified conveniently of any unusual conditions
associated with other processes, the process itself, or a console user.

The memory assignment algorithm discussed previously is
slightly modified in the presence of multiple processes. When a
process is activated, one of three options may be specified:

1 Assign new memory to the process entirely independently
of the controlling process.

Assign no new memory to the process. Any attempt to
obtain new memory will cause a memory violation.

2

Chapter 24 1 A user machine in a time-sharing system 297

3 If the process attempts to obtain new memory, scan upward
through the process hierarchy until the topmost process is
reached. If at any time during this scan a process is found
for which the address causing the trap is legal, propagate
the memory assigned to it down through the hierarchy to
the process causing the trap.

Option 3 permits a process to be started with a subset of
memory and later to reacquire some of the memory which was
not given to it initially. This feature is important because the
amount of memory assigned to a process influences the operating
efficiency of the system and thus the speed with which it will be
able to respond to teletypes or other real-time devices.

The input-output system

The user machine has a straightforward but unconventional set
of input-output instructions. The primary emphasis in the design
of these instructions has been to make all input-output devices
interface identically with a program and to provide as much
flexibility in this common interface as possible. Two advantages
result from this uniformity: it becomes natural to write programs
which are essentially independent of the environment in which
they operate, and the implementation of the system is greatly
simplified. To the user the former point is, of course, the important
one.

It has been common, for example, for programs written to be
controlled from a teletype to be driven instead from a file on, let
us say, the drum. A command exists which permits the recognizer
for the system command language and all of the subsystems to
be driven in this way. This device is particularly useful for repeti-
tive sequences of program assemblies and for background jobs
which are run in the absence of the user. Output which normally
goes to the teletype is similarly diverted to user files. Another
application of the uniformity of the file system is demonstrated
in some of the subsystems, notably the assembler and the various
compilers. The subsystem may request the user to specify where
he wishes the program listing to be placed. The user may choose
anything from paper tape to drum to his own teletype. In the
absence of file uniformity each subsystem would require a separate
block of code for each possibility. In fact, however, the same
input-output instructions are used for all cases.

The input-output instructions communicate with jiles. The
system in turn associates files with the various physical devices.
Programs, for the most part, do not have to account for the pecu-
liarities of the various actual devices. Since devices differ widely

in characteristics and behavior, the flexibility of the operations
available on files is clearly critical. They must range from single-
character input to the output of thousands of words.

A file is opened by giving its name as an argument to the
appropriate instruction. Programs thus refer to all files symboli-
cally, leaving the details of physical location and organization to
the system. r'f authorized, a program may refer to files belonging
to other users by supplying the name of the other user as well
as the file name. The owner of a file determines who is authorized
to access it. The reader may compare this file naming mechanism
with a more sophisticated one [Daley and Neumann, 19651, bearing
in mind the fact the file names can be of any length and can be
manipulated (as strings of characters) by the program.

Access to files is, in general, either sequential or random in
nature. Some devices (like a keyboard-display or a card reader)
are purely sequential, while others (like a disk) may be either
sequentially or randomly accessed. There are accordingly two
major 1/0 interfaces to deal with these different qualities. The
interface used in conjunction with a given file depends on whether
the file was declared to be a random or a sequential file. The two
major interfaces are each broken down into other interfaces, pri-
marily for reasons of implementation. Although the distinction
between sequential and random files is great, the subinterfaces are
not especially visible to the user.

Sequential J;k

The three instructions CIO (character input-output), WIO (word
input-output), and BIO (block input-output) are used to commu-
nicate with a sequential file. Each instruction takes as an operand
ajile number. This number is given to the program when it opens
a file. At the time of opening a file it must be specified whether
the file is to be read from or written onto. Whether any given
device associated with the file is character-oriented or word-
oriented is unimportant; the system takes care of all necessary
character-to-word assembly or word-to-character disassembly.

There are actually three separate, full-duplex physical inter-
faces to devices in the sequential file mechanism. Generally, these
interfaces are invisible to programs. They exist, of course, for
reasons of system efficiency and also, because of the way in which
some devices are used. The interfaces are:

Character-by-character (basically for low-speed, character-
oriented devices used for man-machine interaction)

Buffered block 1/0 (for medium-speed 1/0 applications)

Block 1/0 directly from user core (for high-speed situations)

298 Part 3 I The instruction-set processor level: variations in the processor

It should be pointed out that there is no particular relation be-
tween these interfaces and the three instructions CIO, WIO, and
BIO. The interface used in a given situation is a function of the
device involved and, sometimes, of the volume of data to be trans-
mitted, not of the instruction.

Any interface may be driven by any instruction.
Of the three subinterfaces under discussion, the last two are

straightforward. The character-by-character interface is, however,
somewhat different and deserves some elaboration. Devices associ-
ated with this interface are generally (but not necessarily) used
for man-machine interaction. Consider the case of a person com-
municating with a program by means of a keyboard-display (or
a teletype). He types on the keyboard and the information is
transmitted to the computer. The program may wish to make an
immediate response on the display screen. In many cases this
response will consist of an echo of the same character, so that the
user has the feeling of typing directly onto the screen (or onto
the teleprinter).

So that input-output can be carried out when the program is
not actually in main memory, the character-by-character input
interface permits programs a choice of a number of echo tables;
it further permits programs a choice of grade of service by per-
mitting them to specify whether a given character is an attention
(or break) character. Thus, for example, the program may specify
that each character typed is to be echoed immediately and that
all control characters are to result in activation of the program
regardless of the number of characters in the input buffer. Alter-
natively, the program may specify that no characters are echoed
and every character is a break character. By changing the specifi-
cation the program can obtain an appropriate (and varying) grade
of service without putting undue load on the system. Figure 6

O u t p u t i n te r rup t
r o u t i n e

Fig. 6. The character-oriented interface.

Section 6 I Processors with multiprogramming ability

shows the components of the character-by-character interface;
responsibility for its operation is split between the interrupt called
when the device signals for attention and the routine which proc-
esses the user’s 1/0 request.

The advantage of the full-duplex, character-by-character mode
of operation is considerable. The character-by-character capability
means that the user can interact with his program in the smallest
possible unit-the character. Furthermore, the full-duplex capa-
bility permits, among other things (1) the program to substitute
characters on strings of characters as echoes for those received,
(2) the keyboard and display to be used simultaneously (as, for
example, permitting a character typed on a keyboard to pre-empt
the operation of a process. In the case of typing information in
during the output of information, a simple algorithm prevents the
random admixture of characters which might otherwise result),
and (3) the ready detection of transmission errors.

Instructions are included to enable the state of both input and
output buffers to be sensed and perhaps cleared (discarding un-
wanted output or input). Of course, it is possible for a program
to use any number of authorized physical devices; in particular,
this includes those devices used as remote consoles. A mechanism
is provided to permit output which is directed to a given device
to be copied on all other devices which are output linked to it
(and similarly for input). This is useful when communication
among users is desired and in numerous other situations.

The sequential file has a structure somewhat similar to that
of an ordinary magtape file. It consists of a sequence of logical
records of arbitrary length and number. On some devices, such
as a card reader or the teletype, a file may have only one logical
record. The full generality is available for drum files, which are
the ones most commonly used. The logical record is to be con-
trasted with the variable length physical record of magtape or the
fixed length record of a card. Instructions are provided to insert
or delete logical records and increase or decrease them in length.
Other instructions permit the file to be “positioned” almost in-
stantaneously to a specified logical record. This gives the sequen-
tial file greater flexibility than one which is completely unaddressa-
ble. This flexibility is only possible, of course, because the file is
on a random-access device and the sequential structure is main-
tained by pointers. The implementation is discussed in the follow-
ing.

When reading a sequential file, CIO and WIO return certain
unusual data configurations when they encounter an end of record
or end of file, and BIO terminates transmission on either of the
conditions and returns the address of the last word transmitted.
In addition, certain flag bits are set by the unusual conditions,
and an interrupt may be caused if it has been armed.

Chapter 24 I A user machine in a time-sharing system 299

The implementation of the sequential file scheme for auxiliary
storage is illustrated in Fig. 7. Information is written on the drum
in 256-word physical records. The locations of these records are
kept track of in 64-word index blocks containing pointers to the
data blocks. For the file shown, the first logical record is more
than 256 words long but ends in the second 256-word block. The
second logical record fits in the third 256-word block and the third
logical record-in the 4th data block-is followed by an end of
file. If a file requires more than 64 index words, additional index
blocks are chained together, both forward and backward. Thus,
in order to access information in the He it is necessary only to
know the location of the first index block. It may be worthwhile
to point out that all users share the same drum. Since the system
has complete control over the allocation of space on the drum,
there is no possibility of undesired interaction among users.

Available space for new data blocks or index blocks is kept track
of by a bit table, illustrated in Fig. 8. In the figure, each column
represents one of the 72 physical bands on the drum allocated for
the storage of file information. Each row represents one of the
64256-word sectors around a band. Each bit in the table thus
represents one of the 4608 data blocks available. The bits are set
when a block is in use and cleared when the block becomes avail-
able. Thus, if a new data block is required, the system has only
to read the physical position of the drum, use this position to index
in the table, and search a row for the appearance of a 0. The
column in which a 0 is found indicates the physical track on which
a block is available. Because of the way the row was chosen, this
block is immediately accessible. This scheme has two advantages
over its alternative, which is to chain unused blocks together:

It is easy to find a block in an optimum position, using the
algorithm just described.

1

EOR/ EOF

Fig. 7. Index blocks and pointers to data blocks.

64 words

72 bits

I

Fig. 8. Bit table for allocation of space on the drum.

2 No drum operations are required when a new block is
needed or an old one is to be released.

It may be preferable to assign the new block so that it becomes
accessible immediately after the block last assigned for the file.
This scheme will speed up subsequent reading of the file.

Random $la
Auxiliary storage files can also be treated as extensions of core
memory rather than as sequential devices. Such files are called
random fiZes. A random file differs from a sequential file in that
there is no logical record structure to the file and that information
is extracted from or written into the random file by addressing
a specific word or block of words. It may be opened like a sequen-
tial file; the only difference is that it need not be specified as an
output or an input file.

Four instructions are used to input and output words and blocks
of words on a random file. To permit the random file to look even
more like core memory, an instruction enables one of the currently
open random files to be specified as the secondury memory file.
Two instructions, LAS (load A from secondary memory) and SAS
(store A in secondary memory), act like ordinary load and store
instructions with one level of indirect addressing (see Fig. 9) ex-
cept, of course, that the data are in a random file instead of in
core memory.

Random files are implemented like sequential files except that
end of record indicators are not meaningful. Although as many
index blocks are used up as required by the size of a random file,
only those data blocks which actually contain information will be
attached to a random file. As new locations are accessed, new data
blocks are attached.

Subroutine $lea
Whereas it makes little sense to associate, say, a card reader with
a random file, a sequential file can be associated with any physi-

300 Part 3 1 The instruction-set processor level: variations in the processor

Main memory Secondary memory

STAx ADDR ADDR
- ~-

(a)

Instruction

16345

16345 1234567

Ef fec t (234567-A

(b)

Fig. 9. Load and store form main and secondary memory. (a) Instruc-
tions. (b) Addressing.

cal device in the system. In addition, a sequential file may be
associated with a subroutine. Such a file is called a subroutine $le,
and the subroutine may thus be thought of as a “nonphysical”
device. The subroutine file is defined by the address of a subroutine
together with information indicating whether it is an input or an
output file and whether it is word or character oriented. An input
operation from a subroutine file causes the subroutine to be called.
When it returns, the contents of the A register is taken to be the
input requested. Correspondingly, an output operation causes the
subroutine to be called with the word or character being output
in A. The subroutine is completely unrestricted in the kinds of
processing it can do. It may do further input or output and any
amount of computation. It may even call itself if it preserves the
old return address.

Recall that for sequential files the system transforms all infor-
mation supplied by the user to the format required by the particu-

Section 6 1 Processors with multiprogramming ability

lar file; hence, the requirement that the user, in opening a sub-
routine file, must specify whether the file is to be character or
word oriented. The system will thereafter do all the necessary
packing and unpacking.

Subroutine files are the logical end-product of a desire to de-
couple a program from its environment. Since they can do arbi-
trary computations, they can provide buffers of any desired com-
plexity between the assumptions a program has made about its
environment and the true state of things. In fact, they make it
logically unnecessary to provide an identical interface for all the
input-output devices attached to the system; if uniformity did not
exist, it could be simulated with the appropriate subroutine files.
Considerations of convenience and efficiency, of course, militate
against such an arrangement, but it suggests the power inherent
in the subroutine file machinery.

Summary

The user machine described was designed to be a flexible founda-
tion for development and experimentation in man-machine sys-
tems. The user has been given the capability to establish configura-
tions of multiple processes, and the processes have the ability to
communicate conveniently with each other, with central files, and
with peripheral devices. A given user may, of course, wish only
to use a subsystem of the general system (e.g., a compiler or a
debugging routine) for his particular job. In the course of using
the subsystem, however, he may become dissatisfied with it and
wish to revise or even rewrite the subsystem. The features of the
user machine not only permit this activity but make it easier.

References

BrigHM; ComfW65; ConwM63; CorbF65; DaleR65; DennJ66; ForgJ65;
LampB65; LichW65; McCaJ63; McCuJ65; SaltJ66; SchwJ64

The instruction-set processor level:
special-function processors

This part contains descriptions of processors that do not interpret general pro-
gramming languages; that is, they are not Pc’s. They are all p’s, however, since
they have an interpreter that determines not only the operations to be taken, given
the current instruction, but the next instruction to be obtained.

A Pi0 (Sec. 1) is a processor that controls T and Ms components. It manages
block or vector transmission between Ms or T and Mp.

A P.array (Sec. 2) processes both vectors and two-dimensional matrices. By
recognizing these data as fundamental units, programs (or algorithms) can be
expressed efficiently in terms of primitive operators. The chief advantage of these
P’s is their ability to take advantage of the data structure for parallel interpretation,
thereby increasing processing speed.

A microprogram processor (Sec. 3) is designed to interpret and process a data-
type which is a program. In effect, this processor is a computer within another
computer, programmed to act as an interpreter.

A language processor (Sec. 4) interprets a data-type derived from the primitives
of a programming language. In contrast, a conventional processor interprets a
language based on fundamental hardware implementation primitives. The difference
is clearly apparent as increased complexity of the language processors.

301

Section 1

Processors to control terminals
and secondary memories
(i nput-output processors)

The first three chapters of this section show the evolution of
the IBM Data Channels (io processors) from 1958 (the 7094
II) to the present (the 1800, which came after the 360). The
processor approach for controlling T and Ms components, while
more general, should be contrasted with the specialized one-
instruction controls in the B 5000 (Chap. 22) and Burroughs
D825 (Chap. 36).

The fourth chapter, on the DEC 338, shows a processor that
controls cathode-raytube display consoles. The graphic termi-
nals are the first T’s of sufficient complexity to utilize a proc-
essor of their own. The first CRT displays used the Pc (e.g.,
on Whirlwind); then small Pc’s were adapted to the task; the
DEC 338 is one of the earliest special P.display’s that ap-
pea red.

There is no example in this section of a specialized P for
message concentration and switching. For computer systems
multiple remote inputs are still recent enough so that either
the main Pc handles the task, via specialized K, or small Pc’s
are committed to it. However, in the telephone industry there
has been a very substantial development by the Bell System
of the Electronic Switching System (ESS), which uses specialized
C’s to control switching (routing). In computer systems, we can
expect the use of such specialized processors to increase in
the near future.

The IBM 7094 I I

The IBM 709, a member of the IBM 701-7094 II family, is one
of the first computers to have an io processor (IBM name: Data
Channel) in its structure. Chapter 41 discusses the two Data
Channel types: the early 7607 and the later 7909. The 7909
Data Channel ISP, and a K which it controls, are given in Ap-
pendix 2 and 3 of Chap. 41. The principal difference is that
Pc controls the Pi0 (‘7909) which in turn controls the K, which
in turn controls a T or Ms; the Pc controls the Pi0 (‘7607) and
the K; the K controls the T or Ms. The series is discussed in
Part 6, Sec. 1, page 515.

The structure of System/360
Part I-outline of the logical structure

The io processors (Selector and Multiplexor Channels) in the
System/360 have evolved from the IBM 701-7094 II Series. Part
6, Sec. 3 presents the ISP and PMS structures for these proc-
essors. Depending on thecomputer model, the implementations
are realized by a microprogrammed processor interpreting a
shared control program for both Pio’s and Pc, or by a hardwired
Pio. The multiple Pio’s in a 360 Multiplexor Channel, though
logically independent, are implemented as a single, shared
physical processor.

The IBM 1800

The Pio’s in this structure are presented in Chap. 33, and the
structure is discussed in Part 5, Sec. 2, page 396.

The Digital Equipment Corporation DEC 338 display processor

The DEC 338 is an early P.display. It directly interprets a stored
program to control a T.display. Earlier T.displays were con-
trolled by Pc (Whirlwind, Chap. 6), or by a special K.display
without stored-program capability, or by a general-purpose Pio.
The last method outputs fixed length blocks containing data to
be interpreted by T.display as points, vectors, characters,
curved line segments, etc. The control of T.display first by Pc,
then by a K, then by a Pio, and finally by a P.display has been
observed as an evolution [Myer and Sutherland, 19681. Myer
and Sutherland also observe that the evolution is about to
become a closed cycle because the generality of a Pc is needed
to control a T.display.

Note that the 338 has a very extensive ISP. In fact, the
P.display’s ISP is more extensive than the companion Pc of the
PDP8 (Chap. 5). There are some display tasks which require
Pc, for example, compiling programs (pictures), calculating
elaborate light-pen tracking figures, making coordinate and
curved lines to straight-line vector approximation transforma-
tions, and communicating with other system components.

303

304 Part 4 I The instruction-set processor level: special-function processors

Another approach to the design of a P.display is based on
a P.microprogram which is shared among many T.displays
[Rose, 19671. Yet another alternative, which has not yet been
tried, is to incorporate a Pi0 (P.display) as a special mode in
a conventional Pc. Thus the P would interpret either conven-
tional Pc instructions or P.display instructions.

P.display is the interpreter for the output of pictures or
graphics. The 338 utilizes data space efficiently simply because
the data are long variable-length strings (word vectors). The
instruction requires almost no space to specify the data opera-
tions and addresses; data are interpreted directly or immedi-
ately in the instruction rather than via instruction addresses.

Another feature which allows a program to be efficiently
encoded is the stack mechanism for storing subroutine link-
ages. Subroutines in P.displays are actually programs which
form part of a more complete picture. Subroutines are actually
subpictures. Although the stack mechanism allows for recursive
picture calls, the stack is used principally to save space and
to allow multiple T.displays to use common picture programs.

A problem in the 338 which is common to all multi-P struc-
tures is intercommunication among the P’s. Pc is the control-
ling P, as is the case with most Pc-Pi0 structures. The P(’338)
has no trap to itself but relies on an interrupt signal to Pc. The
Pc processes both tasks which P.display might process, given

Section 1 I Processors to control terminals and secondary memories

an interrupt system, and other tasks beyond P.display’s capa-
bility.

A clock should be built into the 338. The brightness or in-
tensity of a picture is determined both electronically (see the
mode instructions for controlling intensity) and by the rate at
which the pictures are repeated. A clock would allow the time
when pictures are started or drawn to be specified; thus the
intensity would be independent of picture length.

The 338 requires more hardware than a simpler Pc. However,
a large amount of this hardware is used to control the genera-
tion of characters and lines. The lines (vectors) are drawn
using a DDS (Digital Differential Analyzer) technique. Perhaps
one-half of the registers could be eliminated if the 338 were
not a P. A simpler alternative was constructed about a similar
computer, the PDP-9, by Bell Telephone Laboratories and DEC,
using the approach of making the display only a K.

A more elaborate Pc interrupt system with reduced overhead
time would enable Pc to take on the specialized program control
functions in the 338. Such a scheme might pass the program
or instruction counter parameter directly from P.display to Pc.
In this way, Pc or P.display would alternatively process part of
a single instruction stream, depending on the task.

Despite the problems of this early P.display, it has a sophis-
tication which successors appear to be following.

Chapter 25

The DEC 338 display computer

Introduction

The C(disp1ay; ‘DEC 338) is a C(’DEC PDP-8) with a P.display
which can connect to T(#1:8; CRT; display; area: 9.375 x 9.375
in.2). The PMS structure is shown in Fig. 1, Chap. 5, describing
the PDP-8. The Pc ISP is given in Appendix 1 of Chap. 5.

The C(338), although designed to stand alone, is generally used
as a satellite to a larger C, via an L(Dataphone). The rationale
for using a C as a T is based on the bandwidth and storage require-
ments needed to maintain graphical picture displays. A human
being manipulating pictures (rotation, scale change, and conver-
sion of internal linked data structure to a picture structure) re-
quires short response time; this requirement places high processing
demands on larger C’s. Thus this C(disp1ay) is a preprocessor for
larger, more general C’s.

The actual T(CRT) is a 16-inch CRT with a 93/,-inch square
viewing area covered by 1,024 x 1,024 (XY) points. The diameter
of the points is -0.015 inch. The spot is magnetically deflected
and focused. All eight T(CRT)’s can be driven together or used

’ Eaecuted by Pc t o s t a r t F! display
Executed by Pc to stw I? display ’ Data state ‘states”

4 control stote”stated’
Stote transitions occur approximately each Mp cycle

Control state instructions

Fig. 1. DEC 338 instruction-interpretation state diagram.

independently. A photomultiplier connected through a fiber-optic
bundle link is used as a light pen (a photosensitive sensor) to detect
spots on the T. The light pen allows the P.display to detect
whether a user has “pointed to” a displayed spot.

Pc and P.display access the same Mp; the total data rate avail-
able from Mp is one 12-bit word/l.5 microseconds. The instruction
times of P.display are a function of the point plotting times of
the T(CRT):0.3 microsecond to the next incremental unintensified
point (approximately 0.010 inch away); 1.2 microseconds to an
incremental intensified point; and 35 microseconds to a point
plotted at a random position.

The state (registers) of C.display is given in the ISP description
of Appendix 1 of this chapter. There are four parts of the state:
the control registers for Program Flow State, the Picture State
(or position of beam), Console and Light-pen State, and Mp State.
The instruction interpreter is fairly simple and is best described
by the state diagram (Fig. 1). The instructions are given in Tables
1 and 2. The remainder of the chapter discusses the P.display
instructions and the Pc instructions for communicating with P.dis-

Play*

Principle of operation

The actual picture is held stationary by repeatedly displaying
(intensifying) a particular point, line, etc. The number of times
a figure has to be displayed so that it appears stationary and does
not flicker depends on the CRT phosphor, the figure, and environ-
mental parameters. The generally accepted range is a plotting rate
of 20 - 50 plots/second; thus a complete picture has to be drawn
in 50 - 20 milliseconds. If we assume a 30-Hz plot rate, about
28,000 points can be plotted in vector mode (or 280 - 1120 inches,
depending on the spacing). About 1,OOO characters can be dis-
played in 30 milliseconds using character mode.

When the light pen is used, a display program is required to
“track” the pen. The pen’s position is determined by displaying
known points. The pen, of course, detects the points when it is
present at the displayed points position; therefore the program
knows the location of the pen.

The parameters of interest for a display vary, depending on
the application. However, the general parameters are:

305

306 Part 4 I The instruction-set processor level: special-function processors

skip skip if not
in sector

count 0 + +1
scale 1 4 -1

1 Group number (0:l) set unit 0 It pen

Section 1 I Processors to control terminals and secondary memories

skip if
PB (0 5) = 0

count
Intensity

Intensity

-~

Table 1

Instruction Op Code

DEC 338 control-mode instruction set

Bits 0:2

Parameters

Mode

Conditional
skip

Conditional
skip

Arithmetic
compare PB

Arithmetic
compare PB

Skip on flags

Count

Set slaves

Spare

3 4 5 6 7 8 9 10 11

sett Scale Scale (0:l) set It pen It pen set 1 Intensity (0 :2)
Intensity I

stop clear

set Scale 1 Scale (0:1) 1 set It pen 1 It pen 1 push

clear 1 ;,e; 1 enter
sector Data-State

Memory field (0 :2)

set Scale ~ Scale (0:1)

~

set It pen ~ It pen 1 inhs
Data-Mode

inh Scale,
It pen

Push-Buttons (0:5)/PB (0:5)
test

Push-Buttons (6: 11)/PB (6: 11)
test

0 ~ Push,Buttons (0:5)

0 l o Push-Buttons (6: 11)

~1

0 - +1
o + -1

set unit 1 1 It pen 1 Intensity

t Set; allow instruction bits to specify new value.

A two-word instruction, second word contains low-order 12 bits for DAC (jump address).

7 Skip can be for true or false.

8 Inhibit restoration of bits

1 Picture

3 a Display area
b
c Spot size
d Resolution
e Linearity
f Short-term and long-term stability

Phosphor type (intensity and color as function of time)

4 2 Figure plotting (generation) characteristics
a Data types: points, lines (vectors), graphs, characters

(from a fixed set), characters (from a defined set), curved-
line segments, etc.

b Plotting time

Transformation and internal representations
a Space to encode (specify) a figure
b Scale change, rotation, coordinate-system transformation

abilities
c Ability t o communicate between a displayed data

structure and an internal representation of a picture

Light-pen or graphic input capability

Chapter 25 1 The DEC 338 display computer 307

inta inhb

escc inh

Instructions and their interpretation in P(display)

Two instruction-set types are interpreted in the P.display: Data
State, in which instructions specify display information; and Con-
trol State, in which instructions specify program control informa-
tion (e.g., jumps, modes, etc.). A state diagram for the interpre-
tation process is given in Fig. 1.

Y coordinate

X coordinate

Data-state instructions

There are seven instructions (which DEC calls modes) that can
be executed while P.display is in data state. The instructions
(modes) are really substates of data state. The instructions (actually

character 1

Table 2 DEC 338 data-made instruction set

character 2

more like data) are interpreted for the mode. When all the data-
mode instructions have been interpreted, an escape instruction
returns the P.display to control state. A control instruction is issued
to select a mode and simultaneously place the display in data state.

blank

Increment mode. This mode is used to draw curves and alpha-
numeric characters and other small symbols. Two instructions are
stored per word. An instruction will cause the beam position to
be moved one, two, or three times, in 0.010-inch increments, in
one of eight directions. Direction 0 is to the right, direction 1 is
up and to the right, etc.

character

point

increment

vector

vector

continue

short
vector

6-bit
character

7-bit
character

graph
plot

spare

esc

6 - 35

1.5 + 2 x (.9 - 3.6)

1 - 150

1 - 1,200

1.8 - 24

3.75 +

4.5+

6 - 35 X / v f Y or X coordinate

1 of 2

2 of 2

1

1 of 2

2 of 2

1 of 2

2 of 2

1

1

1

1

Intensify; turn on beam.

Inhibit; do not set value into Y or X coordinate.

e Escape; enter control state.

d 0 + move 1 and escape: 1, 2, 3, + move 1. 2, 3.

'0 + set Y and increment X; 1 + set X and increment y.
8 directions.

same as bits 0 - 5 int 1 cmoo;v 1 move
directione

int f Delta Y

esc 1 -C 1 Delta X

int

esc 1 z I
int 1 -t 1 Delta Y I 2 I esc Delta X

308 Part 4 1 The instruction-set processor level: special-function processors

Vector mode. The vector mode is used to draw straight-line seg-
ments. This two-word instruction causes the beam position to be
moved along a line represented by an 11-bit delta y and an 11-bit
delta x.

Vector continue mode. This mode is used to draw a straight line
to the edge of the screen. It is similar to vector mode but causes
the line to be extended until an “edge” is encountered.

Short vector mode, The short vector mode is used to draw figures
composed of short line segments. A one-word instruction specifies
a 5-bit delta y and a 5-bit delta x quantity. It is transformed within
the display to the same format as vector mode and operates in
the same manner.

The preceding modes move the beam by counting the X and
Y position registers. The counting is done at 1.2 microseconds per
step on an intensified move and at 0.30 microsecond per step on
a nonintensified move.

Point mode. Point mode is used for random point plotting. A
two-word instruction specifies new Y and/or X coordinates to be
placed into the Y and X position registers.

Graph-plot mode. This is used to draw curves of mathematical
functions. A one-word instruction has data for the Y or X position
register; at the same time, X or Y, respectively, is incremented
by a count of one, two, four, or eight, depending on the scale
factor.

Point and graph-plot modes operate at a rate depending upon
the position of the new point with respect to the previous point.
If a point is only one-eighth of the screen away, the delay for
beam-settling time is 6 microseconds; otherwise the settling time
is 35 microseconds.

Character generation option instructions. The alphanumeric char-
acters or special symbols which make up a character set are stored
in Mp in increment mode or short vector mode. These characters
can be arbitrarily defined. A &bit (or 7-bit) character code in the
instruction is used to locate a word in a table in Mp called the
dispatch table. The base address of the table is specified by the
Starting Address Register/SAR(0:5).

SAR may be loaded by instructions from the Pc. The SAR
represents the most significant 6 bits of a 15-bit memory address.
The character code represents the least significant 6 (or 7) bits.
A seventh SAR bit, corresponding to the octal position 100, is used
with &bit characters as a case bit (Le., uppercase or lowercase
characters) and may be set or cleared with a control character.

Section 1 I Processors to control terminals and secondary memories

A word in the dispatch table has the following format:

Bit 0: If bit 0 is a 1, bits I to 11 are used to perform a control
function as specified by particular control instructions.
If bit 0 is a 0, bits 2 to 11 are combined with SAR to
specify the address at which the character definition
program starts. (The address bit 2 is common to both
the SAR and bit 2 of the dispatch word and so may
be specified in either place or in both places.)

Determines the mode in which the character is to be
displayed. If bit 1 is a 0, the increment mode is used
to plot the character used; if bit 1 is a 1, the short
vector mode is used to plot the character.

Bit 1:

Control-state instructions

There are six control-state instructions.

Parameter. Parameter is used to set values in scale, light-pen, and
intensity registers.

Mode. Mode is used to set up the data-state mode (or data-mode
instruction). Mode also is used to stop the display.

Conditional skip. The skip instruction tests the state of the
P.display and the pushbuttons.

Miscellaneous. These instructions include both tests and additional
parameter control.

Display jump and push -jump subroutine instructions. The display
jump instruction has 15 address bits, so that a jump may be
executed to any location in the display file within the 32-kw
memory.

The display subroutine instructions are push-jump (an extension
of the jump instruction) and pop, the return from subroutine. The
push-jump works as follows: The current state of the display (Light
Pen Enable, Data Mode, Scale, and Intensity) is stored, along with
the return address, in two successive locations in the first 4,096
words of memory. The locations are determined by the pushdown
pointer, PDP. This pointer is initially set by a Pc instruction. The
normal jump is then executed.

To return from a subroutine, the pop instruction is executed.
It has no address bits. Its function is to return the display to a
previous state by sending the last words on the push-down stack
back to the display.

The stack approach to subroutining as implemented on the 338
has certain advantages over the jump to subroutine instruction
normally used in Pc’s:

Chapter 25 1 The DEC 338 display computer 309

1 Memory space is conserved since return address locations
are not required in each subroutine in memory.

A subroutine can be called any number of times before
return to the main routine.

Since the state of the display is saved on the stack and
subsequently restored, subroutines are truly transparent;
that is, after the return they leave the state of the display
program the same as before the subroutine call.

The subroutines can either retain the same state or change
the state of the display by using one or more of the “inhibit
restore” bits available in the pop instruction. The program-
mer can elect independently to inhibit restoration of mode,
light pen, and scale, or intensity information.

2

3

4

Instructions in Pc for communicating with P(display)

Instructions in Pc communicate with P.display. The physical con-
nection is by the S(’I/O Bus). The in-out transfer instructions in
Pc are used to initialize and read the state of P.display.

P.display state initialization from Pc instructions
Set Push Down Pointer from AC

Set Display Address Counter from AC
Set Push Button contents from AC
Set miscellaneous flag and status bits from AC
Set character generator SAR address

P.display status to Pc instructions
Read Push Down Pointer into AC
Read X register into AC
Read Y register into AC
Read Display Address Counter into AC
Read Status words 1, 2, 3, 4, 5 into AC (60 miscellaneous

bits of flags, modes, etc.)

Picture debugging modes. These modes aid programmed and pic-
ture debugging. A bit can be set to override the nonintensify bit
in data-mode instructions. When this bit is a 1, all points and
vectors are plotted, whether they are to be intensified or not. The
search enable instruction forces the display to run until a particu-
lar instruction type is found. The instruction type is specified by
the search enable instruction.

310 Part 4 I The instruction-set processor level: special-function Drocessors

APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION

Section 1 I Processors to control terminals and secondary memories

P. display State

Program Blow State
D A C B : 14>

P D P 6 l : I 1>

I n t e rna 1 ,Stop

Appendix 1

DEC 338 Display Processor I S P Desc r ip t i on (p a r t i a l l y complete)

Display Address Counter; holds memory address o f display

Push Down Pointer t o stack holding subroutine return addresses
c7enotes hal t by a P.display instruct ion

instruct ion

External Jtop denotes a request by Pc f o r P.display t o ha l t

Datas ta te and ControlJtate are two mutually exclusive s ta tes .
l ines , and characters t o be displayed on T .
data type being interpreted.
regis ters and switching t o a spec i f ic data mode,

Datas ta te instruct ions are interpreted by P.dispZay as points ,
!There are 7 modes fo r specifuing the data types . The DataYFnode reg is ter holds the

ControlJtate instruct ions include j w v t o subroutines using the stack, controlling P . d i s p l q s ta te

Data-State

Contro l ,State := 7 Data-State

DataJode/DM4:2>

SAR<D : 5>

Picture Btate
x 4 : 1 2 >
Y4 :12>

Ver t ica l&dgef lag/Vef

Hor izontal,edge,il ag/Hef

Edge- I n te r rup t /E I

CHSZ

l n tens i t yd) :2>

Xdirnens i o n a l : 12
Y,dirnension<D:l>

Beam

Console snd Light Pen S ta te
PushJluttons/PBQ): 1 1 >

Push,ButtonJii t/PBH

Manual J nterrupt /M I

L ightJen,Fi nd/LPF

L ighLPebEnable/LPE

Mp State

M (0 :7] [0:4095] 4: 1 I >

Instruct ion Format
i n s t r u c t i o n / i < O : l D

en teru da taus t a t e

p b d e n s e
:= iqll>

:= iCD

spec i f ies interpretat ion of DataJtate instruct ions
Starting Address Register: base regis ter of a dispatch table f o r

cat t ing character display subroutines

beam position; onZy integers i n range o s XIY s

denotes i f beam i s wi thin a displayable area
se t when beam moues outside the display area

z ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ - ’
are plotted

Character Size , 0 indicates 6 b i t character se t 1 indicates 7
b i t character s e t

used t o se t increrfent s i z e for Dataaode instruct ions, incre-
ments are x zSCa e

brightness o f displaued points
maximum dimension 0.f plot t ing area, 9.375, 2 8 . 7 5 , 37.5, 75.0 i n

on, t o displav a point or l ine; automatically turned off a t
instruct ion comvletion

reg is ter with t igh ts : can be complemented manually or by

f lag i s se t by manually s tr ik ing any push button
key which i s used t o interrupt Pc and becomes one when struck

stops the display and interrupts Pc whenever the Light Pen
has seen a displayed spot and the LighLPe%EnabZe i s a one

a b i t t o enable the L ightPeqFind f lag t o cause an interrupt

processor

ppimar,u memory f o r P.display and Pc

The individual instruct ions , f ie lds are defined below.
instruct ion type has i t s own b i t f i e l d assignments.

common b i t s f o r seveml instruct ions

Each

push button control bits

Chapter 25 I The DEC 338 display computer 311

APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued)

pb,cleay := i<b

pbdomp 1 ement i= i 6 >

pbde lec td) :5> := i 4 : 1 1 >

scale&hange/sc := io> scale (s i z e) control b i t s
s ca 1 eUva 1 ue /sv<O : 1 >
1 ight&en&hange/lpc := id> l igh t pen t e s t control b i t s
1 i gh tYpenYb i t / l pb := iQ>

:= i<4:5>

Instruct ion Interpretat ion Process
(7 In ternalJ top V 7 Externa1,Stop) + f e tch

(inst ruct ion[O: I] c M[DAC:DAC+l] ; DAC c DAC + 1; next

(Con t roLSta te A (i n s t r u c t i o K D : l > = 2)) + (DAC c DAC + 1);

(D a t b S t a t e A ((Data Mode = 0) V (OatkMode = 2) V 2 w data
2 w instruct ion

(Data Mode = 3))) + (OAC + DAC + I) :

nex t ~ n s t r u c t ion,execut i o n) execute

Instruction Set and Instruct ion Execution Process
The following instruct ion s e t de f in i t ion i s not complete.
the miscellaneous and conditional skip instruct ions,

I t does not include the complete character instruct ion de f in i t ion or
Most of the instruct ions are microcoded.

I n s t r u c t ion-execut i o n := (

Control Instructions
parame ter<0 : 1 I> : = i [o] <O : 1 I>

pa rame t e r,opcode := (i<O:P = 000)
parameter,intensity,change := pa ramete r49

parameter, i ntens i tv<D r2> := parameteK9: 1 1>

parameter,opcode A Contro lJ ta te + (

scale,change + (Scale t scale,value);

1 ight-pen-change + (Light,Pen,Find +-T 1 ight,pen,bi t);

intensity,change + (I n t e n s i t y t parameter,intensi t y)) ;

mode<0:ll> := i < O : I l >

modedpcode := (i<O:2> = 001)

mode,s top,code := modeb>

modeslear@ush&utton,flag:= mode<4>

mode,datapde,change := moded>

mode,setd):Z> := mode<6:8>

modeslear,sector := mdde-

mode&l ear,coord i nate := mode<lO>

modedpcode A Contro lJ ta te + (

modedtop,code + (In te rna lJ top c 1);

m o d e ~ l e a r ~ u s h , b u t t o n , f l a g + (P u s h A u t t o n J i t c0):

modeJatamde&hange + (Datadode c modede t) ;

r n o d e s l e a r d e c t o r + (X=S:2> c 0; Y=S:2> ~ 0) ;
mode& lea r joo rd ina te + (XS:12> -0; Yb:12> + O) ;

e b t e r d a t a d t a t e + (DataJtate 1)) ;

s e t parameter instruct ion fonnat

s e t parameter execution

s e t mode instruct ion f o m t

s e t mode execution

312 Part 4 I The instruction-set processor level: special-function processors Section 1 1 Processors to control terminals and secondary memories

APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued)

I

PB,l<D;lI> ;=I i<o:11> grouv 1 push button t e s t and se t instruct ion .format .for

grouv 2 (not def ined) i s f o r Wsh Buttons 6 t o 11

PBJ instruct ion execution

Push Buttons 0 t o 5 PR,ldpcode := (P E , l d : 2 > = 100)

PB,l&pcode h Contro1,State + (
pbdense &? (pb,select<0:5> = (PB<O:5' A pb,select<0:5>)) - (S k i p t e s t

DAC + OAC + 2) ;

pb,clear + (PB<o:5> t P B 4 : 5 > A pb selectcD:5>); next

pb,complement + (PB4:5> c P B 4 : 5 > + pb>e lec t4 :5>)) ;

jump[0:1]~0:11> := i [O:I]CO:II>

j u m w p
jumbpush := i [old>
jump,fieldd:2> := i [0]4:11>

:= (i [0 3 ~ : 2 > = 010)

jump-op A Control,State + (

sca ledhanqe + (Scale Csca le -va lue) :

l i g h t ~ e n s h a n g e + (L i g h t P e L F i n d + Iight,pen,bit);

DAC jump,fieldoi[l]:

jump,push + (

M[PDP + l] t DAC<O:2XLPFoScaIeOData,ModeOIntensi t y :

M[PDP + 23 t DAC<3:14>;

PDP t PDP + 2) ;

pop<o:l l> := i [0]<0:11>

pop,op,code := (i<O:2> = 011)

pop,inhibit,mode := DOp<b

pop,inhibit,scale,pen := pop<9>

pop,inhibit,intensity := pop<lO>

pop,op,code h Control,State + (

DAC<3: l 4 > t M[PDP] :

D A C < O : D t M[PDP-I] ;

pop- inh ib i t - i n tens i t y + (I n t e n s i t y c M[PDP-1]6: 1 I >) ;

pop,i nh i b i t,mode + [Da taJ4ode c M [PDP- 1 k 6 : A>) :
pop- inh ib i t,scale,change + (

Scale M[PDP-1]<4:5>

LPF t M[PDP-1]<3>);

PDP t P D P - 2 ; next

scale,change + k a l e c scale,value):

l i q h t ~ e n ~ c h a n q e + (LPF l i gh tsen ,b i t l :

enter-datadnode + (Datadode t 1)) ;

Data 'do& Instruct ions

point[0:1]<0.11> := i [o:I]<o:II>
p o i n t - i n t e n s i t y := p o i n t [034>
p o i n t ,i nh i b i t ,y := p o i n t [0]<1>

p o i n t - y 4 : 9> := p o i n t [O) Q : 11>

p o i n t 24 :9> := p o i n t [l] Q : l l >

p o i n t &scape

p o i nt,inh i b i t - x

:= p o i n t [13a1>

:= p o i n t [I]<I>

,+wm and stack push down (subroutine ca l l ing) instruct ion
format

jump and push d m erecution

stack pop instruct ion format; subroutine return

pop execution

point data instruct ion format

I

Chapter 25 I The DEC 338 display computer 313

APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued)

(DatkMode = 000) A D a t a d t a t e + (

7 point,inhibit.,x+ (X e point,X);

7 point,inhibit,y + (Y c point-Y);

p o i n t - i n t e n s i f y + (Beam c 1);

point-escape + (Data-State c 0));

vec to r - i n tens i f y := vectorC01<(~

vecto rues cape :- v e c t o r [~ l < ~ >

vectorydy<O: lo> := v e c t o r [~ I < l : 1 I>
vector,dx<O:lD> := v e c t o r [l l < l : 1 I>

vector(01 <O : I I> :- i [O : 13<0 : 1 I>

(Data-Mode = 010) A D a t a d t a t e + (

Y c Y + vector-dy;

X c X + vector-dx;

vec to r - i n tens i f y + (Beam c 1) ;

vector-escape + Data-state c 0);

vec to r continueC0: 1]<0:11> := i L O : I KO: i i>

(Data-Mode = 011) A Data-State + (
Y c Y + s i g n a x t e n d (vector-dy) ;

X t X + s i g n d x t e n d (vector-dx) ;

v e c t o r - i n t e n s i f y + (Beam e 1);

vector-escape + (Data-State c 0));

short,vector<O: 11> := i [O]<O:l l>

short,vector,intens i f y :- short,vector<CD

short-vector-escape :=- short,vector

short-vector-dx :.= short,vector<E: 11>

short-vector-dy :- short,vector<l:P

(Data-Mode = 100) A Data-State + (
X c X + sign,extend(short,vector,dx);

Y Y + sign,extend(short,vector,dy);

shor t - vec to r - i n tens i f y + (Beam e 1);

short-vector-escape + (Data-State e 0)) ;

i ncrement<O :9
increment- in tens i f y :- increment<(Y

i nc remnt -d i r e c t i on/ i KO I P
i ncremnt,count/i KO: I>

i c l e := (i c = 0)
i c l :- (i c = 1)

i c 2 := (i c = 2)

i c 3 := (i c - 3)

:= i ncrementc3 :5>
:= i n c r e m n t < l : D

(Data-Mode = 001) A Data-State + (
increment c i < O : P ; next p lo t - increment-vector ; next

increment e i<b:l 1>; nex t plot,incremnt,vector)

point data execution

vector data instruct ion format

vector data execution

not correct, since the vector from point Y,X t o Y+ vec tordy ,
Xt vector,& i s plot ted

vector continue instruct ion format s m e as vector
vector continue execution

not correct, as vector continues plot t ing unt i l e&e i s round

short vector instruct ion format

short vector execution

increment instruct ion fonnat; 2 increment/instruction

1 of 8 directions

count 1 and escape t o ControlState
count 1
count 2

count 3
increment instruct ion execution

314 Part 4 I The instruction-set processor level: special-function processors Section 1 1 Processors to control terminals and secondary memories

APPENDIX 1 DEC 338 DISPLAY PROCESSOR ISP DESCRIPTION (Continued)

plot,increment,vector := (

i c l e + (move- lgos i t i on ; Contro1,State - 1) ; move 1 and escape

i c l + (move,l,position); move 1

i c 2 + (move,l&osition; next move,l+osition) move 2

i c 3 + (move- lgos i t i on ; next move,lGosition; next move 3

move,l ,pos i t ion)

Move,l,position := (sub process f o r moving beam
(i d = 0) + (X t X + Scale) ;

(i d = I) + (X C X + Scale; Y C Y + Scale) ;

(i d = 2) + (Y t Y + Scale) ;

(i d = 3) + (Y t Y + Scale; X t X - Scale);

(i d = 4) + (X t X - Scale) ;

(i d = 5) + (Y C Y - Scale; X C X - Scale) ;

(i d = 6) + (Y C Y - Scale);

(i d = 7) + (Y C Y - Scale; X - X + Scale);

i n c r e w n t d n t e n s i f y +Beam + I)

1 o f 8 posi t ions

charac te rd) : l l > := id):]]>

6,bit [O:I]d):5> := cha rac te rQ) : l l >

7,bi t6: 1 I > := character<5: 1 I >

(OataJode = 101) A DataJtate + (

(CHSZ = 0) + (
X , Y tf(M[SWRc6,0it[0]3,M);

X , Y t f (M[SAROb,bi t 11]] , M)) ;

(CHSZ = I) + (X , Y t f (Y [S A R W & i t] , Y))) ;

character i n s t m c t i o n format

character instruct ion execution;

pZot function;

see t e x t

graph data instruct ion format graph,plot<O:ll> := i [O] G : l l >

g r a p k p lot,escape<O>

graph-pl ot,x,yd)>

graph,plot,data<O:SD := graph,plot<Z:ll>

: = graphup I o t Q >

: = graphup I o t < P

(Data-mode = 110) A DataJtate + (graph data execution

-, graph,plot,x,y + (X t X + Sca le ' ; Y t graph,plot-data; Beam t 1) ;

graph,pIot,&y + (Y C Y + S c a l e ' ; X tgraph,plot,data; Beam t I) ;
graph,plot,escape + (Data-State c 0))

end Ins t ruc t ion~execut ion)
I

Section 2

Processors for array data

Two array processors are discussed in this section. Concep-
tually, they are an outgrowth of both the parallel, distributed
computer [Holland, 19591, and the matrix-interpreter-based
programs for general-purpose computers. NOVA is a very low
cost special processor. ILLIAC IV is a very general array proces-
sor. Another approach, the ILLIAC Ill [McCormick, 19631 stores
information on photographic media, so that optical processing
(inherently parallel) can be used.

NOVA

NOVA is a proposed, non-general-purpose machine based on
the belief that efficient, special-function processors can be built
to solve particular problems.

It is reasonable to assume that there are problems for which
NOVA, with its cyclic memory, would perform no worse than
a processor with a random-access memory. Unless the opera-
tions performed on the arrays were extremely simple or re-
stricted, a single system might not always work very efficiently.
By using a variable-speed cyclic memory to match the operation
time in the form of an address transformation or renaming
mechanism, the access problems might be avoided.

NOVA represents a particular'idea for effective utilization of
hardware and is presented to remind us that a memory now
considered obsolete may perform nicely for a restricted appli-
cation.

The ILLIAC IV computer

D. L. Slotnick is responsible for the ILLIAC IV computer. The
idea for a computer with a number of parallel data operators
or processing elements appeared some time ago in the SOLO-
MON computer [Gregory and McReynolds, 19631. The tech-
nology of the first and second generation made SOLOMON
impractical to build. ILLIAC IV was designed at the Univer-
sity of Illinois under a contract to the Department of Defense's
Advanced Research Projects Agency.' The processing elements
are constructed from third-generation technology although
some medium- and large-scale integrated circuits are used in
the design.

The design is about the most ambitious ever undertaken.
The direct and indirect effects should be numerous.

'The University of Illinois monitored the contract to the Burroughs Corporation,
Paoli. Pa.

315

Chapter 26

NOVA: a list-oriented computer1

Joseph E . Wirsching

Since the advent of the internally-stored program computer, those
of us concerned with problems involving massive amounts of com-
putation have taken a one-operation, one-operand approach. But
there is a very large class of problems involving massive amounts
of computation that may be thought of as one-operation, many-
operand in nature. Some familiar examples are numerical integra-
tion, matrix operations, and payroll computation.

This article proposes a computer, called NOVA, designed to
take advantage of the one-operation, many-operand concept.
NOVA would use rotating memory instead of high-cost random
access memory, reduce the number of program steps, and reduce
the number of memory accesses to program steps. In addition it
is shown that NOVA could execute typical problems of the one-
operation, many-operand type in times comparable to that of
modern high-speed random access computers.

Rotating memories were used in early computers because of
low cost, reliability, and ease of fabrication. These machines have
been replaced by machines with more costly random access
memories primarily to increase computing speed as the result of
a decrease in access time to both operands and instructions.

In general, the four or more instructions must be brought from
the memory to the instruction register once for each pair in the
lists. This seems to be a great waste when only one arithmetic
operation is involved. Indeed it is, when one considers that the
majority of computing work consists of the performance of highly
repetitive operations that are merely combinations of the simple
example given. Attempts have been made to alleviate this waste
by incorporating “instruction stacks” and “repeat” commands into
the instruction execution units of more recent computers.

Example 2. Consider three lists (a’s, b’s and c’s), where we wish
to compute (a + b) x c for each trio. There are two distinct
methods by which this can be accomplished: first, by forming
(a + b) x c for each trio of numbers in the list, or second, by
forming a new list consisting of (a + b) for each a and b, and then
multiplying each c by the corresponding member of the new list.
Clearly the second method is wasteful of memory space and
wasteful of programming steps.

Next, let us take a look at the memory requirements for these
two examples. First, the instructions are kept in a high-speed
random access memory, and while the bulk of the variables need

The NOVA approach

Let us take two simple examples and use them to compare con-
ventional computing techniques with those proposed for NOVA.

not be kept in a random access memory, they must be brought
to one before the algorithm can be performed. This extra transfer
may entail more instructions to perform the logistics. Thus the
simplicity of the overall program is directly related to the size

Example 1 . Consider two lists (a’s and b’s) of which the corre-
sponding pairs are to be added. With a conventional computer
this is done with a program that adds the first a to the first b,
the second a to the second b, etc., and counts the operations. The
working part of such a program might consist of the following
instructions:

Fetch a
Add b
Store (a + h)
Count, Branch, and Index

lDatarnation, vol. 12, no. 12, pp. 41-43, December, 1966.

of the memory. The variables (a’s, b’s, etc.) are usually stored in
consecutive memory locations. Except for indexing this ordering
of the data is not exploited.

In NOVA, lists of variables are kept on tracks of a rotating bulk
memory. When called for, the lists of variables are streamed
through an arithmetic unit and the results immediately replaced
on another track for future use. This process takes maximum ad-
vantage of the sequential ordering of the variables. Instructions
need only be brought to the instruction execution unit once for
each pair of lists rather than once for each operand; thus the
instructions need not be stored in a random access memory but
may also be stored on the rotating bulk memory. This departure
from the requirement for random access memory significantly

316

Chapter 26 I NOVA a list-oriented computer 317

reduces the cost of the computer, without sacrificing speed of
problem solution.

Solution of a network problem

Before going further into the structure of NOVA, let us consider
a significant example, which shows that NOVA is well suited to
the solution of differential equations using difference methods over
a rectangular network.

Let Fig. 1 represent an artificial network used as a model for
some physical process. Generally speaking, the method of advanc-
ing the variables at a mesh point (i , k) from one time step to the
next involves only information from the neighboring mesh points.
A typical hydrodynamics problem will require a list of 10 to 20
variables (physical quantities) a t each mesh point. The traditional
computer solution involves listing these variables to each point
in a contiguous fashion and in a regular sequence with respect
to the rows and columns of the array. If the total array does not
fit into the fast memory, three adjacent columns (or rows) are
brought to the fast memory; as a new column is calculated, the
next column in sequence is brought in from bulk memory and the
oldest of the three is written to bulk memory. In this fashion one
proceeds across the array. This process is then repeated until some
significant physical occurrence happens and the problem is ended.

In NOVA, the variables are organized into separate lists rather
than by mesh point. From a computational standpoint this is
possible since the main memory of NOVA may be essentially
unlimited in size, at least exceeding the size of the largest present
network problems. One then proceeds to execute operations on

1 2 3 . 1 . . J

Fig. 1. Two-dimensional array.

original Lists

u0,o v0,o
U0,l V0,l

u0,2 V0,z
. .

u1,o v1.0
U1,l V1,l

U1.Z vk,2
. .

Uj,k . .
. .
. .

UJ,K VJ,K

V Shifted
Down by 1

-
v0,o
V0,l
v0,z

‘0,K

v1.0

VlJ

y , k

VJ,K-I
VJ,K

V Shifted
DownBy2

-
-

v0,o
V0,l

“0,K-1

v0 ,K
v1,o

Vja-1

VJJ-2

VJJ-1

VJ,K

V Shifted
Down By K

y - l , k

VJ-LK

Fig. 2. Lists of variables.

lists of variables rather than single variables, performing a single
operation for all mesh points in the array in sequence.

Let us look more closely at the variables and their possible
combinations. Let Ui,k and Vj,k be variables associated with the
array of Fig. 1. These variables are listed sequentially by column
in Fig. 2, along with further lists of the Vcolumn shifted by various
increments.

With some concentration, one discovers in Fig. 2 that an arith-
metic operation between Uj,k and Vi,* is simply a matter of taking
the two columns as they exist and operating on them in pairs. To
combine Uj,k with a nearby neighbor, Vj,k--l, the V column is
shifted down one place, at which time the proper neighboring
variables are found opposite one another for the entire network.
At certain boundaries of the array some elements have no proper
neighbors. In NOVA these boundary elements must be handled
separately in the same way as they must be handled separately
in a conventional machine. In NOVA, calculations at boundaries
may be temporarily inhibited by having a third input to the arith-
metic unit which allows the calculation of a result for a pair of
operands to proceed or not, as appropriate. This third input is
defined as “conditions,” and is brought as a bit string to the arith-
metic unit concurrently with the operands. This bit string may
contain any number from one to several bits for each pair of
operands.

318 Pari 4 I The instruction-set processor level: special-function processors Section 2 1 Processors for array data

Further observation shows not only that it is possible to obtain
the nearest neighbors easily by shifting the columns of variables
with respect to one another, but that any neighbor relationship
can be obtained. In general, for an operation with a neighbor k n
rows away and k r n columns away, the lists are offset by
f n k m- K , where K is the number of rows in the array.

Many problems (for example, payroll and inventory records)
are essentially list-structured but do not require offsetting of vari-
ables. Clearly the NOVA structure is well suited for the solutions
of these problems also.

Structure

The most difficult problem to be solved in the proposed computer
is to synchronize movement of the columns of data that require
offset. Buffers of various types could be used to solve this problem;
they could range all the way from rotating memory devices or
delay lines to core memories. The former are simple, direct, and
low in cost but are limited in their general capabilities. On the
other hand, a number of small random access buffer memories
could be used for offsetting lists of variables and for facilitating
special functions such as boundary calculations but at a higher
equipment cost.

Figure 3 shows a block diagram of the organization of NOVA.
The rotating memory, which might be a disc or drum, would be

Fig. 3. Block diagram of NOVA computer.

\ CONTROL

RESULTS TO F& , ,
MEMORY

02

m

ARITHMETIC
CIRCUITRY

CO N DlTlONS

CONDITIONS
TO
MEMORY

Fig. 4. Buffering in arithmetic unit.

composed of several hundred tracks, each storing several thousand
words, with a total capacity between one and two million words.
Each track would have an individual read-write head. The heads
would be organized in such a way as to attain a high word-transfer
rate, perhaps as high as one million words per second. With this
in mind an ideal execution time for one addition would be the
time required to move two operands from the disc to the arith-
metic unit; i.e., 1-2 microseconds. The disc synchronizer would
be capable of simultaneously reading two lists of operands, writing
one list of results, and reading one list and writing one list of
conditional control information. In addition, instructions would
be read from another channel in small blocks.

The bit string of conditions coming from the memory is used
to control individual operations on pairs of operands in the lists,
and in essence each bit (or bits) is a subordinate part of the indi-
vidual operations. Conditions going to the memory are the sub-
sidiary result of the operation of one list upon another. These bit
strings may be used later as control during another list operation.
They want also to contain information on the occurrence of an
overflow or underflow, or on the presence of an illegal operand,
etc.

Figure 4 shows a suggested organization for the arithmetic unit
that incorporates five sets of alternating buffers. Two sets are for
lists of operands coming from the memory, one set for lists of
results going to the memory, and two sets for “conditions” (condi-
tional control information) coming from and going to the memory.

Chapter 26 I NOVA a list-oriented computer 319

BUFFER

These buffers should be equivalent in length to the number of
words on a track of the rotating memory.

The loading and unloading of the buffers to and from the rotat-
ing memory is dependent on the timing of the rotating memory,
whereas the loading and unloading of the buffers to and from the
arithmetic unit is guided solely by the rate at which the arithmetic
can be performed. Here again it may also be possible to take
advantage of the streaming nature of the operands by designing
an “assembly-line’’ arithmetic unit in which more than one pair
of operands could be in process at the same time. With this kind
of unit it may be possible to execute additions at a rate equal to
the word-transfer rate from the rotating memory; however, a
multiplication or division of two lists may require several revolu-
tions of the memory. The timing diagram of Fig. 5 shows several
typical instructions being carried out. A certain amount of look-
ahead is required, but there is ample time for this, since instruc-
tions are prepared for execution at an average rate of less than
one per revolution of the rotating memory.

While a detailed cost estimate has not been made for a simple
prototype NOVA, a quick estimate would be $50,000 for a head-
per-track disc and $50,000 for the arithmetic and control section,
making a total of $100,000. For a buffering scheme such as the
one shown in Fig. 4 the cost would be considerably higher but
would be offset by increased versatility.

REVOLUTIONS OF ROTATING MEMORY

1 1 2 1 3 1 4 1 5 1 6

Conclusions

In the previous paragraphs we have demonstrated that NOVA is
capable of handling network problems at a significantly lower cost
than contemporary computers, and at a comparable speed. The
availability of such a machine as NOVA would stimulate further

Fig. 5. Timing diagram of buffers, rotating memory, and arithmetic unit.
Dotted line shows movement of data into a device: solid line shows
movement out.

interest in the one-operation, many-operand approach to compu-
tation and no doubt would uncover many other problems to which
it could be applied.

Because NOVA makes it possible to easily establish neighbor-
relationships between mesh points that are further away than
nearest neighbors, it may be possible to develop new differencing
techniques for the solution of coupled sets of differential equations.
This may increase the accuracy or shorten the time required for
their solution.

The memory, arithmetic, and other units needed for NOVA are
commercially available now. No new technology would be required
to fabricate a prototype model. In view of the potential advantages
of such a machine, it seems clear that construction of a model
would justify the minimal development costs.

Chapter 27

The ILLIAC IV computer1

George H . Barnes / Richard M . Brown / Maso Kato
David J . Kuck / Daniel L. Slotnick / Richard A. Stokes

Summary The structure of ILLIAC IV, a parallel-array computer con-
taining 256 processing elements, is described. Special features include
multiarray processing, multiprecision arithmetic, and fast data-routing
interconnections. Individual processing elements execute 4 x lo6 instruc-
tions per second to yield an effective rate of lo9 operations per second.

Array, computer structure, look-ahead, machine lam
page, parallel processing, speed, thin-film memory.

Index terms

Introduction

The study of a number of well-formulated but computationally
massive problems is limited by the computing power of currently
available or proposed computers. Some involve manipulations of
very large matrices (e.g., linear programming); others, the solution
of sets of partial differential equations over sizable grids (e.g.,
weather models); and others require extremely fast data correlation
techniques (phased array signal processing). Substantive progress
in these areas requires computing speeds several orders of magn-
tude greater than conventional computers.

At the same time, signal propagation speeds represent a serious
barrier to increasing the speed of strictly sequential computers.
Thus, in recent years a variety of techniques have been introduced
to overlap the functions required in sequential processing, e.g.,
multiphased memories, program look-ahead, and pipeline arith-
metic units. Incremental speed gains have been achieved but at
considerable cost in hardware and complexity with accompanying
problems in machine checkout and reliability.

The use of explicit parallelism of operation rather than over-
lapping of subfunctions offers the possibility of speeds which in-
crease linearly with the number of gates, and consequently has
been explored in several designs [Slotnick et al., 1962; Unger, 1958;
Holland, 1959; Murtha, 19661. The SOLOMON computer [Slotnick
et al., 19621, which introduced a large degree of overt parallelism
into its structure, had four principal features.

1 A large array of arithmetic units was controlled by a single

' I E E E Trans., C-17, vol. 8, pp. 746-757, August, 1968.

control unit so that a single instruction stream sequenced
the processing of many data streams.

Memory addresses and data common to all of the data
processing were broadcast from the central control.

Some amount of local control at the individual processing
element level was obtained by permitting each element to
enable or disable the execution of the common instructions
according to local tests.

Processing elements in the array had nearest-neighbor con-
nections to provide moderate coupling for data exchange.

Studies with the original SOLOMON computer indicated that
such a parallel approach was both feasible and applicable to a
variety of important computational areas. The advent of LSI cir-
cuitry, or at least medium-scale versions, with gate times of the
order of 2 to 5 ns, suggested that a SOLOMON-type array of
potentially lo9 word operations per second could be realized. In
addition, memory technology had advanced sufficiently to indicate
that lo6 words of memory with 200 to 500-11s cycle times could
be produced at acceptable cost. The ILLIAC IV Phase I design
study during the latter part of 1966 resulted in the design discussed
in this paper. The machine, to be fabricated by the Defense Space
and Special Systems Division of Burroughs Corporation, Paoli, Pa.,
is scheduled for installation in early 1970.

Summary of the ILLIAC IV

The ILLIAC IV main structure consists of 256 processing elements
arranged in four reconfigurable SOLOMON-type arrays of 64
processors each. The individual processors have a 240-ns ADD
time and a 400-11s MULTIPLY time for 64-bit operands. Each
processor requires approximately lo4 ECL gates and is provided
with 2048 words of 240-ns cycle time thin-film memory.

Instruction and addressing control

The ILLIAC IV array possesses a common control unit which
decodes the instructions and generates control signals for all

320

Chapter 27 I The ILLIAC IV computer 321

processing elements in the array. This eliminates the cost and
complexity for decoding and timing circuits in each element.

In addition, an index register and address adder are provided
with each processing element, so that the final operand address
a, for element i is determined as follows:

a, = a + (b) + (c,)

where a is the base address specified in the instruction, (b) is the
contents of a central index register in the control unit, and (ci)
is the contents of the local index register of the processing ele-
ment i. This independence in operand addressing is very effective
for handling rows and columns of matrices and other multidimen-
sional data structures [Kuck, 19681.

Mode control and data conditional operations

Although the goal of the ILLIAC IV structure is to be able to
control the processing of a number of data streams with a single
instruction stream, it is sometimes necessary to exclude some data
streams or to process them differently. This is accomplished by
providing each processor with an ENABLE flip-flop whose value
controls the instruction execution at the processor level.

The ENABLE bit is part of a test result register in each
processor which holds the results of tests conditional on local data.
Thus in ILLIAC IV the data conditional jumps of conventional
computers are accomplished by processor tests which enable or
disable local execution of subsequent commands in the instruction
stream.

Routing

Each processing element i in the ILLIAC IV has data routing
connections to 4 of its neighbors, processors i + 1, i - 1, i + 8,
and i - 8. End connection is end around so that, for a single array,
processor 63 connects to processors 0, 62, 7, and 55.

Interprocessor data transmissions of arbitrary distance are ac-
complished by a sequence of routings within a single instruction.
For a 64-processor array the maximum number of routing steps
required is 7; the average overall possible distances is 4. In actual
programs, routing by distance 1 is most common and distances
greater than 2 are rare.

Common operand broadcasting

Constants or other operands used in common by all the processors
are fetched and stored locally by the central control and broadcast
to the processors in conjunction with the instruction using them.
This has several advantages: (1) it reduces the memory used for

storage of program constants, and (2) it permits overlap of common
operand fetches with other operations.

Processor partitioning

Many computations do not require the full 64-bit precision of the
processors. To make more efficient use of the hardware and speed
up computations, each processor may be partitioned into either
two 32-bit or eight 8-bit subprocessors, to yield 51232-bit or
2048 %bit subprocessors for the entire ILLIAC IV set.

The subprocessors are not completely independent in that they
share a common index register and the 64-bit data routing paths.
The 32-bit subprocessors have separate enabled/disabled modes
for indexing and data routing; the 8-bit subprocessors do not.

Array partitioning

The 256 elements of ILLIAC IV are grouped into four separate
subarrays of 64 processors, each subarray having its own control
unit and capable of independent processing. The subarrays may
be dynamically united to form two arrays of 128 processors or one
array of 256 processors. The following advantages are obtained.

1 Programs with moderately dimensioned vector or matrix
variables can be more efficiently matched to the array size.

Failure of any subarray does not preclude continued proc-
essing by the others.

2

This paper summarizes the structure of the entire ILLIAC IV
system. Programming techniques and data structures for ILLIAC
IV are covered in a paper by Kuck [1968].

ILLIAC IV structure

The organization of the ILLIAC IV system is indicated in Fig. 1.
The individual processing elements (PES) are grouped in four
arrays, each containing 64 elements and a control unit (CU). The
four arrays may be connected together under program control to
permit multiprocessing or single-processing operation. The system
program resides in a general-purpose computer, a Burroughs
B 6500, which supervises program loading, array configuration
changes, and 1/0 operations internal to the ILLIAC IV system
and to the external world. To provide backup memory for the
ILLIAC IV arrays, a large parallel-access disk system (10 bits, lo9
bit per second access rate, 40-ms maximum latency) is directly
coupled to the arrays. There is also provision for real-time data
connections directly to the ILLIAC IV arrays.

322 Part 4 1 The instruction-set processor level: special-function processors

PARALLEL

DISK
ACCESS

Section 2 I Processors for array data

GENERAL
PURPOSE

COMPUTER
0-6500

-

*------
REAL TIME LINK

4
TO PERIPHERALS

AND COMPUTER NET

Fig. 1. ILLIAC IV system organization.

Array organization

The internal structure of an array is indicated in Fig. 2. The 64
processing elements in each array are arranged in a string and
are controlled by the control unit (CU) which receives the instruc-
tion string, generates the appropriate control signals and address
parameters of the instructions, and transmits them to the indi-
vidual processing elements for execution. In addition, each CU
can broadcast via the common data bus operands for common use
(e.g., constant).

Full word length (64 bits) communication exists between the
processing elements for exchange of information by organized rout-
ing of words along the string array. Direct routing connections
exist for nearest neighbors and also for processing elements 8 units
away. Routing for intermediate distances are generated via se-
quences of routes of + 1, - 1, + 8, or - 8. The end connections
of the string are circular, but can be broken and connected to
the ends of other arrays when the system is organized in one of
the multiarray configurations.

All processing elements of an array execute, of course, the same
instruction in unison under the control of the CU; local control
is provided by the mode bit in each processing element which
enables or disables the execution of the current instruction. The
control unit is able to sense the mode bits of all processing ele-
ments under its control and thereby monitor the state of operation.

Multiarra y configurations

To permit more optimal matching of array size to problem struc-
ture, the four arrays may be united in three different configura-
tions, as shown in Fig. 3. To enlarge the arrays, the end connections
of the PE strings are decoupled and attached to the ends of the
other arrays to form strings of 128 or 256 processors. For multiarray
configurations all CUs receive the same instruction string and any
data centrally accessed. The control units execute the instructions
independently, however, with inter-CU synchronization occurring
only on those instructions in which data or control information
must cross array boundaries. This simplifies and speeds up the in-
struction execution in multiarray configurations. The multiplicity
of array configurations introduces complexities in memory ad-
dressing which will be discussed in a later section.

Control unit

The array control unit (CU) has the following five functions.

1

2

To control and decode the instruction streams

To generate the control pulses transmitted to the processing
elements for instruction execution

To generate and broadcast those components of memory
addresses which are common to all processors

To manipulate and broadcast data words common to the
calculations of all the processors

3

4

ROUTING NETWORK

COMMON DATA BUS
(MEMORY ADDRESS AND COMMON OPERAND1 _ _ _ _ _ _

I 1l ll 1
PE61 _ _ _ PEO PE 1

I r '
__. __-2IJT'

CONTROL UNIT BUS UNSTRUCTION AND COMMON OPERANDS)

Fig. 2. Array structure.

Chapter 27 I The ILLIAC I V computer 323

F€ PE
0 631 127

9 I PE PE
0 63: 127 191; 255

FOUI WADRANT ARRAYS

PE
0 63! 127

-1 ["I I"]
SINGLE OLMMIANT ARRAYS

Fig. 3. Multiarray configurations.

5 To receive and process trap signals arising from arithmetic
faults in the processors, from internal 1/0 operations, and
from the B 6500.

The structure of the control unit is shown in Fig. 4. Principal
components of the CU are two fast-access buffers of 64 words each,
one associatively addressed, which holds current and pending
instructions (PLA), and the other a local data buffer (LDB). The
four 64-bit accumulator registers (CAR) are central to communi-
cation within the CU and hold address indexing information and
active data for logical manipulation or broadcasting. The CU
arithmetic unit (CULOG) performs addition, subtraction, and
Boolean operations; more complex data manipulations are rele-
gated to the PE's. To specify and control array configurations, there
are three 4-bit configuration control registers whose use will be
described in another section.

Instruction processing

All instructions are 32 bits in length and belong to one of two
classes: CU instructions, which generate operations local to the
CU (e.g., indexing, jumps, etc.), and PE instructions, which are
decoded in the CU and then transmitted via control pulses to all
the processing elements. Instructions flow from the array memory
upon demand in blocks of 8 words (16 instructions) into the in-
struction buffer. As the control advances, individual instructions
are extracted from the instruction buffer and sent to the advanced
instruction station (ADVAST) which decodes them and executes
those instructions local to the CU. In the case of PE instructions,
ADVAST constructs the necessary address or data operands and
stacks the result in a queue (FINQ) to await transmission to the
PES. PE instructions are taken from the bottom of the stack to

the h a 1 instruction station (FINST) which controls the broadcast
of address or data and holds the PE instruction during the execu-
tion period.

The use of the PE instruction queue permits overlap between
the CU and PE instruction executions; the amount of overlap
depends, of course, on the distribution of CU and PE instructions.
As in all overlap strategies, careful attention to the instruction
sequence by the programmer or compiler can result in consider-
able speedup of program execution.

The instruction buffer holds a maximum of 128 instructions,
sufficient to hold the inner loop of many programs. For such loops,
after initial loading, instructions are fetched from the buffer with
minimal delay.

A variety of strategies for instruction buffer loading were ex-
amined, and the following straightforward approach was taken.
When the instruction counter is halfway through a block of 8

INSTRUCTION ASSOCI4TlVE
BUFFER

LOCAL

BUFFER

AI

gpy, SEOUENCER

. .
CONTROL SIGNALS COMMON 0414 BUS 110 REWEST MOW FIF

FROM PES TO PES F R O M I M FROM PES

Fig. 4. Control-unit block diagram.

324 Part 4 I The instruction-set processor level: special-function Drocessors Section 2 I Processors for array data

words (16 instructions), fetch of the next block is initiated; the
possibility of pending jumps to different blocks is ignored. If the
next block is found to be already resident in the buffer, no further
action is taken; else fetch of the next block from the array memory
is initiated. On arrival of the requested block, the instruction
buffer is cyclically filled; the oldest block is assumed to be the
least required block in the buffer and is overwritten. Jump instruc-
tions initiate the same procedures.

Fetch of a new instruction block from memory requires a delay
of approximately three memory cycles to cover the signal trans-
mission times between the array memory and the control unit.
On execution of a straight line program, this delay is overlapped
with the execution of the 8 instructions remaining in the current
block.

In a multiple-array configuration, instructions are fetched from
the array memory specified by the program counter, and broadcast
simultaneously to all the participating control units. Instruction
processing thereafter is identical to that for single-array operation,
except that synchronization of the control units is necessary
whenever information, in the form of either data or control signals,
must cross array boundaries. CU synchronization must be forced
at all fetches of new instruction blocks, upon all data routing
operations, all conditional program transfers, and all configuration-
changing instructions. With these exceptions, the CUs of the
several arrays run independently of one another. This simplifies
the control in the multiple-array operation; furthermore, it permits
1/0 transactions with the separate array memories without steal-
ing memory cycles from the nonparticipating memories.

Memory addressing

Both data and instructions are stored in the combined memories
of the array. However, the CU has access to the entire memory,
while each PE can only directly reference its own 2,048-word PEM.
The memory appears as a two-dimensional array with CU access
sequential along rows and with PE access down its own column.
In multiarray configurations the width of the rows is increased
by multiples of 64.

The resulting variable-structure addressing problem is solved
by generating a fixed-form 20-bit address in the CU as shown in
Fig. 5. The lower 6 bits identify the PE column within a given
array. The next 2 bits indicate the array number, and the remain-
ing higher-order bits give the row value. The row address bits
actually transmitted to the PE memories are configuration-
dependent and are gated out as shown.

Addresses used by the PE’s for local operands contain three
components: a fixed address contained in the instruction, a CU

I R o w Artov Column

Single a r r a y

Y

A d d r e s s b i t s (12)
to PES

Fig. 5. Memory address structure.

index value added from one of the CU accumulators, and a local
PE index value added at the PE prior to transmission to its own
memory.

CU data operations .

The control unit can fetch either individual words or blocks of
8 words from the array memory to the local data buffer. In addi-
tion, it can fetch 1 bit selected from the 8-bit mode register of
each processing element to form a 64-bit word read into the CU
accumulator. The CU program counter (PCR) and the configura-
tion registers are also directly addressable by the CU. Data
manipulations (+ , -, Boolean) are performed on a selected CAR
and the result returned to the CAR. Data to be broadcast to the
processing elements is inserted into the FINQ along with the
accompanying instruction and transmitted to the PES at the appro-
priate time.

Configuration control

With the variety of array configurations for ILLIAC IV, it is
necessary to specify and control the subarrays which are conjoined
and to designate the instruction and data addressing. For this
purpose each CU has three configuration control registers (CFC),
each of 4-bit length, where each bit corresponds to one of the four
subarrays. The CFC registers may be set by the B 6500 or a CU
instruction.

CFCO of each CU specifies the array configuration in which
it is participating by means of a 1 in the appropriate bits of CFCO.
CFCl specifies the instruction addressing to be used within the
array. In a united configuration it is thus possible for the instruc-
tion stream to be derived from any subset of the united arrays.
CFC2 specifies the CU data addressing form in a manner similar
to the CFC 1 control of instruction addressing.

Chapter 27 I The ILLIAC IV computer 325

The addressing indicated by both CFCl and CFC2 must be
consistent with the actual configuration designated by CFCO, else
a configuration interrupt is triggered.

Trap processing

Because external demands on the arrays will be preprocessed
through the B 6500 system computer, the interrupt system for the
control units is relatively straightforward. Interrupts are provided
to handle B 6500 control signals and a variety of CU or array faults
(undefined instructions, instruction parity error, improper con-
figuration control instruction, etc.). Arithmetic overflow and under-
flow in any of the processing elements is detected and produces a
trap.

The strategy of response to an interrupt is an effective FORK
to a single-array configuration. Each CU saves its own status word
automatically and independently of other CU’s with which it may
previously have been configured.

Hardware implementation consists of a base interrupt address
register (BIAR) which is dedicated as a pointer to array storage
into which status information will be transferred. Upon receipt
of an interrupt, the contents of the program counter and other
status information and the contents of CAR0 are stored in the
block pointed to by the BIAR. In addifion, CAR 0 is set to contain
the block address used by BIAR so that subsequent register saving
may be programmed. Interrupt returns are accomplished through
a special instruction which reloads the previous status word and
CAR 0 and clears the interrupt.

Interrupts are enabled through a mask word in a special regis-
ter. The interrupt state is general and not unique to a specific
trigger or trap. During the interrupt processing, no subsequent
interrupts are responded to, although their presence is flagged in
the interrupt state word.

The high degree of overlap in the control unit precludes an
immediate response to an interrupt during the instruction which
generates an arithmetic fault in some processing element. To
alleviate this it is possible under program control to force non-
overlapped instruction execution permitting access to definite fault
information.

Processing element (PE)

The processing element, shown in Fig. 6, executes the data com-
putations and local indexing for operand fetches. It contains the
following elements.

1 Four 64-bit registers (A, B, R, S) to hold operands and results.
A serves as the accumulator, B as the operand register, R as

the multiplicand and data routing register, and S as a general
storage register.

An adder/multiplier (MSG, PAT, CPA), a logic unit (LOG),
and a barrel switch (BSW) for arithmetic, Boolean, and
shifting functions, respectively.

A 16-bit index register (RGX) and adder (ADA) for memory
address modification and control.

An 8-bit mode register (RGM) to hold the results of tests
and the PE ENABLE/DISABLE state information.

As described earlier, the PES may be partitioned into subproc-
essors of word lengths of 64, 2 x 32, or 8 x 8 bits. Figure 7 shows
the data representations available. Exponents are biased and rela-
tive to base 2. Table 1 indicates the arithmetic and logical opera-
tions available for the three operand precisions.

PE mode control

Two bits of the mode register (RGM) control the enabling or
disabling of all instructions; one of these is active only in the 32-bit
precision mode and controls instruction execution on the second
operand. Two other bits of RGM are set whenever an arithmetic
fault (overflow, underflow) occurs in the PE. The fault bits of all
PES are continuously monitored by the CU to detect a fault condi-
tion and initiate a CU trap.

Data paths

Each PE has a 64-bit wide routing path to 4 of its neighbors (kl,
?8). To minimize the physical distances involved in such routing,
the PES are grouped 8 to a cabinet (PUC) in the pattern shown
in Fig. 8. Routing by distance 5 8 occurs interior to a PUC; routing
by distance +1 requires no more than 2 intercabinet distances.

CU data and instruction fetches require blocks of 8 words,
which are accessed in parallel, 1 word per PUC, into a CU buffer
(CUB) 512-bit wide, distributed among the PUCs, 1 word per

Table 1 PE data operations

Operation time per element
~~

Operation 64 bit 2 x 32 bit 8 x 8 bit

+, - 200 ns 240 ns 80 ns
X 400 ns 400 ns
- 2200 ns 3040 ns
Boolean 80 ns
Shift 80/240 nst 160 ns

t (Single length)/(double length)

326 Part 4 I The instruction-set processor level: special-function processors Section 2 I Processors for array data

N E W S

DRIVERS/

RECEIVERS

R REGISTER ’

(RGR) *
1

CONTROL UNIT

MIR CDB 1 1
DRIVERS MODE

RECEIVERS (RGM)
AND - REGISTER

Jl

A REGISTER
(RGA)

LEADING

DETECTOR

1

ADDRESS

(MAR)
y REGISTERS k M E M O R y

1

Fig. 6. Processingelement block diagram.

Chapter 27 I The ILLIAC IV computer 3 2 7

S E (15) F(481

64 BIT

81

32 BIT

82 B3 B4 B5 I B6 B7

CUI CUZ cu3 16 48

0 BIT

cu4

S: SIGN
€:EXPONENT

F : MANTISSA

MEMORY
REWEST

PEMl PEMZ PEM,

Fig. 7. ILLIAC IV data representation.

PEM4

Fig. 8. (a) Electrical connectivity for routing. (b) Physical layout.

Fig. 9. 1/0 data path.

328 Part 4 1 The instruction-set processor level: special-function processors Section 2 1 Processors for array data

cabinet. Data is transmitted to the CU from the CUB on a 512-line
bus.

Disk and on-line 1/0 data are transmitted on a 1024-line bus
which can be switched among the arrays. Within each array,
parallel connection is made to a selected 16 of 64 PES, 2 per PUC.
Maximum data rate is one 1/0 transaction per microsecond or lo9
bits per second. The 1/0 path of 1024 lines is expandable to 4096
lines if required.

Processing element memo y (PEM)

The individual memory attached to each processing element is
a thin-film DRO linear select memory with a cycle time of 240
ns and access time of 120 ns. Each has a capacity of 2048 64-bit
words. The memory is independently accessible by its attached
PE, the CU, or 1/0 connections.

DiskIfile subsystem

The computing speed and memory of the ILLIAC IV arrays re-
quire a substantial secondary storage for program and data files
as well as backup memory for programs whose data sets exceed
fast memory capacity. The disk-file subsystem consists of six Bur-
roughs model IIA storage units, each with a capacity of 1.61 X los
bits and a maximum latency of 40 ms. The system is dual; each
half has a capacity of 5 x 1OX bits and independent electronics
capable of supporting a transfer rate of 500 megabits per second.
The data path from each of the disk subsystems becomes 1024
bits wide at its interface with the array. Figure 9 shows the
organization of the disk-file system.

B 6500 control computer

The B 6500 computer is assigned the following functions.

1

2

3

Executive control of the execution of array programs

Control of the multiple-array configuration operations

Supervision of the internal 1/0 processes (disk to arrays,
etc.)

External 1/0 processing and supervision

Processing and supervision of the files on the disk file sub-
system

Independent data processing, including compilation of
ILLIAC IV programs

4

5

6

To control the array operations, there is a single interrupt line
and a 16-bit data path both ways between the B 6500 and each
of the control units. In addition, the B 6500 has a control and data

GPC-IOC DISK TEST

PEM-DISK TEST

PEM TEST

CU TEST

PE TEST

0 TO BE TESTED

PARTIALLY TESTED

[zzl TESTED

Fig. 10. System diagnostic sequence.

path to the 1 / 0 controller (IOC) which supervises the disk, and
also direct connections to the array memories.

Reliability and maintenance of the ILLIAC IV

The progress in computer components from vacuum tubes to semi-
conductors over several generations has improved the mean-time-
between-failures for computers from tens of hours to several thou-
sand hours. By using larger scale integration, a tedfold increase

Chapter 27 1 The ILLIAC IV computer 329

in number of gates per system should be possible with comparable
reliability.

It is only by virtue of high-density integration (50- to 100-gate
package) that the design of a three-million-gate system can be
contemplated. Reliability of the major part of the system, 256
processing elements and 256 memory units, is expected to be in
the range of lo5 hours per element and 2 x lo3 hours per memory
unit.

The organization of the ILLIAC IV as a collection of identical
units simplifies its maintenance problems. The processing ele-
ments, the memories, and some part of power supplies are designed
to be pluggable and replaceable to reduce system down time and
improve system availability.

The remaining problems are (1) location of the faulty subsys-
tem, and (2) location of the faulty package in the subsystem.

Location of the faulty subsystem assumes the B 6500 to be
fault-free, since this can be determined by using the standard
B 6500 maintenance routines. The steps to follow are shown in
Fig. 10.

The B 6500 tests the control units (CU) which in turn test all
PES. PEMs are tested through the disk channel. This capability
for functional partitioning of the subsystems simplifies the diag-
nostic procedure considerably.

References

HollJ59; KuckD68; MurtJ66; SlotD62; UngeS58

330 Part 4 I The instruction-set processor level: special-function processors Section 2 1 Processors for array data

APPENDIX 1
A l . CLASSIFIED LIST OF CU INSTRUCTIONS

AI. 1 Data transmission

ALIT
BIN
BINX
BOUT
BOUTX Indexed block store.
CLC Clear CAR.
COPY
DUPI

DUPO

EXCHL

Add literal (24 bit) to CAR.
Block fetch to CU memory.
Indexed (by PE index) block fetch.
Block store from CU memory.

Copy CAR into CAR of other quadrant.
Duplicate inner half of CU memory ad-
dress contents into both halves of CAR.
Duplicate outer half of CU memory ad-
dress contents into both halves of CAR.
Exchange contents of CAR with CU mem-
ow address contents.

LDL

LIT

LOAD

LOADX

ORAC
SLIT
STL
STORE
STOREX

TCC W

TCW

A1.2 Skip and test

CTSB(: ")

4 Instructions:

4 Instructions:

Load CAR from CU memory address con-
tents.
Load CAR with 64-bit literal following the
instruction.
Load CU memory from contents of PE
memory address found in CAR.
Load CU memory from contents of PE
memory address found in CAR, indexed
by PE index.
OR all CARS in array and place in CAR.
Load CAR with 24-bit literal.
Store CAR into CU memory.
Store CAR into PE memory.
Store CAR into PE memory, indexed by
PE index.
Transmit CAR counterclockwise between
CUs in array.
Transmit CAR clockwise between CUs in
array.

Skip on nth bit of CAR. If Tis present, skip
if 1; if F is present, skip if 0. If A is pres-
ent, AND together bits from all CUs in
array before testing; if absent, OR together
bits from all GUS in array before testing.
CTSBT, CTSBTA, CTSBF, CTSBFA.
Skip on CAR equal to CU memory ad-
dress contents. The letters T, F , and A
have the same meaning as in CTSB above.
EQLT, EQLTA, EQLF, EQLFA.

4 Instructions:

4 Instructions:

LESS(:> A J

4 Instructions:

ONES(i>
4 Instructions:

ONEX(:

4 Instructions:

SKIP(:' ")

4 Instructions:
SKIP

8 Instructions:

Skip on index portion of CAR (bits 40
through 63) equal to bits 40 through 63 of
CU memory address contents. The letters
T, F, and A have the same meaning as in
CTSB above.
EQLXT, EQLXTA, EQLXF, EQLXFA.
Skip on index part of CAR (bits 40 through
63) greater than bits 40 through 63 of CU
memory address contents. The letters T,
F, and A have the same meaning as in
CTSB above.
GRTRT, GRTRTA, GRTRF, GRTRFA.
Skip on index part of CAR (bits 40 through
63) less than bits 40 through 63 of CU
memory address contents. The letters T, F ,
and A have the same meaning as in CTSB
above.
LESST, LESSTA, LESSF, LESSFA.
Skip on CAR equal to all 1's. The letters
T, F, and A have the same meaning as in
CTSB above.
ONEST, ONESTA, ONESF, ONESFA.
Skip on bits 40 through 63 of CAR equal
to all 1's. The letters T, F, and A have the
same meaning as in CTSB above.
ONEXT, ONEXTA, ONEXF, ONEXFA.
Skip on T-F flip-flop previously set. The
letters T, F, and A have the same meaning
as in CTSB above.
SKIPT, SKIPTA, SKIPF, SKIPFA.
Skip unconditionally.
Skip on index portion of CAR (bits 40
through 63) less than limit portion (bits 1
through 15). The letters T, F, and A have
the same meaning as in CTSB above. If I
is present, the index portion of CAR is in-
cremented by the increment portion of
CAR (bits 16 through 39) while the test is
in progress; if I is not present, no incre-
menting takes place.
TXLT, TXLTI, TXLTA, TXLTAI, TXLF,
TXLFI, TKLFA, TXLFAI.
Skip on index portion of CAR (bits 40
through 63) equal to limit portion of CAR
(bits 1 through 15). See CTSB for the
meaning of T, F, and A; see TXL above
for the meaning of I.

Chapter 27 1 The ILLIAC IV computer 331

8 Instructions:

8 Instructions:

ZER("1
4 Instructions:

4

A1.3

Al.4

ZERX(: "1
Instructions:

Transfer of control

TXET, TXETI, TXETA, TXETIA, TXEF,
TXEFI, TXEFA, TXEFIA.
Skip on index portion of CAR (bits 40
through 63) greater than limit portion of
CAR (bits 1 through 15). See CTSB for the
meaning of T, F, and A; see TXL above
for the meaning of 1.
TXGT, TXGTI, TXGTA, TXGTAI, TXGF,
TXGFI, TXGFA, TXGFAI.
Skip on CAR all 0's. See CTSB for the
meaning of T, F, and A.
ZERT, ZERTA, ZERF, ZERFA.
Skip on index portion of CAR (bits 40
through 63) all 0's. See CTSB for the
meaning of T, F, and A.
ZERXT, ZERXTA, ZERXF, ZERXFA.

EXEC

EXCHL

HALT
JUMP
LOAD

LOADX

STL

Route

RTE

A1.5 Arithmetic

ALIT
CADD

CSUB

INCRXC

A1.6 Logical

CAND
CCB
CEXOR

Execute instruction found in bits 32 through
63 of CAR.
Exchange contents of CAR with contents
of CU memory address.
Halt ILLIAC IV.
Jump to address found in instruction.
Load CU memory address contents from
contents of PE memory address found in
CAR.
Load CU memory address contents from
contents of PE memory address found in
CAR, indexed by PE index.
Store CAR into CU memory.

Route. Routing distance is found in address
field (CAR indexable), and register con-
nectivity is found in the skip field.

Add %-bit literal to CAR.
Add contents of CU memory address to
CAR.
Subtract contents of CU memory address
from CAR.
Increment index word in CAR.

AND CU memory to CAR.
Complement bit of CAR.
Exclusive OR CU memory to CAR.

CLC
COR
CRB
CROTL
CROTR
CSB
CSHL
CSHR
LEAD0

Clear CAR.
OR CU memory to CAR.
Reset bit of CAR.
Rotate CAR left.
Rotate CAR right.
Set bit of CAR.
Shift CAR left.
Shift CAR right.
Detect leading ONE in CAR of all quad-
rants in array.
Detect leading ZERO in CAR of all quad-
rants in array.
OR all CARS in array and place in CAR.

LEADZ

ORAC

A2. CLASSIFIED LIST OF PE INSTRUCTIONS

A2.1 Data tramisdon

LDA
LDB
LDR
LDS
LDX
LDCO
LDCl
LDC2
LDC3
LEX
ONES
STA
STB
STC
STR
STS
STX
SWAPA

SWAP

SWAPX

Load A register.
Load B register
Load R register.
Load S register.
Load X register.
Load CAR 0 from PE register.
Load CAR 1 from PE register.
Load CAR 2 from PE register.
Load CAR 3 from PE register.
Load exponent of A register.
Load all ONES into A register.
Store A register.
Store B register.
Store C register.
Store R register.
Store S register.
Store X register.
Interchange inner and outer contents of A
register.
Interchange the contents of A register and
B register.
Interchange outer operand of A register
and inner operand of B.

A2.2 Index operations

Set I on comparison of X register and op-
erand. The presence of L means set I if
X is less than operand; the presence of E
means set I if X is equal to operand; the
presence of G means set I if X is greater
than operand. If Z is present, increment X
while performing test; if I is absent, do not
increment X.

332 Part 4 I The instruction-set processor level: special-function processors Section 2 1 Processors for array data

6 Instructions:

JX{ i7 11
6 Instructions:

XI

XI0

A2.3 Mode setting,

EQB '

GRB

LSB
CHWS

3 Instructions:

3 Instructions:

3 Instructions:

l(:Iz
3 Instructions:

3 Instructions:

J{, i}
Z
0

15 Instructions:

L
IX{2 I]

IXL, IXLI, IXE, IXEI, IXG, IXGI.
Set J on comparison of X register and op-
erand. See above for meaning of L, E, G,
and I.
JXL, JXLI, JXE, JXEI, JXG, JXGI.
Increment PE index (X register) by bits 48
through 63 of operand.
Increment PE index of bits 48 through 63
of operand plus one.

/comparisons

Test A and B for equality bytewise.
Test B register greater than A register
bytewise.
Test B register less than A register bytewise.
Change word size.
Set 1 if A register is less than operand. L
means test logical; A means test arithmetic;
M means test mantissa.
ILL, IAL, IML.
Set 1 if A register is equal to operand. See
above for meaning of L, A, and M .

ILE, IAE, IME.
Set 1 if A register is greater than operand.
See above for meaning of L, A, and M.

ILG, IAG, IMG.
Set 1 if A register is equal to all zeros.

ILZ, IAZ, IMZ.
Set 1 if A register is equal to all ONES.

ILO, IAO, IMO.
Set J under conditions specified in set of
instructions immediately above.

6 Instructions:

6 Instructions:

3 Instructions:

3 Instructions:
ISN

SETE
SETEO
SETF
SETFO
SETG
SETH
SET1
SETJ
SETCO
SETC 1
SETC2
SETC3
IBA

JSN

A2.4 Arithmetic

ADB
SBB
ADD

SUB

JLL, JAL, JML, JLE, JAE, JME, JLG,
JAG, JMG, JLZ, JAZ, JMZ, JLO, JAO,
JMO.
Set 1 on comparison of X register and op-
erand. See Section A2.2 for meaning of L,
E, G, and I .

IXL, IXLI, IXE, IXEI, IXG, IXGI.
Set J on comparison of X register and op-
erand. See Section A2.2 for meaning of L,
E , G, and 1.
JXL, JXLI, JXE, JXEI, JXG, JXGI.
Set 1 on comparison of S register and op-
erand. See Section A2.2 for meaning of L,
E , and G.
ISL, ISE, ISG.
Set J on comparison of S register and op-
erand. See Section A2.2 for meaning of L,
E, and G.
JSL, JSE, JSG.
Set I from the sign bit of A register.
Set J from the sign bit of A register.
Set E bit as a logical function of other bits.
Set E l bit similarly.
Set F bit similarly.
Set F1 bit similarly.
Set G bit similarly.
Set H bit similarly.
Set 1 bit similarly.
Set J bit similarly.
Set Pth bit of CAR 0 similarly.
Set Pth bit of CAR 1 similarly.
Set Pth bit of CAR 2 similarly.
Set Pth bit of CAR 3 similarly.
Set 1 from Nth bit of A register; bit num-
ber is found in address field.
Set J from Nth bit of A register; bit num-
ber is found in address field.

Add bytewise.
Subtract operand from A register bytewise.
Add A register and operand as 64-bit
operands.
Subtract operand from A register as 64-
bit quantities.

S} Add operand to A register. The R , N, M ,
S specify all possible variants of the arith-
metic instruction. The meaning of each
letter, if present in the mnemonic, is

R round result
N normalize result
M mantissa only
S special treatment of signs.

Chapter 27 I The ILLIAC IV computer 333

16 Instructions: ADM, ADMS, ADNM, ADNMS, ADN,
ADNS, ADRM, ADRMS, ADRM,
ADRNMS, ADRN, ADRNS, ADR, ADRS,
AD, ADS.

ADEX Add to exponent.
DV{R, N, M, S} Divide by operand. See AD instruction for

meaning of R, N, M, and S.
16 Instructions: DVM, DVMS, DVNM, DVNMS, DVN,

DVNS, DVRM, DVRMS, DVRNM,
DVRNS, DVRN, DVRNS, DVR, DVRS,
DV, DVS.
Extend precision after floating point ADD.
Extend precision after floating point SUB-
TRACT.

LEX Load exponent of A register.
ML{R, N, M, S} Multiply by operand. See AD instruction

for meaning of R, N, M , and S.
MLM, MLMS, MLNM, MLNMS, MLN,
MLNS, MLRM, MLRMS, MLRNM,
MLRNMS, MLRN, MLRNS, MLR, MLRS,
ML, MLS.

EAD
ESB

16 Instructions:

SAN Set A register negative.
SAP Set A register positive.
SBEX Subtract exponent of operand from expo-

nent of A register.
SB{R, N, M, S} Subtract operand from A register. See AD

instruction for meaning of R, N, M, and S.
SBM, SBMS, SBNM, SBNMS, SBN, SBNS,
SBRM, SBRMS, SBRNM, SBRNMS, SBRN,
SBRNS, SBR, SB, SBS.

In 32-bit mode, perform MULTIPLY and
leave outer result in A register and inner
result in B register, with both results ex-
tended to 64-bit format.

16 Instructions:

NORM Normalize A register.
MULT

A2.5 Logical

AND A register with operand. The left-

the A register, the right-hand set, on the
operand. The meaning of these variants is

not present use true
N use complement
Z use all ZEROS
0 use all ONES.

hand set of letters specifies a variant on

16 Instructions:

CBA
CHSA

{ EOR {
16 Instructions:

LEX

16 Instructions:

RBA
RTAL
RTAML
RTAMR
RTAR
SAN
SAP
SBA
SHABL
SHABR
SHAL
SHAML
SHAR
SHAMR

AND, ANDN, ANDZ, ANDO, NAND,
NANDN, NANDZ, NANDO, ZAND,
ZANDN, ZANDZ, ZANDO, OAND,
OANDN, OANDZ, OANDO.
Complement bit of A register.
Change sign of A register.

Exclusive OR A register with operand.

EOR, EORN, EORZ, EORO, NEOR,
NEORN, NEORZ, NEORO, ZEOR,
ZEORN, ZEORZ, ZEORO, OEOR,
OEORN, OEORZ, OEORO.
Load exponent of A register.

OR A register with operand.

OR, ORN, ORZ, ORO, NOR, NORN,
NORZ, NORO, ZOR, ZORN, ZORZ,
ZORO, OOR, OORN, OORZ, OORO.
Reset bit A register to ZERO.
Rotate A register left.
Rotate mantissa of A register left.
Rotate mantissa of A register right.
Rotate A register right.
Set A register negative.
Set A register positive.
Set bit of A register to ONE.
Shift A and B registers double-length left.
Shift A and B registers double-length right.
Shift A register left.
Shift A register mantissa left.
Shift A register right.
Shift A register mantissa right.

Section 3

Processors defined by a microprogram

Processors defined by a microprogram have only recently come
into existence, although Wilkes suggested the idea in 1951. The
discussion in Chap. 3 (page 71) suggests reasons why this
controversial idea has taken so long to be adopted.

Microprogramming and the design of the control circuits
in an electronic computer

Chapter 28 is an extension of an earlier paper by Wilkes. It
includes an example of a microprogrammed processor (page
337). In the earlier paper, The Best Way to Design an Automatic
Computing Machine [Wilkes, 1951a1, the essential ideas of
microprogramming were first outlined.

The observation that an instruction set, or ISP, should be
looked at as a program to be interpreted is the basis of micro-
programming. The idea of an ISP is our acknowledgment that
we, too, view a processor as a program.

There is little to say about this chapter; it is historical, yet
timely and well written. Microprogramming, like other of Wilkes’
ideas, is present in many of our computers.

chines they have designed. This formal ruse can be used to
make the design seem difficult but well founded-certainly not
arbitrary, Kampe truthfully admits to making decisions in a
somewhat arbitrary fashion.

The SD-2 microprogram structure, unlike that of the IBM Sys-
tem 360 models, has a P.microprogram which is similar to the
external Pc which it defines. As such, the main question about
this design is whether it is cheaper to have a single, hard-
wired Pc rather than a computer within a computer. The
Packard Bell 440 [Boutwell and Hoskinson, 19631 is an example
of a better-known Pc whose internal P resembles the SD-2.

The authors of this book feel that, when the internal and
external P’s are so similar, it may be better to have a single
Pwhich suits both needs. To gain speed and still define powerful
functions, Mp could be made up of both the conventional Mp
and a small, fast Mp.

The Hewlett-Packard HP 9100A computing calculator

The HP 9100A (Chap. 20) is discussed in Part 3, Sec. 4, page
235.

The design of a general-purpose microprogram-
controlled computer with elementary structure

The SD-2 computer (Chap. 29) is described by Kampe in a
casual but highly communicative fashion. Most engineers tend
to be somewhat formal and stuffy when describing the ma-

Microprogrammed implementation of EULER
On the IBM System 360’Mode1 30

This microprogrammed processor in Chap. 32 is also discussed
as a language processor in Part 4, Sec. 4, page 348.

,

334 .
\

Chapter 28

Microprogramming and the design
of the control circuits in an electronic
digital computer1

M . V. Wilkes / J. B. Stringer

1. Introduction

Experience has shown that the sections of an electronic digital
computer which are easiest to maintain are those which have a
simple logical structure. Not only can this structure be readily
borne in mind by a maintenance engineer when looking for a fault,
but it makes it possible to use fault-locating programmes and to
test the equipment without the use of elaborate test gear. It is
in the control section of electronic computers that the greatest
degree of complexity generally arises. This is particularly so if the
machine has a comprehensive order code designed to make it
simple and fast in operation. In general, for each different order
in the code some special equipment must be provided, and the
more complicated the function of the order the more complex this
equipment. In the past, fear of complicating unduly the control
circuits of the machines has prevented the designers of electronic
machines from providing such facilities as orders for floating-point
operations, although experience with relay machines and with
interpretive subroutines has shown how valuable such orders are.
This paper describes a method of designing the control circuits
of a machine which is wholly logical and which enables alterations
or additions to the order code to be made without ad hoc altera-
tions to the circuits. An outline of this method was given by one
of us [Wilkes, 1951~1 at the Conference on Automatic Calculat-
ing Machines at the University of Manchester in July 1951.

The operation called for by a single machine order can be
broken down into a sequence of more elementary operations; for
example, shifting a number in the accumulator one place to the
right may involve, first, a transfer of the number to an auxiliary
shifting register, and secondly, the transfer of the number back
to the accumulator along an oblique path. These elementary
operations will be referred to as micro-operations. Basic machine
operations, such as addition, subtraction, multiplicatio-tc., are
thought of as being made up of a micro-programme of micro-

. 'Proc. Cambridge Phil. Soc., pt. 2, vol. 49, pp. 230-238, April, 1953.

operations, each micro-operation being called for by a micro-order.
The process of writing a micro-programme for a machine order
is very similar to that of writing a programme for the whole
calculation in terms of machine orders.

For the method to be applicable it is necessary that the
machine should contain a suitable permanent rapid-access storage
device in which the micro-programme can be held-a diode matrix
is proposed in the case of the machine discussed as an example
below-and that means should be provided for executing the
micro-orders one after the other. It is also necessary that provision
should be made for conditional micro-orders which play a role
in micro-programming similar to that played by conditional orders
in ordinary programming.

Since the only feature of the machine which has to be designed
specially for any particular set of machine orders is the configura-
tion of diodes in the matrix, or the corresponding configuration
in whatever equivalent device is used, there is no difficulty in
making changes to the order code of the machine if experience
shows them to be desirable; in fact, the design of the machine
in the first place can be carried out completely without a firm
decision on the details of the order code,being taken, as long as
care is taken to provide accommodation for the greatest number

#of micro-orders that are likely to be required. It would even be
possible to have a number of interchangeable matrices providing
for different order codes, so that the user could choose the one
most suited to his particular requirements.

2.

The system will be described in relation to a parallel machine
having an arithmetical unit designed along conventional lines. This
will contain a set of registers and an adder together with a switch-
ing system which enables the micro-operations in the various
machine orders to be performed. Some of the micro-operations
will be simple transfers of a number from one register to another
with or without shifting of the number one place to the left or

Description of the proposed system

335

336 Part 4 I The instruction-set processor level: special-function processors

the right, while others will also involve the use of the adder. Any
particular micro-operation can be performed by applying pulses
simultaneously to the appropriate gates of the switching system.
In certain cases it may be possible for two or more micro-opera-
tions to take place at the same time.

It will be convenient to regard the control system as consisting
of two parts. A register is needed to hold the address of the next
order due to be executed, and another to hold the current order
while it is being executed, or at any rate during part of that time.
Some means of counting the number of steps in a shifting operation
or a multiplication must also be provided. One method of meeting
these requirements is to provide a group of registers and an adder
together with a switching system which enables transfers of num-
bers, with or without addition, to be made. This part of the control
system will be called the control register unit. In any case the
operations which need to be performed on the numbers standing
in the control register unit during the execution of an order are,
like the operations performed in the arithmetical unit, regarded
as being made up of a sequence of micro-operations, each of which
is performed by the application of pulses to appropriate gates.

The other part of the control system is concerned with control
of the sequence of micro-orders required to carry out each machine
order, and with the operation of the gates required for the execu-
tion of each micro-order. This will be called the micro-control unit;
it consists of a decoding tree, two rectifier matrices and two regis-
ters (additional to those of the control register unit) connected
as indicated in Fig. 1, which shows how the pulses used to operate
the gates in the arithmetical unit and control register unit are
generated. A series of control pulses from a pulse generator are
applied to the input of the decoding tree. Each pulse is routed
to one of the output lines of the tree, according to the number
standing in register I. The output lines all pass into a rectifier
matrix A and the outputs of this matrix are the pulses which
operate the various gates associated with micro-operations. Thus
one input line of the matrix corresponds to one micro-order. The
address of the micro-order is the number which must be placed
in register I to cause the control pulse to be routed to the corre-
sponding line. The output lines from the tree also pass into a
second matrix B, which has its outputs connected to register 11.
This matrix has wired on it the address of the micro-order to be
performed next in time so that the address of this micro-order is
placed in register 11. Just before the next control pulse is applied
to the input of the tree a connexion is established between register
I1 and register I, and the address of the micro-order due to be
executed next is transferred into register I. In this way the de-
coding tree is prepared to route the next incoming control pulse

Section 3 I Processors defined by a microprogram

I
M a t r i x B
c _ _ _ _ _ - -7 r - - - - - - 1

C o n t r o

pulses

-
To ar i thmet ica l From

uni t , c o n t r o l cond l t iona '
registers, e tc . flip-flop

Fig. 1. Microcontrol unit.

to the correct output line. Thus application of pulses alternately
to the input of the tree and to the gate connecting registers I and
I1 causes a predetermined sequence of micro-orders to be executed.

It is necessary to have means whereby the course of the micro-
programme can be made conditional on whether a given digit in
one of the registers of the arithmetical unit or control register unit
is a 1 or a 0. The means of doing this is shown at X in Fig. 1.
A two-way switch, controlled by a special flip-flop called a condi-
tional flip-flop, is inserted between matrix A and matrix B. The
conditional flip-flop can be set by an earlier micro-order with any
digit from any one of the registers. Two separate addresses are
wired into matrix B, and the one which passes into register I, and
thus becomes the address of the next micro-order, is determined
by the setting of the conditional flip-flop.

Conditional micro-orders play the same part in the construction
of micro-programmes as conditional orders play in the construction
of ordinary programmes; apart from their obvious uses in micro-
programmes for such operations as multiplication and division,
they enable repetitive loops of micro-orders to be used.

If desired, two branchings may be inserted in the connexions
between matrix A and matrix B, so that any one of four alternative
addresses for the next micro-order may be selected according to
the settings of two conditional flip-flops. Another possibility is to

Chapter 28 1 Microprogramming and the design of the control circuits in an electronic digital computer 337

make the output from the decoding tree branch before it enters
matrix A so that the nature of the micro-operation that is per-
formed depends on the setting of the conditional flip-flop.

The micro-programme wired on to the matrices contains sec-
tions for performing the operations required by each order in the
basic order code of the machine. To initiate the operation it is
only necessary that control in the micro-programme should be sent
to the correct entry point. This is done by placing the function
digits of the order in the least significant part of register 11, the
other digits in this register being made zero. The micro-programme
is constructed so that when this number passes into register I,
control in the micro-programme is sent to the correct entry point.

The switching system in the arithmetical unit may either be
designed to permit a large variety of micro-operations to be per-
formed, or it may be restricted so as to allow only a small number
of such operations. In a machine with a comprehensive order code
there is much to be said for having the more flexible switching
system since this will enable an economy to be made in the number
of micro-orders needed in the micro-programme.

A similar remark applies in connexion with the degree of flexi-
bility to be provided when designing the switching system for the
control register unit. If the specification of the machine allows
the same number of registers to be used in the arithmetical and
control sections, the construction of these two sections may be
identical except as far as the number of digits is concerned. In
a new machine under construction in the Mathematical Labora-
tory, Cambridge, the registers are being constructed in basic units
each containing five registers and an adder-subtractor together
with the associated switching system. It is hoped that it will be
possible to use identical units in the arithmetical unit and in the
control register unit.

3. Etample

An example will now be given to show the way in which a micro-
programme can be drawn up for a machine with a single-address
order code covering the usual operations. It is supposed that the
arithmetical unit contains the following registers:

A multiplicand register

B accumulator (least significant half)

C accumulator (most significant half)

D shift register

The registers in the control register unit are as follows:

E register connected to the access circuits of the store; the
address of a storage location to which access is required
is placed here

sequence control register; contains address of next order due F
to be executed

G register used for counting

It was assumed when drawing up the micro-programme that there
was an adder-subtractor in the arithmetical unit with one input
permanently connected to register D, and a similar adder-sub-
tractor in the control register unit with one input permanently
connected to register G. For convenience it was assumed that the
switching systems in each case were comprehensive enough to
provide any micro-operation required. I t was further supposed that
the arithmetical unit provided for 20 digits and that the numbers
0, 1 and 18 could be introduced at will into one of the registers
or the adder of the control register unit. Two conditional flip-flops
are used. All micro-operations including those involving access to
the store are supposed to take the same amount of time. Reference
will be made to this point in r54.

Table 1 gives the order code of the machine, and Table 2 the
micro-programme. Each line of Table 2 refers to one micro-order;
the first column gives the address of the micro-order, the second
column specifies the micro-operations called for in the arithmetical
unit of the machine, and the third column specifies the micro-

Table 1

Notation: Acc = accumulator
Accl = most significant half of accumulator
Accz = least significant half of accumulator

C(X) = contents of X (X = register or storage location)
n = storage location n

Order Effect of order

A n
S n

V n
T n

C(Acc) + C(n) to Acc
C(Acc) - C(n) to Acc

C(Accz).C(n) to Acc, where C(n) 2 0
C(Acc1) to n, 0 to Acc

W TI C(n) to A C C ~

U n C(ACC~) to n
R n
L n C(ACC).~"+' to ACC

C(ACC) .Z-(n+l) to ACC

G n

I n
0 n

If C(Acc) < 0, transfer control to n; if C(Acc) 2 0, ignore
(i.e., proceed serially)
Read next character on input mechanism into
Send C(n) to output mechanism

338 Part 4 1 The instruction-set processor level: special-function processors Section 3 1 Processors defined by a microprogram

Table 2

Notation: A , B , C, . . . stand for the various registers in the arithmetical and control register units (see 03 of the text). 'C to D ' indicates that
the switching circuits connect the output of register C to the input of register D; '(D+A) to C' indicates that the output of register A i s con-
nected to the one input of the adding unit (the output of D is permanently connected to the other input), and the output of the adder to register C.

A numerical symbol n in quotes (e.g., In') stands for the source whose output is the number n in units of the least significant digit.

Ari thmeticul
unit

Control
register unit

Conditional
fliP-.fEop

Next
micro-order

Set Use 0 1

0
1
2
3
4

A 5
S 6
H 7
V 8
T 9
u 10
R 11
L 12
G 13
I 14
0 15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

C to D
C to D
Store to B
Store to A
C to Store
C to Store
B to D
C to D

Input to Store
Store to Output
(D+Store) to C
(D- Store) to C

D to B (R) t
C to D
D to C (R)
D to C (L)$
B to D
D to B (L)
'0' to B
B to C
'0' to c
B to D
D to B (R)
C to D (R)
D to C
(D + A) to C
B t o D
D to B (R)
C to D (R)
D to C
(D-A) to C

F to G and E
(G+ ' l ') to F
Store to G
G to E
E to decoder

E t o G
E to G
E to G

(G-'l') to E

(G-'l') to E

'18' to E
E to G
(G- ' l ') to E

1
2
3
4

16
17
0
27
25
0
19
22
18
0
0
0
0
0
20
21
11
23
24
12
26
0
28
29
30
31
28
28
34
35
36
0
0

-

1

0

0

32
33
33

37

t Right shift. The switching circuits in the arithmetic unit are arranged so that the least Significant digit of register C is placed in the most significant place of register
B dur ing r ight shif t micro-operations, and the most significant digit of register C (s ign digit) is repeated (thus making the correction for negative numbers).

$ Left shift. The switching circuits are similarly arranged to pass the most significant digit of register B to the least significant place of register Cdur ing left shift micro-
operations.

Chapter 28 I Microprogramming and the design of the control circuits in an electronic digital computer 339

operations called for in the control register unit. The fourth col-
umn shows which conditional flip-flop, if any, is to be set and the
digit which is to be used to set it; for example, (1)C, means that
flip-flop number 1 is set by the sign digit of the number in register
C, while (2)G, means that flip-flop number 2 is set by the least
significant digit of the number in register G. In the case of uncon-
ditional micro-orders columns 5 and 7 are blank and column 6
contains the address of the next micro-order to be executed. In
the case of conditional micro-orders column 5 shows which flip-flop
is used to operate the conditional switch and columns 6 and 7
give the alternative addresses to which control is to be sent when
the conditional flip-flop contains a 0 or a 1 respectively.

Micro-orders 0 to 4 are concerned with the extraction of orders
from the store. They serve to bring about the transfer of the order
from the store to register E and then cause the five most significant
digits of the order to be placed in register I1 with the result that
control is transferred to one of the micro-orders 5 to 15, each of
which corresponds to a distinct order in the machine order code.
In this way the sequence of micro-orders needed to perform the
particular operation called for is begun.

The way in which the various operations are performed can
be followed from Table 2. In the section dealing with multipli-
cation, it is assumed that numbers lie in the range -1 < x < 1
and that negative numbers are represented in the machine by their
complements with respect to 2. It will be noted that the process
of drawing up a micro-programme is very similar to that of draw-
ing up an ordinary programme for an automatic computing ma-
chine and the problems involved are very much alike.

4. The timing of micro-operations

The assumption that all micro-operations take the same length
of time to perform is not likely to be borne out in practice. In
particular in a parallel machine it may not be possible to design
an adder in which the carry propagation time is sufficiently short
to enable an addition to be performed in substantially the same
length of time as that taken for a simple transfer. It will be neces-
sary, therefore, to arrange that the wave-form generator feeding
the decoding tree should, when suitably stimulated by a pulse from
one of the outputs from matrix A, supply a somewhat longer pulse
than that normally required. Other operations may take many times
as long to perform as an ordinary micro-order; for example, access
to and from the store (particularly if a delay store is used) and
operation of the input and output devices of the machine. The
sequence of operations in the micro-programme must therefore
be interrupted. One way of doing this is to prevent pulses from

the wave-form generator reaching the decoding tree during the
waiting period. This method, although quite feasible, appears to
involve just the kind of complication which the present system
is designed to avoid. A more attractive system is to make the
machine wait on a conditional micro-order which transfers control
back to itself unless the associated conditional flip-flop is set.
Setting of this flip-flop takes place when the operation is com-
pleted, and control then goes to the next micro-order in the se-
quence. The machine is thus in a condition of ‘dynamic stop’ while
waiting for the operation to be completed. This system has the
advantage that no complication is introduced into the units sup-
plying the wave-forms to the decoding tree and that the control
equipment required is similar to that already provided for other
purposes.

5. Discussion

It will be seen that the equipment needed to execute a compli-
cated order in the machine order code is of the same form as that
required for a simple one, namely outlets from the decoding tree
and diodes in the matrices. Quite complicated orders can, there-
fore, be built into the machine without difficulty. In particular,
arithmetical operations on numbers expressed in floating binary
form and other similar operations can be micro-programmed and
it is found that they do not involve very large numbers of micro-
orders. For example, a micro-programme providing for the float-
ing-point operations of addition, subtraction, and multiplication
needs about 70 micro-orders. The switching system in the arith-
metical unit must, of course, be designed with these operations
in view. The decoding tree and matrices of a parallel machine
with 40 digits in the arithmetical unit and provision for 256
micro-orders would only amount to about 15% of the total equip-
ment in the machine, so that it appears that such a machine can
well be provided with built-in facilities of considerable complexity.

The number of micro-orders needed in a complicated micro-
programme can sometimes be reduced by making use of what
might be called micro-subroutines. For example, when two num-
bers have to be added together in a floating binary machine, some
shifting of one of them is usually necessary before the addition
can take place. By making the micro-orders for this shifting opera-
tion serve also when a multiplication is called for, considerable
saving is effected.

Four registers is the bare minimum needed in the arithmetical
unit in order to enable the basic arithmetical operations to be
performed. If any extension or refinement of the facilities provided
is required, it may be necessary to increase the number of registers.

340 Part 4 1 The instruction-set processor level: special-function processors

For example, four registers are not sufficient to enable a succession
of products to be accumulated without the transfer of intermediate
results to the store, since the accumulator must be clear at the
beginning of a multiplication. The addition of one register enables
the accumulation of products to be provided for in the micro-
programme. If this register is associated with the outlet from the
store, it also enables some of the waiting time for storage access
to be eliminated. To do this the micro-programme is arranged to
call for a number from the store as soon as it is known that the
number will be required and to continue with other necessary
micro-operations before finally proceeding to use the number. The
‘dynamic stop’ would occur just before the number is required for
use. Another way of saving time is to arrange, in the case of those
orders which permit it, for the next order to be extracted from
the store before the operation currently being performed has been
completed.

The minimum number of registers required in the control
register unit of the machine for the simplest mode of operation
is three. If extra registers are provided facilities similar to those
provided by the B-lines in the machine at Manchester University
could be included in the micro-programme.

Section 3 1 Processors defined by a microprogram

6.

All the discussion so far has been with reference to parallel ma-
chines because the technique described in this paper is most
adapted to that type of machine. It is, however, possible to design
a serial machine along the same lines. In a parallel computer with
an asynchronous arithmetical unit every gate requires only one
kind of wave-form to operate it and the timing of that wave-form
is not critical. In a serial machine, on the other hand, different
gates require different wave-forms and the same gate may require
different wave-forms at different times; further, all these wave-
forms must be critically timed. These complications may be
handled by including in the micro-control unit a third matrix, C,
for selecting the appropriate wave-form for each micro-order. The
main wave-form, routed by the decoding tree and matrix A, opens
a gate which is fed by a wave-form selected by matrix C. This
enables a wave-form of correct duration to be applied to any
selected gate in the arithmetical or control sections of the ma-
chine.

Microprogramming applied to serial machines

References

WilkM5la; BoutE63; FlynM67; GreeJ64, 66; MercR57; Patz67; RosiR69;
TuckS67; WilkM58b, 69; WebeH67

Chapter 29

The design of a general-purpose
microprogram-controlled computer
with elementary structure1

Thomas W. Kampe

Summary This paper presents the design of a parallel digital computer
utilizing a 20-psec core memory and a diode storage microprogram unit.
The machine is intended as an on-line controller and is organized for ease
of maintenance.

A word length of 19 bits provides 31 orders referring to memory loca-
tions. Fourteen bits are used for addressing, 12 for base address, one for
index control, and one for indirect addressing. A 32nd order permits the
address bits to be decoded to generate special functions which require no
address.

The logic of the machine is resistor-transistor; the arithmetic unit is
a bus structure which permits many variants of order structure.

In order to make logical decisions, a “general-purpose” logic unit has
been incorporated so that the microcoder has as much freedom in this area
as in the arithmetic unit.

Introduction

This paper discusses the logical design of a binary, parallel, real-
time computer. Only those aspects of packaging and circuitry
which bear directly on this topic will be considered.

Since the specifications for the job a computer is to perform
are not enough to fix the design, the logical designer is faced with
an undetermined system. One of his main functions is to analyze
the system in its natural environment, i.e., with malfunctions,
operator errors, etc., and to supply the remainder of the side
conditions which do fix the design.

In this discussion, the exposition will be directed toward the
design philosophy which led to a machine now being built. In
order to accomplish this, we shall consider the functional require-
ments, their analysis in terms of the state of the art, the basic
design decisions, and, finally, a description of the computer as it
stands.

‘ I R E Trans., EC-9, vol. 2, pp. 208-213, June, 1960.

Functional requirements

The design of the computer (known, for a variety of reasons, as
the SD-2) was undertaken to supply a computer capable of mod-
erately fast arithmetic with perhaps five decimal places of accu-
racy and 3000 or more words of storage. Furthermore, the com-
puter must reside in a hostile environment (a small house, 0” to
85°C temperature), withstand severe shocks, and be maintained
by men with only two weeks training on the system. The volume
limitation is 40 cubic feet. Within this space must reside the
control computer, memory, power supplies, complete maintenance
facilities, and sufficient input/output equipment to handle 20 shaft
position outputs, 30 such inputs, numerous switch settings, and
20 or more display or relay signals.

The final specification (or blow) was that 15 months were
available from the start of preliminary design to the delivery of
an operating instrument with debugged program.

Design analysis

The maintenance requirement was evidently the major problem.
In order to achieve the simplicity required, two design criteria
were necessary.

First, the computer had to be readily understood. This implied
that the usual clever logical tricks such as intensive time sharing
of control and arithmetic were undesirable.

Second, if built-in maintenance facilities were to be kept sim-
ple, the machine must be designed with this in mind.

Since temperature and reliability were important, an extremely
conservative approach had to be taken with respect to component
performance.

With the schedule requirements, a machine which could be
designed and released in pieces was needed. Since the control
system is usually the most troublesome part of a computer to
design, a simple control was needed.

341

342 Part 4 I The instruction-set processor level: special-function processors

The volume available, together with the schedule, required a
logical design with natural packaging properties in the sense that
it should break, in a natural way, into logical packages of a reason-
able size having a minimum of interpackage communication.

Design decisions

The need for 2000 operations per second poses a serious access
problem with a serial memory, unless one resorts to several simul-
taneously operating control units which are neither small nor
simple. Hence, a random access memory seemed advisable. Mag-
netic core memories at 85°C are a problem, but they can be built,
provided memory cycle time is not too short. The memory was
chosen as 4096 words of core storage, with a 20-psec cycle time.

The requirement for training a man in two weeks to maintain
the machine argues for a simple-structured parallel machine.
Providing that much use is made of asynchronous transfer, there
are a variety of simple maintenance methods, particularly if a bus
structure is adopted. Also, asynchronous, or semi-asynchronous,
parallel machines require only average performance of a set of
components, not of any particular component; the central limit
theorem of statistics can come to the aid of reliability. This ap-
proach was finally adopted.

The simplicity of both design and understanding is aided by
the use of a microprogram control system. Further, maintenance
is made rather simple by two provisions on the maintenance con-
sole.

The first of these is a manner of going through the micro-
program on a step-by-step basis. While this tests little of the
dynamics, it can often locate totally defective parts, and it helps
factory checkout immeasurably.

The second is a means of taking out the microprogram unit and
substituting a set of switches. This permits a maintenance man
to exercise specific registers, or the memory, at will.

This is a powerful tool, and is almost free with a microprogram
control. Finally, and rather pragmatically, microprogramming
permits “last minute” changes in machine operation without seri-
ous hardware modifications. This approach was chosen.

Regardless of the control used, at various times in the process
of executing orders, decisions must be made. Occasionally these
are on a single bit, more often on two, and occasionally on more
than two. If one excludes order decoding, only such functions as
zero detection require the use of more than two bits. At this point,
the logical designer is faced with a rather sticky decision: whether
to design a specific set of decision logic, which is cheap to build

Section 3 1 Processors defined by a microprogram

but sometimes messy, or to use some microcontrolled logic-
generating scheme.

In this case, the latter alternative was taken. A unit, called (for
several obscure reasons) the alteration unit, was designed which
amounted to a three-address, one-bit unit. It can generate any
Boolean function of two binary variables and transmit this value
to another variable. A special set of logic was needed for detecting
zeros.

Because of the rather wild nature of the inputs, it seemed
desirable to include a trapping mode. The logic for this was made
an adjunct to the alteration unit.

The circuitry chosen was resistor-transistor logic, which yields
either Sheffer stroke or NOR logic, as one prefers, high or low
true logic, and p-n-p or n-p-n transistors. In this case, the com-
bination was high true logic and p-n-p transistors, so that the
logical operation is Sheffer stroke. Because of temperature and
reliability requirements, the maximum frequency available was a
250-kc square wave. This gave a cycle time of 4 p e c available
for asynchronous transfer in any sequence of logic.

An index register seemed advisable because of the amount of
data processing. Thus, additions were needed for indexing, arith-
metic, and counter advance. It seemed undesirable to have more
than one parallel adder, so that an adder accessible to all registers
was chosen. This was another argument for a bus structure.

Because of the multiplicity of problems being handled simul-
taneously, one index register was not really enough. Rather than
add another register, indirect addressing was chosen.

At this point, one needs 12 bits for address, one for index
tagging, and one to specify whether the address is direct or in-
direct, or 14 bits for operand selection. Thirty-two orders was a
tight minimum, so the minimum word length was 19 bits. Since
this was consistent with five decimal place accuracy, it was tenta-
tively chosen. It was decided, however, to design a structure
basically suited to any length word.

Shifting is necessary to multiply and divide and is required on
two registers, yet shift registers for asynchronous operation are
complex. Hence, it was decided to put the shift facility on the
data transfer bus. By providing complementing here, subtraction
could be generated.

It was decided to use two-complement arithmetic, first because
of the simplicity of the multiply-divide logic, and second because
it avoids the whole negative zero question.

The precise number of microsteps needed was determined by
a trial microprogram. The machine was designed for up to 512
microsteps although only 384 are now used. Eight bits were in

Chapter 29 1 The design of a general-purpose microprogram-controlled computer with elementary structure 343

I .
I
I OUTPUT

DISTRIBUTOR ‘ I
I

a register, called J, and one was a flip-flop, TO, in the alteration
unit, thus allowing fixed sequence with a one-bit micropro-
grammed choice. This, incidentally, is the genesis of the name
“alteration unit.”

J

ARITHMETIC
UNIT c-

The SD-2 computer

Figure 1 is a block diagram of the computer. There will be, pres-
ently, a block-by-block description of the computer.

The two boxes on the left were added to facilitate input and
output. The output buffer holds 20 words, and outputs all values
in a 4.8-msec cycle, thus providing for nearly continuous outputs.
The output distributor is a selection system which allows the
programmer to transmit the contents of the accumulator onto one
of eight channels to control external devices. The “inputs” line
represents up to 32 channels which can be read into the accumu-
lator. The numbers 8 and 32 are purely arbitrary; the upper limit
of 32 is a microcode convenience only.

The alteration unit, in addition to its decision making duties,
has several other functions. It has a five bit counter, used for
microsubroutines, which can be set to any value chosen or to any
number on the arithmetic unit. The alteration unit can sense when
it goes from all zeros to all ones. In addition, the flip-flops con-

I I

BUFFER

I [ORDER
I
I

I
I
I
I
I
I
I
I
1
I
I

TRAP
SIGNAL

I

Fig. 1. Computer block diagram.

- FROM
MEMORY I ELSETERE

p-’ d BUS]
Fig. 2. Arithmetic flow.

trolling initial carry in the adder, end carry in shifting, and mem-
ory read or write control are in this unit.

Figure 2 is a block diagram of the arithmetic unit. Information
may be put onto the b bus from any register, or from outside
sources, such as inputs, or constants from the microprogram unit;
thence to the shift unit, and finally to the d bus. From the d bus,
it may be sent to other places, such as the output distributor,
microprogram register, etc., or to an arithmetic register.

Data and addressing between memory and the arithmetic unit
have their own private channels, leaving the bus free during
memory operation. The memory buffer and address register are
a part of the arithmetic unit.

Figure 3 is an expanded view of this unit. Capital letters stand
for registers, small letters for logical entities. Registers A, B, C
and E are simply storage registers, and are used as the Accumu-
lator, B-line, Counter and Extension (least significant arithmetic)
register. The Distributor, D, is the memory buffer, and is often
used as working storage. Registers F and G are the inputs to the
adder logic. The a logic is the algebraic sum of (F) + (G); e is
a rather weird logic, (e = F + G, which is used in generating
the extract order); f, which yields FG + F G , is used for the
“exclusive” or generation; c is the carry logic; g is a constant
emitter, under microprogram control; and h is a set of gates used
for input.

As a number moves from b to d, one of five operations may
be performed; uiz., normal, shift left one bit, shift right one bit,
complement or shift left 5 bits. The last is used for automatic fill
and in connection with the microprogram unit control.

As an example, to add the number in the A and D registers,
three microprogram steps would be needed. First, transfer A to
G, D to F, and finally a to A; 12 psec would be required.

344 Part 4 I The instruction-set processor level: special-function processors

n .

aL] MEMORY

- I I

0

MEMORY

Fig. 3. Arithmetic unit detail.

Figure 4 is a diagram of the microprogram unit. The eight-bit
J register, augmented by the TO flip-flop of the alteration unit,
is decoded for up to 512 steps. Students of microprogramming will
recognize the Wilkes model in its pure form [Wilkes and Stringer,
19531. The “next” value of the microprogram register may be
chosen in one of three ways.

First, the value may be controlled by the microprogram itself.
Second, five bits of the bus, corresponding to the order portion

of the word, may be entered; the other three bits are set to zero.
In this manner, the order decoding is accomplished.

Third, all eight bits of the J register may be filled from the
d bus. In practice, the order is shifted five bits to the left, pre-
senting eight bits of the address to get the J register. In this
manner, one may generate “no address” commands.

In principle, the programmer may start on any microstep which
amuses him; in practice, only a limited number of these will yield
no-address orders, the other steps being used for parts of add,
subtract, order procure, etc. The author has no doubt, however,

Section 3 1 Processors defined by a microprogram

that someone will find a useful reason for popping into the middle
of divide or some other command. There is no feature of a ma-
chine, however pathological, which cannot be exploited by a
programmer.

The actual decoding of these nine bits is accomplished partly
by logic, and partly by current switching of the clock pulse. A
diode matrix is used to convert the microsteps into control signals.

No more than 15 micro operations may be called out on a single
step, including selection of the next microorder.

When stepping the microregister, a ploy is used to reduce the
number of diodes. Instead of specifying the next step, the micro-
coder specifies the bits of J which he wishes to reverse. Instead
of the minimum latency coding of earlier days, the microcoder
of the SD-2 must do minimum diode coding. This is roughly anal-
ogous to asking for a fast, efficient computer program containing
a minimum of 1’s. The author, as well as others, has spent endless
hours trying to devise a computer program to do such microcoding,
with no results.

One may note in passing that the man who wrote the micro-
code, Tomo Hayata, has for several years specialized in advanced
programming problems. Wilkes’ views,l that logical design will
in the future be done by programmers, seem to be verified here.
Because of the limited microarithmetic available here, micro-
coding of the highest order is a must, since each microstep is 4
psec of time.

For simple orders (e.g., extract), the processes of order procure,
indexing (but not indirect addressing), operand procure and exe-
cution can be compressed into the time for two memory cycles,
Le., 40 psec. Each indirect reference adds another memory cycle

‘Private communication; Aug. 17, 1959.

Fig. 4. Microprogram unit.

Chapter 29 I The design of a general-purpose microprogram-controlled computer with elementary structure 345

INPUT
GATES

ZERO
DETECT

d

STORAGE
FLIP-FLOPS

OUTPUT e FLIP-FLOPS

to this time. Only on multiply, divide, and shift does the ultra-
simple structure begin to be expensive in time.

If the temperature requirement were not imposed, the clock
frequency could be doubled, materially improving the perform-
ance of the machine on multicycle orders.

Figure 5 is a block diagram of the alteration unit. It consists
of gates which permit entry of conditions within the computer
or the outside world, flip-flops used as working storage, flip-flops,
including TO, to make its conclusions known to all and sundry,
a five-bit tally register (I) , a circuit to detect a zero on the d bus,
and the trap logic. There are as many as 20 input gates, 9 storage
flip-flops and 10 output flip-flops, exclusive of TO.

The 1 register can change its contents in one of two ways, viz.,
counting down by one, or by accepting an entry from the d bus.
It may transmit intelligence in two ways, viz., to the b bus, or
by notifying the input gate system that, should anyone care, it
has just counted past zero.

The zero detector signals the truth of the statement that d is
identically zero. In practice, it checks only the lower digits, not
the sign. This is related to the existence of the number -1 in
a two-complement system, which is the system’s answer to the
negative zero of a one’s complement logic.

The trap logic is as follows: one of the output signals of the
alteration unit signals whether or not the system is receiving trap
signals; if it is not, the trap logic makes a note of callers. When
the system is again accepting those signals, it transmits whether
or not signals have been received, and resets its memory to zero.
The timing is such that n o trap signal will ever be lost.

+ TRAP LOGIC

+
LOGIC
UNIT -

--+ -
+

The lines going into the logic unit are actually two busses. Any
logic source may read to either bus. The logic unit has four control
wires from the microprogram unit, specifying which of the 16
Boolean functions of the two busses is to be put on the output
bus. This value is then routed to the appropriate logic destination.

The output flip-flops have inputs from the logic unit, and their
outputs go to various control points in the machine. Three major
points are: (1) establishing whether a memory cycle is read/restore
or erase/write; (2) setting the initial carry in the adder; and (3)
determining what value shall shift into the vacant spot on a left
or right shift.

The initial carry is used for more than simply adding one to
a value; since the logic is two complement, but the one comple-
ment one is transmitted on the bus, the initial carry is, in general,
one during subtraction and zero during addition.

Microprogram details

Figure 6 gives circuit details of the microprogram decode system.
The nine flip-flops used are broken into two groups, one of four,
the other of five flip-flops. These are decoded into, respectively,
16 and 32 wires. In each group, one and only one wire goes nega-
tive. When the clock signal, of 2 p e c width, is applied to the
emitters of the first set of 16 gates, it is passed by the selected
gating transistor. From the collector of this transistor, it is routed
to the emitter of a set of 32 transistors; again, only one can pass
current. Thus, the clock signal is routed to one of 16 x 32 x 512
lines. Diodes on the selected line then cause this signal to be
routed to appropriate gates in the arithmetic or alteration unit.

By appropriate placement of diodes, a microstep can operate
a variety of gates, the number of which is limited by the current
available.

Some of the microcontrol wires return to the J register so that
the microcoder may control the selection of the next microstep.
This register is so designed that the actual change of state is
inhibited until the clock goes negative.

While each output of the decoding trees may go to 16 bases,
only one transistor of the 16 will have a signal on the emitter;
thus only one must be driven.

From an engineering point of view, the control of a computer
is an elaborate timing system. A microprogram unit is thus a
programmable timing generator. The gating transistor/diode de-
coding system is but one of many ways to achieve this.

Wilkes has observedl that, with the diode system, one has an

Fig. 5. Alteration unit. I M . V. Wilkes, private communication; Aug. 17, 1959.

346 Part 4 I The instruction-set processor level: special-function processors

I

4

- SELECT n
i SELECTED V

Section 3 1 Processors defined by a microprogram

Fig. 6. Details of the microdecode system.

acute packaging problem. He and his co-workers have been led
to consider the use of switch-core decoding [Wilkes et al., 1958al.

Eachusl and his co-workers have evolved yet another switch-
core system which does not depend on coincident current switch-
ing.

Order code

Since the order code is only a small problem in the design of a
microprogrammed machine (GOTT SEI DANKE), there is little
need to dwell on it. There are several comments of design interest,
however.

We were unable, with this structure, to get the multiplication
below five microsteps per iteration, nor the divide below six, thus
costing respectively 20 and 24 psec per bit dealt with. Moreover,
division required some precalculations (overflow detect) and some

'Dr. Joseph Eachus of Minneapolis-Honeywell, private conversation; Sep-
tember, 1959.

postcalculation (obtaining a rounded quotient with a correct re-
mainder) which further boosted its time.

Because of the asynchronous nature of transfer, it is not possible
to read into and out of a register simultaneously. Hence, shifting
one register requires two steps, or 8 psec per bit, and double-length
shifting requires 16 psec. This is painful.

Because of the short words, four double-length orders were
microprogrammed: add, subtract, clear and add, and store. These
take a total of 60 psec to execute.

A rich collection of branch orders was included. BRanch Un-
conditionally, BRanch Negative, and BRanch Zero are self-
explanatory. BRanch on B is the tally loop order which decreases
(B) by one, and branches if it does not go negative. BR1, BR2,
BR3, and BR4 are sense toggle branch; if the toggle is set, it is
turned off and the program branches. These sense toggles are
actually storage flip-flops T1, T2, T3, and T4 of the alteration unit.
These may be set by other orders. T1 is also used as an overflow
mark.

Chapter 29 I The design of a general-purpose microprogram-controlled computer with elementary structure 347

The machine has a “dynamic” idle. When it is halted, either
externally or by order, this fact is observed by the microprogram,
through the alteration unit, whereupon the microprogram goes
into a tight loop, continuously asking, “Can I go? Can I go? Can
I go?. . . .” Two forms of halting are provided. In “Halt and
Display,” registers are presented; in the other halt, the console
lights are left unaltered. A manual halt is equivalent to halt and
display.

For an addressed order, bit positions one through five are sent
into the microprogram unit. During order procure, the micro-
program examines bits zero and six for indirect addressing and
index modification.

A nonaddress order is recognized by the binary equivalent of
31 in the order bits; the microprogram unit causes the order word
to shift left 5 bits, and the 8 high bits of the “address” field enter
the J register.

Conclusion

This paper is not intended to be an argument in favor of the
general acceptance of the SD-2 structure as an ideal. Like all
computers, the SD-2 is a state-of-the-art device, intended not only
to meet the needs of the problems at hand, but also, more impor-
tantly, to meet the side conditions of its use. In a vague analogy,
the computer specification is like a partial differential equation.
The logical designer must choose the boundary conditions and
solve the problem, or at least approximate the solution.

With today’s emphasis on system speed performance, some
serious mental gear-shifting on the designer’s part is required in
order to design a simple machine. It goes against the grain of
instinct and experience. A posteriori, the SD-2 could have been
made even simpler, particularly with respect to several peripheral
areas not discussed in the paper.

Several conclusions can be drawn here, however, The bus
structure is easy to fabricate and maintain; this has been proven
on the MILSMAC, a breadboard for the SD-2. It is a highly flexible
structure, permitting wide variation in order code with no change
in arithmetic unit. At the same time, the components are cascaded
to a point where one has the absurd situation of fast-switching
in a relatively slow computer. A designer of a bus-structured
machine would do well to consider alternatives, such as multiple
busses, accumulators, etc., to permit more parallelism when speed
is important.

The use of a special-purpose logic unit, such as the alteration
unit of the SD-2, gives a freedom of design not possible with a
special-purpose logic. At the same time, it uses more parts, is slow
in handling multiple variable problems, and requires a great deal
of control input. It appears to be a weapon of opportunity.

The use of microprogramming is much the same as the general
logic unit. Its flexibility and speed of design are unquestionable.
Also, it uses more parts than a special-purpose control.

There is no real substitute for a special-purpose design. The
use of generalized elements in computer design can be justified
only by the side conditions, never by the basic specification.
Where simplicity and speed of design are major items, their use
seems indicated.

Wilkes once presented a paper on the best way to design a
computer and launched the microprogramming notions. The
author would like to comment that if ease and reliability of design
are criteria, he was absolutely correct.

References

KampTGO; WilkM53a; WilkM58a

Section 4

Processors based on a programming
language

Programming-language-based processors are described in
Chap. 3 (page 73). Three examples are presented in this sec-
tion. Two of the languages, FORTRAN and EULER, are algebraic
languages operating on conventional data types, whereas IPL-VI
is more like a conventional machine language operating on
unconventional data types (i.e., list structures). A peculiar fea-
ture of IPL-VI is its conception of data as program (as well as
of program as data) and the multiprogramming organization
to which this led.

A command structure for complex information processing

The IPL-VI processor (Chap. 30) discussed in Part 3, Sec. 5,
is an outgrowth of the IPL series of programming languages
by Newell, Shaw, and Simon. The paper seriously treats both
the language and the merits of casting a language in a hardware
processor. IPL-VI was never implemented in hardware. (A partial
IPL-V processor for the CDC 3600 was built at the Argonne
National Laboratory.) A hardware processor for IPL-VI in the
third generation would undoubtedly exist as an interpreter in
a mic roprogrammed processor.

System design of a FORTRAN machine

This paper (Chap. 31) presents a way to map a software pro-
gram into hardware. The machine’s passes (or modes) corre-

spond to activities one would see when compiling, loading, and
executing a FORTRAN program.

BCD format is used for the arithmetic. The symbol table is
simply organized and, therefore, has to be searched. A more
serious approach for the actual implementation of such a
machine might follow the lines of EULER (Chap. 32).

A microprogrammed implementation of EULER
on IBM System 360IModel 30

This very clearly written paper describes a processor to imple-
ment an ALGOL-like language [Wirth and Weber, 19661. An
earlier processor was proposed to directly execute ALGOL
[Anderson, 19611. It is implemented using the Model 30 IBM
System/360 P.microprogrammed. We include the paper both
because it describes the Model 30 and because of EULER.

The P.language operates like a conventional compiler and
operating system. The description presents clearly the process
of compiling before execution.

The microprogramming aspects of the Model 30 are typical
of other IBM System/360 models. The IBM approach to a
P.microprogrammed is significantly different from that in
Kampe’s SD-2 (Chap. 29). In the 360 a microprogram instruc-
tion is encoded in a long word (60 to 100 bits, depending on
the model) with a number of microcoded operations which can
be selected in parallel. The SD-2 uses a short word, and only
one operation is encoded in a single instruction.

348

Chapter 30

A command structure for complex
information processing1

1. C. Shaw / A. Newell / H. A. Simon / T. 0. Ellis

The general-purpose digital computer, by virtue of its large ca-
pacity and general-purpose nature, has opened the possibility of
research into the nature of complex mechanisms per se. The chal-
lenge is obvious: humans carry out information processing of a
complexity that is truly baffling. Given the urge to understand
either how humans do it, or alternatively, what kinds of mecha-
nisms might accomplish the same tasks, the computer is turned
to as a basic research tool. The varieties of complex information
processing will be understood when they can be synthesized: when
mechanisms can be created that perform the same processes.

The last few years have seen a number of attempts at synthesis
of complex processes. these have included programs to discover
proofs for theorems [Newell et al., 1956, 1957b1, programs to
synthesize music [Brooks et al., 1957b], programs to play chess
[Bernstein et al., 1958; Kister et al., 19571, and programs to simulate
the reasoning of particular humans [Newell et al., 19581. The feasi-
bility of synthesizing complex processes hinges on the feasibility
of writing programs of the complexity needed to specify these
processes for a computer. Hence, a limit is imposed by the limit
of complexity that the human programmer can handle. The
measure of this complexity is not absolute, for it depends on the
programming language he uses. The more powerful the language,
the greater will be the complexity of the programs he can write.
The authors’ work has sought to increase the upper limit of com-
plexity of the processes specified by developing a series of lan-
guages, called information processing languages (IPL’s), that re-
duce significantly the demands made upon the programmer in his
communication with the computer. Thus, the IPL’s represent a
series of attempts to construct sufficiently powerful languages to
permit the programming of the kinds of complex processes previ-
ously mentioned.

The IPL’s designed so far have been realized interpretively on
current computers [Newell and Shaw, 1957al. Alternatively, of
course, any such language can be viewed as a set of specifications
for a general-purpose computer. An IPL can be implemented far

more expeditiously in a computer designed to handle it than by
interpretation in a computer designed with a quite different com-
mand structure. The mismatch between the IPL’s designed and
current computers is appreciable: 150-machine cycles are needed
to do what one feels should take only 2 or 3 machine cycles. (It
will become apparent that the difficulty would not be removed
by “compiling” instead of “interpreting,” to resurrect a set of
well-worn distinctions. The operations that are mismatched to
current computers must go on during execution of the program,
and hence cannot be compiled out.)

The purpose of this paper is to consider an IPL computer, that
is, a computer constructed so that its machine language is an
information processing language. This will be called language
IPL-VI, for it is the sixth in the series of IPL’s that have been
designed. This version has not been realized interpretively, but
has resulted from considering hardware requirements in the light
of programming experience with the previous languages.

Some limitations must be placed on the investigation. This
paper will be concerned only with the central computer, the
command structure, the form of the machine operations, and the
general arrangements of the central hardware. It will neglect
completely input-output and secondary storage systems. This does
not mean these are unimportant or that they present only simple
problems. The problem of secondary storage is difficult enough
for current computing systems; it is exceedingly difficult for IPL
systems, since in such systems initial memory is not organized in
neat block-like packages for ease of shipment to the secondary
store.

Nor is it the case that one would place an order for the IPL
computer about to be described without further experience with
it. Results are not entirely predictable. IPL’s are sufficiently differ-
ent from current computer languages that their utility can be
evaluated only after much programming. Moreover, since IPL’s
are designed to specify large complicated programs, the utility
of the linguistic devices incorporated in them cannot be ascer-
tained from simple examples.

One more caution is needed to provide a proper setting for ‘Proc. WJCC, pp. 119-128, 1958

349

350 Part 4 1 The instruction-set processor level: special-function processors

this paper. Most of the computing world is still concerned with
essentially numerical processes, either because the problems
themselves are numerical or because nonnumerical problems have
been appropriately arithmetized. The kinds of problems that the
authors have been concerned with are essentially nonnumerical,
and they have tried to cope with them without resort to arithmetic
models. Hence the IPL’s have not been designed with a view to
carrying out arithmetic with great efficiency.

Fundamental goals and devices

The basic aim, then, is to construct a powerful programming
language for the class of problems concerned. Given the amount
and kind of output desired from the computer, a reduction in the
size and complexity of the specification (the program) that has to
be written in order to secure this output is desired.

The goal is to reduce programming effort. This is not the same
as reducing the computing effort required to produce the desired
output from the specification. Programming feasibility must take
precedence over computing economics; since it is not yet known
how to write a program that will enable a computer to teach itself
to play chess, it is premature to ask whether it would take such
a computer one hour or one hundred hours to make a move. This
is not meant as an apology, but as support for the contention that,
in seeking to write programs for very large and complicated tasks,
the overriding initial concerns must be to attain enough flexibility,
abbreviation, and automation of the underlying computing proc-
esses to make programming feasible. And these concerns have to
do with the power of the programming language rather than the
efficiency of the system that executes the program.

In the next section a straightforward description of an IPL
computer is begun. To put the details in a proper setting, the
remainder of this section will be devoted to the basic devices
that IPL-VI uses to achieve a measure of power and flexibility.
These devices include: organization of memory into list structure,
provision for breakouts, identity of data with program, two-stage
interpretation, invariance of program during execution, provision
for responsibility assignments, and centralized signalling of test
results.

List structure

The most fundamental and characteristic feature of the IPL’s is
that they organize memory into list structures whose arrangement
is independent of the actual physical geometry of the memory cells
and which undergo continual change as computation proceeds.
In all computing systems the topology of memory, the character-

Section 4 I Processors based on a programming language

istics of hardware and program that determine what memory cells
can be regarded as “next to” a given cell, plays a fundamental
role in the organization of the information processing. This is
obviously true for serial memories like tape; it is equally true from
random access memories. In random access memories the topo-
logical structure is derived from the possibility of performing
arithmetic operations on the memory addresses that make use of
the numerical relations among these addresses. Thus, the cell
with address 1435 is next to cell 1436 in the specific sense that
the second can be reached from the first by adding one to the
number in a counter.

In standard computers use is made of the static topology based
on memory addresses to facilitate programming and computation.
Index registers and relative addressing schemes, for example, make
use of program arithmetic and depend for their efficacy upon an
orderly matching of the arrangement of information in memory
with the topology of the addressing system.

When memory is organized in a list structure, the relation
between information storage and topology is reversed. The topol-
ogy of memory is continually modified to adapt to the changing
needs of organization of memory content. No arithmetic operations
on memory addresses are permitted; the topology is built on a
single, asymmetric, modifiable, ordinal relation between pairs of
memory cells which is called adjacency. The system contains
processes that make use of the adjacency relations in searching
memory, and processes that change these relations at will inex-
pensively in the course of processing.

A list structure can be established in computer memory by
associating with each word in memory an address that determines
what word is adjacent to it, as far as all the operations of the
computer are concerned. Memory space of an additional address
associated with each word is given up, so that the adjacency
relation can be changed as quickly as a word in memory can be
changed. Having paid this price, however, many of the other basic
features of IPLs are obtained almost without cost: unlimited
hierarchies of subroutines; recursive definition of processes; vari-
able numbers of operands for processes; and unlimited complexity
of data structure, capable of being created and modified to any
extent at execution time.

Breakouts

Languages require grammar-fixed structural features so that they
can be interpreted. Grammar imposes constraints on what can be
said, or said simply, in a language. However, the constraints created
by fixed grammatical format can be alleviated at the cost of intro-
ducing an additional stage of processing by devices that allow one

Chapter 30 I A command structure for complex information processing 351

to “break out” of the format and to use more general modes of
specification than the format permits. Devices for breakouts ex-
change processing time for flexibility. Several devices achieve this
in IPL-VI. Each is associated with some part of the format.

As an illustrative example, 1PL-VI has a single-address format.
Without breakout devices, this format would permit an informa-
tion process to operate on only a single operand as input, and
would permit the operand of a process to be specified only by
giving its address. Both of these limitations are removed: the first
by using a special communication list to store operands, the second
by allowing the address for an operand to refer either to the
operand itself or to any process that will determine the operand.

The latter device, which allows broad freedom in the method
of specifying an operand, illustrates another important facet of
the flexibility problem. Breakouts are of great importance in re-
ducing the burden of planning that is imposed on the programmer.
It is certainly possible, in principle, to anticipate the need for
particular operands at particular stages of processing, and to pro-
vide the operands in such a way that their addresses are known
to the programmer at the appropriate times. This is the usual way
in which machine coding is done. However, such plans are not
obtained without cost; they must be created by the programmer.
Indeed, in writing complex programs, the creation of the plan of
computation is the most difficult part of the job; it constitutes the
task of “programming” that is sometimes distinguished from the
more routine “coding.” Thus, devices that exchange computing
time for a reduction in the amount of planning required of the
programmer provide significant increases in the flexibility and
power of the language.

Identity of data with programs

In current computers, the data are considered “inert.” They are
symbols to be operated upon by the program. All “structure” of
the data is initially developed in the programmer’s head and
encoded implicitly into the programs that work with the data. The
structure is embodied in the conventions that determine what bits
the processes will decode, etc.

An alternative approach is to make the data “active.” All words
in the computer will have the instruction format: there will be
“data” programs, and the data will be obtained by executing these
programs. Some of the advantages of this alternative are obvious:
the full range of methods of specification available for programs
is also available for data; a list of data, for example, may be speci-
fied by a list of processes that determine the data. Since data are
only desired “on command” by the processing programs, this
approach leads to a computer that, although still serial in its

control, contains at any given moment a large number of parallel
active programs, frozen in the midst of operation and waiting until
called upon to produce the next operation or piece of data. This
identity of data with program can be attained only if the proc-
essing programs require for their operation no information about
the structure of the data programs, only information about how
to receive the data from them.

Two-stage interpretation

To identify the operand of an IPL-VI instruction, a designating
operation operates on the address part of the instruction to pro-
duce the actual operand. Thus, depending on what designating
operation is specified, the address part may itself be the operand,
may provide the address of the operand, or may stand in a less
direct relation to the operand. The designating operation may even
delegate the actual specification of the operand to another desig-
nating operation.

Invariance of program during execution

In order to carry out generalized recursions, it is necessary to
provide for the storage of indefinite amounts of variable informa-
tion necessary for the operation of such routines. In 1PL-VI all
the variable information is stored externally to the associated
routine, so that the routine remains unmodified during execution.
The name of a routine can appear in the definition of the routine
itself without causing difficulty at execution time.

Responsibility assignments

The automatic handling of such processes as erasing a list, or
searching through a list requires some scheme for keeping track
of what part of the list has been processed, and what part has
not. For example, in erasing a program containing a local sub-
routine that appears more than once within the program, care
must be taken to erase the subroutine once and only once. This
is accomplished by a system for assigning responsibility for the
parts of the list. In general, the responsibility code in IPL-VI
handles these matters without any explicit attention from the
programmer, except in those few situations where the issue of
responsibility is the central problem.

Centralized signalling of test results

The structure of the language is simplified by having all conditional
processes set a switch to symbolize their output instead of pro-
ducing an immediate conditional transfer of control. Then, a few
specialized processes are defined that transfer control on the basis
of the switch setting. By symbolizing and retaining the conditional

352 Part 4 I The instruction-set processor level: special-function processors

information, the actual transfer can be postponed to the most
convenient point in the processing. The flexibility obtained by this
device proves especially useful in dealing with the transmission
of conditional information from subroutines to the routines that
call upon them.

General organization of the machine

The machine that is described can profitably be viewed as a
“control computer.” It consists of a single control unit with access
to a large random-access memory. This memory should contain
lo5 words or more. If less than lo4 words are available in the
primary memory, there will probably be too frequent occasions
for transfer of information between primary and secondary storage
to make the system profitable.

The operation of the computer is entirely nonarithmetic, there
being no arithmetic unit. Since arithmetic processes are not used
as the basis of control, as they are in standard computers, such
a unit is inessential, although it would be highly desirable for the
computer to have access to one if it is to be given arithmetic tasks.
The computer is perfectly capable of proving theorems in logic
or playing chess without an arithmetic adjunct.

Memory

The memory consists of cells containing words of fixed length.
Each word is divided into two parts, a symbol and a link. The
entire memory is organized into a list structure in the following
way. The link is an address; if the link of a word a is the address
of word b, then b is adjacent to a. That is, the link of a word
in a simple list is the address of the next word in the list.

The symbol part of a word may also contain an address, and
this may be the address of the first word of another list. As indi-
cated earlier, the entire topology of the memory is determined
by the links and by addresses located in the symbol parts of words.
The links permit the creation of simple lists of symbols; the links
and symbol parts together, the creation of branching list structures.

The topology of memory is modified by changing addresses in
links and symbol parts, thereby changing adjacency relations
among words. The modification of link addresses is handled
directly by various list processes without the attention of the
programmer. Hence, the memory can be viewed as consisting of
symbol occurrences connected together by mechanisms or struc-
ture whose character need not be specified.

The basic unit of organization is the list, a set of words linked
together in a particular order by means of their link parts, in the

Section 4 1 Processors based on a programming language

way previously explained. The address of the first word in the
sequence is the name of the list. A special terminating symbol T,
whose link is irrelevant, is in the last word on every list. A simple
list is illustrated in Fig. 1; its name is L,,,, and it contains two
symbols, S, and S,.

The symbols in a list may themselves designate the names of
other lists. (The symbols themselves have a special format, so that
they are not names of lists but designate the names in a manner
that will be described.) Thus, a list may be a list of lists, and each
of its sublists may be a list of lists.

An example of a list structure is shown in Fig. 2. The name
of the list structure is the name of the main list, L,,,,. L,,, contains
two sublists, L,,, and L,,,, plus an item of information, l,, that
is not a name of a list. L,,, in its turn consists of item I, plus
another sublist, L,,,, while L,,, contains just information, and is
not broken out further into sublists. Each of these lists terminates
in a word that holds the symbol T.

Available space list

A list uses a certain number of cells from memory. Which cells
it uses is unimportant as long as the right linkages are set up. In
executing programs that continually create new lists and destroy
old ones, two requirements arise. When creating a list, cells in
memory must be found that are not otherwise occupied and so
are available for the new list. Conversely, when a list is destroyed
(when it is no longer needed in the system) its cells become avail-
able for other uses, but something must be done to gain access
to these available cells when they are needed.

The device used to accomplish these two logistic functions is
the available space list. All cells that are available are linked
together into the single long list. Whenever cells are needed, they
are taken from the front of this available space list: whenever cells
are made available, they are inserted on the front of the available
space list just behind the fixed register that holds the link to the
first available space. The operations of taking cells from the avail-
able space list and returning cells to the available space list in-
volve, in each case, only changes of addresses in a pair of links.

s2 T

Fig. 1. A simple list.

Chapter 30 I A command structure for complex information processing 353

Communication l i s t
Available space list
CIA l is t

~

CClA l ist l is t .
Camporator

Memory

Fig. 2. A list structure.

Organization of central unit

Figure 3 shows the special registers of the machine and the main
information transfer paths. Four addressable registers accomplish
fixed functions. These are shown as part of the main memory, but
would be fast access registers.

Lo
L,
L2

L3

Communication list, Lo. The system allows the introduction of
unlimited numbers of processes with variable numbers of inputs
and outputs. The communication of inputs and outputs among
processes is centralized in a communication list with known name,
Lo. All subroutines find their inputs on this list, and all subroutines
put their outputs on the same list.

Available space list, L,. All cells not currently being used are on
the available space list: cells can be obtained from it when needed
and are returned to it when they are no longer being used.

List of current instruction addresses (CIA), L,. At any given
moment in working sequentially through a program, there will be
a whole hierarchy of instructions that are in process or interpreta-
tion, but whose interpretation has not been completed. These will
include the instruction currently being interpreted, the routine
to which this instruction belongs, the superroutine to which this
routine belongs, and so on. The CIA list is the list of addresses
of this hierarchy of routines. The first symbol on the list gives the
address of the instruction currently being interpreted; the second
symbol gives the address of the current instruction in the next
higher routine, etc. In this system it proves to be preferable to

keep track of the current instruction being interpreted, rather than
the next one.

List of current CIA lists, L,. The control sequence is complicated
in this computer by the existence of numerous programs which
become active when called upon, and whose processing may be
interspersed among other processes. Hence, a single CIA list does
not suffice; there must be such a list for each program that has
not been completely executed. Therefore, it is necessary also to
have a list that gives the names of the CIA lists that are active.
This list is L,.

Besides these special addressable registers, three nonaddress-
able registers are needed to handle the transfers of information.
Two of these, R , and R,, are each a full word in length, and
transfer information to and from memory. Register R , receives
input from memory; R, transmits output to memory. The com-
parator that provides the information for all tests takes as its input
for comparison the symbols in R, and R,. This pair of registers
also performs a secondary function in regenerating words in
memory: the basic “read’ operation from memory is assumed to
be destructive; a nondestructive “read” merely shunts the word
received from memory in E , to R, and back, by means of a “write”
operation, to the same memory cell.

A register, A, which holds a single address, controls references
to the memory, that is, specifies the memory address at which a
“read” or “write” operation is to be performed. References to the
four addressable registers, Lo to L,, can be made either by A
or directly by the control unit itself; other memory cells can be
referred to only by A . Finally, the computer has a single bit register
which is used to encode and retain test results.

Fig. 3. Machine information transfer paths.

354 Part 4 1 The instruction-set processor level: special-function processors

The environment

How input-output, secondary storage, and high-speed arithmetic
could be handled with such a machine will be indicated. The
machine manipulates symbols: it can construct complex structures,
search them, and tell when two symbol occurrences are identical.
These processes are sufficient to play chess, prove theorems, or
do most other tasks. The symbols it manipulates are not “coded’;
they simply form a set of arbitrary distinguishable entities, like
a large alphabet.

This computer can manipulate things outside itself if hardware
is provided to make some of its symbols refer to outside objects,
and other symbols refer to operations on these objects. It could
do high-speed arithmetic, for example, if some of its symbols were
names of words in memory encoded as numbers as in the usual
computer fashion, and others were names of the arithmetic opera-
tions. In such a scheme these words would not be in the IPL
language; they would have some format of their own, either fixed
or floating-point, binary or decimal. They might occupy the same
physical memory as that used by the control computer. Thus the
IPL language would deal with numbers at one remove, by their
names, in much the same manner as the programmer deals with
numbers in a current computer. A similar approach can be used
for manipulating printers, input devices, etc.

The word and its interpretation

All words in IPL have the same format, shown in Fig. 4. The word
a is divided into two major parts: the symbol part, bcde, and the
link, f. It has been observed that the programmer never deals
explicitly with the link, although it will be frequently represented
explicitly to show how manipulations are being accomplished.
Since the same symbol can appear in many words, the symbol
occurrence of the symbol in the word a will be discussed.

A symbol occurrence consists of an operation, b, a designation

a L o c a t i o n o f w o r d
b Operation c o d e
c Designation c o d e
d A d d r e s s f i e l d
e Responsib i l i ty code
f Link to next w o r d

Fig. 4. IPL word format.

Section 4 I Processors based on a programming language

operation, c, an address, d, and a responsibility code, e. The opera-
tion, b, takes as operand a single symbol occurrence, which is
called s. The operand, s, is determined by applying the designation
operation, c, to the address, d . Thus, the process determined by
a word is carried out in two stages: the first-stage operation (the
designation operation) determines an operand that becomes the
input to the second-stage operation.

The responsibility bit

The single bit, e, is an essential piece of auxiliary information. The
address, d, in a symbol may be the address of another list structure.
The responsibility code in a symbol occurrence indicates whether
this occurrence is “responsible” for the structure designated by
d. If the same address, d, occurs in more than one word, only one
of these will indicate responsibility for d.

The main function of the responsibility code is to provide a
way of searching a branching list structure so that every part of
the structure will, sooner or later, be reached, and so that no part
will be reached twice. The need for a definite assignment of
responsibility for the various parts of the structure can be seen
by considering the process of erasing a list. Suppose that a list
has a sublist that appears twice on it, but that does not appear
anywhere else in memory. When the list is erased, the sublist must
be erased if it is not to be lost forever, and the space it occupies
with it. However, after the sublist has been erased when an occur-
rence of its name is encountered on the other list, it is imperative
that it not be erased again on the second encounter. Since the
words used by the sublist would have been returned to the avail-
able space list prior to the second encounter, only chaos could
result from erasing it again. The responsibility code would indicate
responsibility, in erasing, for one and only one of the two occur-
rences of the name of the sublist.

Detailed consideration of systems of responsibility is inappro-
priate in this paper. It is believed that an adequate system can
be constructed with a single bit, although a system that will handle
merging lists also requires a responsibility bit on the link f. The
responsibility code is essentially automatic. The programmer does
not need to worry about it except in those cases where he is
explicitly seeking to modify structure.

Interpretation cycle

A routine is a list of words, that is, a list of instructions. Its name
is the address of the first word used in the list. The interpretation
of a program proceeds according to a very simple cycle. An instruc-
tion is fetched to the control unit. The designation operation is
decoded and executed, placing the location of s in the address

Chapter 30 1 A command structure for complex information processing 355

register, A, of Fig. 3. Then operation b is decoded and performed
on s. The cycle is then repeated using f to fetch the next instruc-
tion.

The operation codes

The simple interpretation cycle previously described provides
none of the powerful linguistic features that were outlined at the
beginning of the paper: hierarchies of subroutines, data programs,
breakouts, etc. These features are obtained through particular b
and c operations that modify the sequence of control. The opera-
tion codes will be explained under the following headings: the
designation code, sequence-controlling operations, save and delete
operations, communication list operations, signal operations, list
operations, and other operations.

The designation code

The designation operation, c, operates on the address, d, to desig-
nate a symbol occurrence, s, that will serve as input, or operand,
for the operation b. The designation operation places the address
of the designated symbol, s, in the address register.

The designation codes proposed, based on their usefulness in
coding with the IPL’s, are shown in Appendix 1. The first four,
c = 0, 1, 2, or 3, allow four degrees of directness of reference.
They are usable when the programmer knows in advance where
the symbol, s, is located. To illustrate their definition, consider
an instruction a,, with parts b,, e,, d,, and e,, which can collec-
tively be called s,. The address part, d,, of this instruction may
be the address of another instruction d, = a,; the address part,
d,, of a, may be the address of a,, etc.

The code c, = 1 means that s is the symbol whose address is
d,, that is, the symbol s,. In this case the designating operation
puts d,, the address of s,, in the address register. The code c , = 2
means that s is s,; hence, the operation puts d,, the address of
s3, in the address register. The code c, = 3 puts d,, the address
of s4, in the address register. Finally, c, = 0 designates as s the
actual symbol in a, itself; hence, this means that b is to operate
on s,. Therefore, this operation places u1 in the address register.

The remaining two designation operations, c = 4 and 5, intro-
duce another kind of flexibility, for they allow the programmer
to delegate the designation of s to other parts of the program.
When c1 = 4, the task of designating s is delegated to the symbol
of the word d, = u2. In this case, s is found by applying the
designation operation, c2 of word a,, to the address, d,, of word
u2. An operation of this kind permits the programmer to be
unaware of the way in which the data are arranged structurally

in memory. Notice that the operation permits an indefinite number
of stages of delegation, since if c, = 4, there will be a further
delegation of the designation operation to e, and d, in word a,.

The last designation operation, c = 5, provides both for dele-
gation and a breakout. With c, = 5, d, is interpreted as a process
that determines s. Any program whatsoever, having its initial
instruction at d,, can then be written to specify s. When this
program has been executed, an s will have been designated, and
the interpretation will continue by reverting to the original cycle,
that is, by applying b, to the s that was just designated. It is
necessary to provide a convention for communicating the result
of process d, to the interpreter. The convention used is that d,
will leave the location of s in L,,, the standard communication cell.

Sequence-controlling operations

Appendix 2 lists the 35 b operations. The first 12 of these are the
ones that affect the sequence of control. They accomplish 5 quite
different functions: executing a process (b = 1, lo), executing
variable instructions (b = 2), transferring control within a routine
(b = 3, 4, 5) , transferring control among parallel program struc-
tures (b = 0, 6, 7, 8, 9,), and, finally, stopping the computer

A routine is a list of instructions; its name is the address of
the first word in the list. To execute a routine, its name (Le., its
name becomes the s of the previous section) is designated and to
it is applied the operation b = 1, “execute s.” The interpreter
must keep track of the location of the instruction that is being
executed in the current routine and return to that location after
completing the execution of the instruction (which, in general, is
a subroutine). All lists end in a word containing b = 10, which
terminates the list and returns control to the higher routine in
which the subroutine just completed occurred. (The symbol T is
really any symbol with b = 10.)

Figure 5 provides a simple illustration of the relations between
routines and their subroutines. In the course of executing the
routine L,, (i.e., the instructions that constitute list L,,), an in-
struction, (1,0, L,,), is encountered that is interpreted as “execute
L,,.” In the course of executing L,,,, an instruction is encountered
that is interpreted as “execute L,,.” Assuming that L,,, contains
no subroutines, its instructions will be executed in order until the
terminate instruction is reached. Because of the 10 in its b part,
this instruction returns control to the instruction that follows L,,
in Lz0. When the final word in L,, is reached, the operation code

the instruction following L,,,. (Only the b part, b = 10, of the
terminal word in a routine is used in the interpretation; the c and

(b = 11).

10 in its b part returns control to Ll0; which then continues with

356 Part 4 1 The instruction-set processor level: special-function processors

L10

Fig. 5. A simple subroutine hierarchy.

d parts are irrelevant.) This is a standard subroutine linkage, but
with all the sequence control centralized.

The operation code b = 2, “interpret s,” delegates the inter-
pretation to the word s. The effect of an instruction containing
b = 2 is exactly the same as if the instruction contained, instead,
the symbol, s, that is designated by its c and d parts. One can
think of the instruction with b = 2 as a variable whose value is
s. Thus, a routine can be altered by modifying the symbol occur-
rence s, without any modification whatsoever in the words belong-
ing to the routine itself.

The three operations, b = 3, 4, and 5, are standard transfer
operations. The first is an unconditional transfer; the two others
transfer conditionally on the signal bit. As mentioned earlier, all
binary conditional processes set the signal either “on” or “off.”
In order to describe operations b = 0, 6, 7, 8, 9 the concept of
program structure must be defined. A program structure is a rou-
tine together with all its subroutines and designation processes.
Such a structure corresponds to a single, although perhaps com-
plex, process. The computer is capable of holding, at a given time,
any number of independent program structures, and can interrupt
any one of these processes, from time to time, in order to execute
one of the others. All of these structures are coordinate, or parallel,
and the operations h = 0, 6, 7, 8, 9, are used to transfer control,
perhaps conditionally, from the one that is currently active to a
new one or to the previously active one. In this sense, the com-
puter being described may be viewed as a serial control, parallel
program machine.

The execution of a particular routine in program structure A
will be used as an example. Operation b = 6 will transfer control
to an independent program structure determined by s; call it B.

Section 4 I Processors based on a programming language

The machine will then begin to execute B. When it encounters
a “stop interpretation” operation (b = 0) in B, control will be
returned to the program structure, A, that was previously active.
But the “stop interpretation” operation, unlike the ordinary ter-
mination, b = 10, does not mark the end of program structure B .
At any later point in the execution of A, control may again be
transferred to B, in which case execution of the latter program
will be resumed from the point where it was interrupted by the
earlier “stop interpretation” command. The operation that ac-
complishes the second transfer of control from A to B is h = 7,
“continue parallel program s.” Thus, b = 0 is really an “interrupt”
operation, which returns control to the previous structure, but
leaves the structure it interrupts in condition to continue at a later
point. There can be large numbers of independent program struc-
tures all “open for business” at once, with a single control passing
from one to the other, determining which has access to the proc-
essing facilities, and gradually executing all of them. Operations
b = 8 and 9 simply allow the interruption to be conditional on
the test switch.

Notice that the passage of control from one structure to another
is entirely decentralized; it depends upon the occurrence of the
appropriate b operations in the program structure that has control.

When control is transferred to a parallel program structure,
either of two outcomes is possible. Either a “stop interpretation”
instruction is reached in the structure to which control has been
transferred, or execution of that structure is completed and a
termination reached. In either case, control is returned to the
program structure that had it previously, together with informa-
tion as to whether it was returned by interruption or by termina-
tion. Thus, b = 0 turns the signal bit on when it returns control;
b = 10 in the topmost routine of a structure turns the signal off.

The operation, b = 11, simply halts. Processing continues from
the location where it halted upon receipt of an external signal,
“go.”

Save and delete operations

The two operations, b = 12 and 13, are sufficiently fundamental
to warrant extended treatment. For example, consider a word,
L,,,,, that contains the symbol I,:

Location Symbol Link

LlOO 11 t

The link of L,,,, t , indicates that the next word holds the
termination Operation, b = 10. The “save” operation (b = 12)

Chapter 30 I A command structure for complex information processing 357

provides a copy of I, in such a way that I , can later be recalled,
even if in the meantime the symbol in Lloo has been changed.
After the “save” operation has been performed on s = L,,,, the
result is:

Location Symhol Link
~~

L l O O 1 1 Lzoo
Lpoo., I 1 t

A new cell, which happened to be L,,,, was obtained during
the “save” operation from the available space list, L,, and a copy
of I, was put in it. The symbol in L,,, can now be changed without
losing I, irretrievably. Suppose a different symbol is copied, for
example, 12, into L,,,. Then:

Location Symbol Link

LlOO. I 2 L2oo
L p o o 11 t

Although I, has been replaced in L,,,, I , can be recovered by
performing the “delete” operation, b = 13. Before the “delete”
operation is explained, it will be instructive to show what happens
when the “save” operation on L1,, is interated. If it is executed
again, it will make a copy of I, . Therefore:

Location Symbol Link
~ ~

LlOO., I p L300
L3oo 12 L o o
Lzo o - 1 1 t

.

Notice that the cell L,,,,, in which the copy of symbol I, is
retained, was not affected at all by this second “save” operation.
Only the top cell in the list and the new cell from the available
space list are involved in the transaction of saving. The same
process is performed no matter how long the list that trails out
below L,,,; thus, the save operation can be applied as many times
as desired with constant processing time.

The “delete” operation, b = 13, applied to the symbol I, in
L,,,, will now be illustrated. This operation puts the symbol and
link of the second word in the list, L,,,, into the first cell, L,,,,
and puts L,,, back on the available space list, with the following
result:

Location Symbol Link

. L*OO. 1 2 . . Lzoo
L z o o . 1 1 . . t

The result is the exact situation obtained before the last “save”
was performed.

In the description of the “delete” operation up to this point,
only the changes it makes in the “push-down” list, in this case
L,,,, have been considered. The operation does more than this,
however; “delete s” also erases all structures for which the symbol
s (II and I, in the examples) is responsible. When a copy of a
symbol is made, e.g., the operation that initially replaced I , by
I, in L,,,, the copy is not assigned responsibility for the symbol
(e = 0 was set in the COPY). Thus, no additional erasing would
be required in the particular “delete” operation illustrated. If, on
the other hand, the I, that was moved into Lloo had been respon-
sible for the structure that could be reached through it (if it were
the name of a list, for example), then a second “delete” operation,
putting I, back into L,,,, would also erase that list and put all
its cells back on the available space list. Thus “delete” is also
equivalent to “erase” a list structure.

Communication list operations

In describing a process as a list of subprocesses, the question of
inputs and outputs from the processes has been entirely by-passed.
Since each subroutine has an arbitrary and variable number of
operands as input, and provides to the routine that uses it an
arbitrary number of outputs, some scheme of communication is
required among routines. The communication list, L,, accom-
plishes this function in IPL.

That the inputs and outputs to a routine be symbols is required.
This is no real restriction since a symbol can be the name of any
list structure whatever. Each routine will take as its inputs the
first symbols in the L, list. That is, if a routine has three inputs,
then the first three symbols in L, are its inputs. Each routine must
remove its inputs from L, before terminating with b = 10, so
as to permit the use of the communication list by subsequent
routines. Finally, each routine leaves its outputs at the head of
list Lo.

The b operations 14 through 19 are used for communication
in and out of L,. Their one common feature is that, whenever they
put a symbol in L,, they save the symbol already there, that is,
they push down the symbols already “stacked” in Lo. Likewise,
whenever a symbol is moved from L, to memory, the symbol below
it in L, “pops up” to become the top one. (To be precise, the

358 Part 4 I The instruction-set processor level: special-function processors

responsibility bit travels with a symbol when it is moved. Hence
for example, b = 16 and 17, do not, unlike the “delete” operation,
erase the structure for which lL, is responsible.)

The four operations, b = 14, 15, 16, and 17, are the main in-out
operations for Lo. Two options are provided, depending on whether
the programmer wishes to retain the s in memory (b = 14 and
16) or destroy it (h = 15 and 17). (The move in operation 15 has
the same significance as in I6 and 17; the responsibility bit moves
with the symbol, and the symbol previously in the location of s,
is recalled.)

Operation b = 18 is a special input to aid in the breakout
designation operation, c = 5. Recall that the latter operation re-
quires d to place the location of s, the symbol it determines, in
Lo. Operation 18 allows the process d to accomplish this.

Operation b = 19 provides the means for creating structures.
It takes a cell, for example, L,,,, from available space, and puts
its name, as the symbol (0,0, L,,,), in the location of the designated
symbol, s. The symbol s, previously in this location is pushed down
and saved.

Signal operations

Ten 6 operations are primarily involved in setting and manipu-
lating the signal bit. Observe that the test of equality (b = 20 and
21) is identity of symbols. Since there is nothing in the system
that provides a natural ordering of symbols, inequality tests like
s > lL,, are impossible. (E, means the symbol in Lo.) It is neces-
sary to be able to detect the responsibility bit (b = 22), since there
are occasions when the explicit structure of lists is important, and
not just the information they designate. Finally, although the signal
bit is just a single switch, it is necessary to have two symbols, one
corresponding to “signal on” and the other to “signal off” (b = 26
and 27), so that the information in the signal can be retained for
later use (b = 28 and 29).

The sense of the signal is not arbitrary. In general “off” is used
to mean that a process “failed,” “did not find,” or the like. Thus,
in operations h = 6 and 7, the failure to find a “stop interpreta-
tion” operation sets the signal to “off .” Likewise, the end of a list
will by symbolized by setting the signal to “off.”

List operations

Both the “save” and “delete” operations are used to manipulate
lists, but besides these, several others are needed. The three opera-
tions, 6 = 30, 31, 32, allow for search over list structures. They
can be paraphrased as: “get the referent,” “turn down the sublist,”
and “get the next word of the list.” They all have in common that
they replace a known symbol with an unknown symbol. This

Section 4 1 Processors based on a programming language

unknown symbol need not exist; that is, the symbol referred to
may contain a b = 10 operation, which means that the end of the
list has been reached. Consequently, the signal is always set “on”
if the symbol is found, and “off” if the symbol is not found. One
of the virtues of the common signal is apparent at this point, since,
if the programmer knows that the symbol exists, he will simply
ignore the signal. Instruction formats that provide for additional
addresses for conditional transfers would force the programmer
to attend to the condition even if it only meant leaving a blank
space in the program.

To illustrate how these search operations work, Fig. 6 shows
a list of lists, L,,,, and a known cell, L,,,. Cell L,,, contains the
reference to the list structure. The programmer does not know
how the list, L,,,, is referenced. He wants to find the last symbol
on the last list of the structure. His first step is (30, 1, L,,,) which
replaces the reference by the name of the list, L,,,. He then
searches down to the end of list L,,, by doing a series of opera-
tions: (32, I, Ll,,). Each of these replaces one location on the list
by the next one. In fact, a loop is required, since the length of
the list is unknown. Hence, after each “find the next word” opera-
tion, he must transfer, on the basis of the signal, back to the same
operation if the end of the list hasn’t been reached. The net result,
when the end of the list is reached, is that the location of the
last word on list L,,, rests in L,,,. Since in this example he wants
to go down to the end of the sublist of the last word on the main
list, he next performs (31, 1, Lloo). This operation replaces the
location of the last word with the name of the last list, L,,,,. Now
the search down the sublist is repeated until the end is again
reached, at this point the location of the last symbol on the last
list is in L,,,, as desired. The sequence of code follows:

Location Symbol Link

The operations, b = 33 and 34, allow for inserting symbols in
a list either before or after the symbol designated. The lists in
this system are one-way: although there is always a way of finding
the symbol that follows a designated symbol, there is no way of
finding the symbol that precedes a designated symbol. The “insert
before” operation does not violate this rule. In both operations,

Chapter 30 1 A command structure for complex information processing 359

Direct designation operations

Figure 7 shows the information flows for c = 2, an operation that
is typical of the first four designation operations. These flows follow
a simple, fixed interpretation sequence. Assume that instruction
(-, 2, L,,,) is inside the control unit. The contents of L,,,, are
brought into R,, the input register, then transferred to R,, the
output register, and back to L,,, again. The d part of R, now
contains the location of s, and this location is transferred from
R, to the address register.

Execute subroutine (b = 1)

When “execute s” is to be interpreted, the address register already
contains the location of s, which was brought in during the first
stage of the interpretation cycle. L,, the current instruction
address list (CIA), holds the address of the instruction containing
the “execute” order. A “save” operation is performed on L,, and
s is transferred into L,, which ends the operation. The result is
to have the interpreter interpret the first instruction on the next
sublist, and to proceed down it in the usual fashion. Upon reaching
the terminate operation, b = 10, the delete operation is performed
on E,, thus bringing back the original instruction address from
which the subroutine was executed. Now, when the interpretation
cycle is resumed, it will proceed down the original list. Thus, the
two operations, save and delete, perform the basic work in keeping
track of subroutine linkage.

Parallel programs

A single program structure, that is, a routine with all its sub-
routines, and their subroutines etc., requires a CIA list in order
to keep track of the sequence of control. In order to have a number
of independent program structures, a CIA list is required for each.
L, is the fixed register which holds the name of the current CIA

Fig. 6. Example of finding last item of last sublist.

33 and 34, a cell is obtained from the available space list and
inserted after the word holding the designated symbol. (This is
identical with the first step of the “save” operation.) In the “insert
before” operation (b = 33) the designated symbol, s, is copied into
the new cell, and 1L, is moved into the previous location of s.
In “insert after” (b = 34), the designated symbol is left unchanged,
and lL, is moved into the new cell. In both cases lL, is moved,
that is, it no longer remains at the head of the communication
list.

Other operations

This completes the account of the basic complement of operations
for the IPL computer. These form a sufficient set of operations
to handle a wide range of nonnumerical problems. To do arith-
metic efficiently, one would either add another set of b’s covering
the standard arithmetic operations or deal with these operations
externally via a breakout operation on b (not formally defined here)
that would move a frill symbol into a special register for hardware
interpretation relative to external machines: adders, printers,
tapes, etc.

The set of operations has not been described for reading and
writing the various parts of the word: b, c, d, e, and f (although
it may be possible to automatize this last completely). These
operations rarely occnr, and it seemed best to ignore them as well
as the input-output operations in the interest of simple presenta-
tion.

Interpretation

This section will describe in general terms the machine interpre-
tation required to carry out the operation codes prescribed. There
is not enough space to be exhaustive, therefore selected examples
will be discussed.

L I O O

Fig. 7. Information transfers in c = 2 operation.

360 Part 4 1 The instruction-set processor level: special-function processors

After 8,1,Lloo

L I o o r I

list. The name of the CIA list for the program structure which
is to be reactivated on completion or interruption of the current
program structure is the second item on the L, list, etc. Therefore,
the L, list is appropriately called the current CIA list. The “save”
and “delete” operations are used to manipulate L, analogously
to their use with L, previously described.

Appendix 3 gives a more complete schematic representation
of the interpretation cycle. It has still been necessary to represent
only selected b operations.

L m T l

Data programs

In the section on list operations a search of a list was described.
There the data were passive; the processing program dictated just
what steps were taken in covering the list. Consider a similar
situation, shown in Fig. 8, where there is a working cell, L,,,,
which contains the name of a list, L,,,. L,,, is a data program.
There is a program that wants to process the data of L3,,,, which
is a sequence of symbols. This program knows L,,,. To obtain the
first symbol of data, it does (6,1, L,,,), that is, “execute the parallel
program whose name is in L,,,.” The result is to create a CIA
list, L,,,, put its name in L,,,, and fire the program. Some sort
of processing will occur, as indicated by the blank words of L,,,.
Presumably this has something to do with determining what the
data are, although it might be some bookkeeping on L,,,’s experi-
ence as a data file. Eventually L,,, is reached, which contains (0,
1, This operation stops the interpretation, and returns con-
trol to the original processing program. The first symbol of data
is defined to be lL8,,. The processing program can designate this
by 4L,,,, since the sequence of c = 4 prefixes in L,,, and L ,
pass along the interpretation until it ultimately becomes IL,,,.
Now the processing program can proceed with the data. It remains

Before 8.i.Lloo

L u 3 o ~ L G T

L

Section 4 1 Processors based on a programming language

completely oblivious to the processing and structure that were
involved in determining what was the first symbol of data. Simi-
larly, although it is not shown, the processing program is able to
get the second symbol of data at any time simply by doing a
“continue parallel program lL,,,” (b = 7).

One virtue of the use of data programs is the solution it offers
for “interpolated’ lists. In working on a chess program, for example,
one has various lists of men: pawns, pieces, pieces that can move
more than one square, such as rooks, queens, etc. One would like
a list of all men. There already exists a list of all pieces and a
list of all pawns. It would be desirable to compose these lists into
a single long list without losing the identity of either of the short
lists, since they are still used separately. In other words form a
list whose elements are the two lists, but such that, when this list
of lists is searched it looks like a single long list. Further, and this
is the necessary condition for doing this successfully, one cannot
afford to make the program that uses this list of lists know the
structure. The operation “execute s” (b = 1) is precisely the opera-
tion needed to accomplish this task in a data program. It says “turn
aside and go down the sublist s.” Since it does not have the opera-
tion b = 0, it is not “data.” It is simply “punctuation” that
describes the structure of the data list, and allows the appropriate
symbols to be designated. Figure 9 shows a data list of the kind
just described. The authors have taken the liberty of writing in
the names of the chessmen.

The stretch of code that follows shows the use of a data program
for a “table look up” operation. The table has arbitrary arguments,
each of which has a symbol for its value. A,, A,, etc. have been
used to represent the arguments. To find the value corresponding
to argument A,, for example, A, is put in the communication cell
with (14, 0, A,). Then the data program is executed with (6, 0,
J&). Control now lies with the table, which tests each argument
against the symbol in the communication lists: Le., A,, and sets
the signal accordingly. The program stops interpreting (b = 8) at
the word holding the value only if the arguments are the same.
In this case it would stop, designating L,,,. If no entry was found,
of course, control would return to the inquiring program with the
signal off.

Locution Symbol Link

LlOO. ,

Fig. 8. Example of a data program.
t

Chapter 30 I A command structure for complex information processing 361

L,,, I j,O. Lzoo H 1 , o , L , o o T

O,O, Queen +, O,O, K-Rook +
Fig. 9. Application of a data program to chess.

Conclusions

The purpose of this paper has been to outline a command structure
for complex information processing, following some of the concepts
used in a series of interpretive languages, called IPL’s. The ulti-
mate test of a command structure is the complex problems it
allows one to solve that would not have been solved if the coding
language were not available.

At least two different factors operate to keep problems from
being solved on computers: the difficulty of specification, and the
effort required to do the processing. The primary features of this
command structure have been aimed at the specification problem.
The authors have tried to specify the language requirements for
complex coding, and then see what hardware organization allowed
their mechanization. All the features of delegation, indirect refer-
encing, and breakout imply a good deal of interpretation for each
machine instruction. Similarly, the parallel program structure
requires additional processing to set up CIA lists, and when a data
symbol is designated, there is delegated interpreting through
several words, each of which exacts its toll of machine time. If
one were solely concerned with machine efficiency, one would
require the programmer to so plan and arrange his program that
direct and uniform processes would suffice. Considering the size
of current computers and their continued rate of growth toward
megaword memories and microsecond operations, it is believed
that the limitation already lies with the programmer with his
limited capacity to conceive and plan complicated programs. The
authors certainly know this to be true of their own efforts to
program theorem proving programs and chess playing programs,
where the IPL languages or their equivalent in flexibility and also
in power have been a necessary tool.

Considering the amount of interpretation, and the fact that
interpretation uses the same operations as are available to the

programmer; e.g., the save and delete operations, one can think
of alternative ways to realize an IPL computer. At one extreme
are interpretive routines on current computers, the method that
the authors have been using. This is costless in hardware, but
expensive in computing time. One could also add special opera-
tions to a standard repertoire to facilitate an interpretive version
of the language. Probably much more fruitful is the addition of
a small amount of very fast storage to speed up the interpreter.
Finally, one could wire in the programs for the operations to get
even more speed. It is not clear that there is any arrangement more
direct than the wired in program because of the need of the inter-
preter to use the whole capability of its own operation code.

References

ShawJ58; BernA58; BrooF57b; KistJ57; NeweA56, 57a, 57b, 58

APPENDIX 1

c Nature of operation for (a) = b c d e.

0
1
2
3
4

5

APPENDIX 2 b OPERATIONS

c OPERATIONS (DESIGNATING OPERATIONS)

(a) is the symbol s.
d is the address of the symbol s.
d is the address of the address of the symbol s.
d is the address of the address of the address of the symbol s.
d is the address of the designating instruction that deter-
mines s.
d is the address (name) of a process that determines s.

b Nature of operation

SEQUENCE-CONTROL OPERATIONS
0
1 Execute process named s.

2 Interpret instruction s.
3 Transfer control to location s.
4 Transfer control to location s, if signal is on.
5 Transfer control to location s, if signal is off.
6 Execute parallel program s; turn signal on if stops; off if not.
7 Continue parallel program s; turn signal on if stops; off if not.
8 Stop interpreting, if signal is on.
9 Stop interpreting, if signal is off.

Stop interpreting; return to previous program structure.

10 Terminate.
11 Halt; proceed on go.

SAVE AND DELETE OPERATIONS

12 Save s.
13 Delete s (and everything for which s is responsible).

362 Part 4 I The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

COMMUNICATION LIST OPERATIONS
14
15
16
17
18
19

Copy s into communication list, saving IL,.
Move s into communication list, saving 1L,.
Move lL, into location of s, saving s.
Move IL, into location of s, destroying s.
Copy location of s into communication list, saving IL,.
Create a new symbol in location of s, saving s.

SIGNALLING OPERATIONS
20
21
22
23
24
25
26
27
28
29

Turn signal on if s = lL,, off if not.
Turn signal on if s = lL,, off if not; delete IL,.
Turn signal on if s is responsible, off if not.
Turn signal on.
Turn signal off.
Invert signal.
Copy signal into location of s.
Copy signal into location of s, saving s.
Set signal according to s.
Set signal according to s; delete s.

APPENDIX 3 THE INTERPRETATION CYCLE

1. Fetch the current instruction according to the current instruc-
tion address (CIA) of the current CIA list.

2. Decode and execute the c operation:
If c = 3 replace d by d part of the word at address d, reduce
c to c = 2 and continue. If c = 2 replace d by d part of the
word at address d, reduce c to c = 1 and continue. If c = 1
put d in the address register and go to step 3 .
If c = 0 put CIA in the address register and go to step 3 .
If c = 4 replace c, d by the c, d parts of the word at address
d and go to step 2.
If c = 5 mark CIA “incomplete,” save it, set a new CIA = d,
and go to step 1.

3. Decode and execute the b operation: (Some of the b operations
which affect the interpretation cycle follow.)
If b = 0 turn the signal on, delete CIA and go to step 4.
If b = 1 save CIA, set a new CIA = d part of s and go to
step 1.
If b = 2 replace b, c, d by s and go to step 2.
If b = 3 replace CIA by the d part of s and go to step 1.
If b = 10 delete CIA.

LIST OPERATIONS

30

31

32

Replace s by the symbol designated by s, and turn signal on;
if symbol doesn’t exist (b = lo), leave s and turn signal off.

Replace s by the symbol in d of s and turn signal on; if symbol
doesn’t exist, leave s and turn signal off.

Replace s by the location of the next symbol after d of s and
turn signal on (s replaced by “0, 4, (f, part of d of s)”);
if next symbol does not exist, leave s and turn signal off.

If no CIA “pops up” turn signal off, delete CIA and go to
step 4.
If “popped up” CIA is marked “incomplete” fetch the cur-
rent instruction again, move lL, into address register and
go to step 3.
Otherwise go to step 4.

33
34

Insert 1L, before s (move symbol from communication list).
Insert IL, after s (move symbol from communication list).

4. Replace CIA by the f part of the current instruction and go
to step 1.

Chapter 31

System design of a FORTRAN machine’

Theodore R. Bashkow / Azru Susson / Arnold Kronfeld

Summary A system design is given for a computer capable of direct
execution of FORTRAN language source statements. The allowed types
of statements are the FORTRAN DO, GO TO, computed GO TO, Arith-
metic, READ, PRINT, arithmetic IF, CONTINUE, PAUSE, DIMENSION
and END statements. Up to two subscripts are allowed for variables and
no FORMAT statement is needed. The programmer’s source program is
converted to a slightly modified form while being loaded and placed in a
Program Area in lower memory. His original variable names and statement
numbers are retained in a Symbol Table in upper memory, which also serves
as the data storage area. During execution of the program each FORTRAN
statement is read and interpreted at basic circuit speeds since the machine
is a hardware interpreter for these statements. The machine corresponds
therefore to a “one-pass, load-and-go” compiler except, of course, that there
is no translation to a different machine language. It is estimated that the
control circuitry for this machine will require on the order of 10,000 diodes
and 100 flip-flops. This does not include arithmetic circuitry.

T e r n Digital computer system, digital machine design, direct
.ion of FORTRAN, FORTRAN computer system, FORTRAN lan-
machine, hardware interpreter.

Introduction

The algebraic languages, in particular FORTRAN in this country,
have had enormous impact on the utilization of computers for
scientific and engineering computation. They were designed in
large part to overcome the annoyance of lengthy learning time
and the laborious attention to detail needed to use a basic machine
language.

These annoyances are overcome by providing a language which
is closer to English in form, and freer of “bookkeeping” details,
than the usual machine languages, and by providing a machine
language program, called a compiler or translator, to convert from
the source program written by a user to an object program execut-
able by a computer. Thus the original drawbacks are overcome
but the discrepancy between the external language of the user
and the internal language of the machine leads to at least two
others. The compilation run of the machine, during which the

‘ IEEE Trans., EC-16, vol. 4, pp. 485-499, August, 1967.

language translation is accomplished, is a waste of time and money
to the user since he must pay for this time though he gets no
problem answers from it. Secondly, the user has specified the
logical flow and arithmetic details of his solution in the source
language. However, when the machine “hangs up” or when he
attempts to debug his program, all he finds displayed on the
machine console is the machine language. (On large machines he
gets equivalently an esoteric print-out in a symbolic form of
machine language.) To overcome these difficulties one could use
an interpretive translator of the source language instead, but the
historical deficiencies of interpreters, loss of memory space and
loss of speed of execution have caused this solution to be shunned.

Another solution is also possible-design a machine which
executes an algebraic language directly as its “machine language.”
This approach is based on a recognition that once the allowable
syntax and associated semantics of language statements have been
firmly specified it is a matter of choice whether to write a compiler,
to write an interpreter or to build an interpreter out of hardware.
The software choice has been almost overwhelmingly to write a
compiler. Since the choice of hardware interpreter, or machine,
has not been made, and in fact has hardly been explored to any
great extent, a study has been made in order to see if this choice
leads to a system which is competitive with the usual software
system. It should be understood that such a machine has not been
constructed. However, the design2 is sufficiently complete that
construction seems feasible.

Language-design philosophy

Since the machine language is to be an algebraic one it seemed
reasonable to choose a simple subset of the most commonly used
one, FORTRAN. This eliminates the necessity for inventing still
another such language and allows attention to be focused on
machine design. In fact, the subset chosen is quite close to that
known as “Preliminary FORTRAN for the IBM 1620,” which is
complete enough to be quite useful, but which does not include

2See h a 1 technical report for Contract AF 19(628)-2798.

363

364 Part 4 1 The instruction-set processor level: special-function processors

such innovations as subroutines, etc. In addition, the usual “built
in” subroutines SIN (x), COS (x), etc., are not included. Their in-
clusion would require additional effort for their hardware imple-
mentation which did not appear to be worth expending at this
time.

The FORTRAN statement types which are accepted by the
machine as machine language are in the table that follows.’

Stutement Comment

a = b

GO TO n

The value of the arithmetic expression b
is stored in the memory location referenced
by the variable name a, which may have
up to two subscripts.

Program control is transferred to the
statement numbered n.

GO TO (nl, n2, . . . , nm), i Program control is transferred to one of
the statements numbered nl, n2, . . . , n,
depending on the value of i at the time
this statement is executed.

PAUSE

Program control is transferred to the
statement numbered nl if the algebraic
expression e is negative, to that num-
bered n2 if e is zero, and to that numbered
n3 if e is positive.

Program execution is halted until restarted
by console switch.

DO n i = ml, m2, m3 All statements following this one in the
program, including the statement num-
bered n. are executed repeatedly. The
first execution is with i equal ml, i is in-
cremented by the value of m3 before each
succeeding execution. This continues until
i is greater than m2 at which time pro-
gram control is transferred either to the
statement following n or to that statement
required by the DO sequencing rules for
DO nests. If m3 is not given it is under-
stood to be 1.

CONTl N U E

E N D

This statement has the effect of the “no
operation” instruction in conventional
machines. Program control goes to the
next statement in the program unless the
CONTINUE is the last statement in the
range of a DO. In this case normal DO
sequencing takes place.

This statement generates a control signal
to start execution of the program.

Some familiarity with the FORTRAN language is assumed.

Section 4 1 Processors based on a programming language

READ, List These statements cause data to be read
PRINT, List or printed, respectively, in accordance

with the specified list of variables which
may be subscripted; however, the “implied
DO” feature h a s not been implemented.
No FORMAT control is available with this
machine, therefore no statement number
need be given.

This statement has the effect of reserv-
ing memory space for the subscripted
variables G. Each u stands for a variable
name followed by parentheses enclosing
one or two constants.

DIMENSION u, u, . . .

No distinction is made in this machine between fixed (integer)
and floating point (real) variables. These may have names of any
length, starting with any alphabetic character.

Fixed point constants may be specified, in a program or as data,
as any combination of one to four numeric characters preceded
by a + or - sign. however, these are converted to an internal
decimal floating point number and so there are no restrictions on
“mixed mode” expressions. Statement numbers must be unsigned
fixed point constants, which are not so converted since they only
affect program control and not arithmetic processing.

Floating point comtants are specified in the form of a mantissa
of one to four numeric symbols preceded by a decimal point (and
a + or - sign). These are followed by the character E and a single
(positive or negative) digit representing the power of ten in the
usual scientific notation.

These constraints on number size and format are made to
simplify certain circuits and could easily be relaxed if desired. The
restriction to a two-subscript maximum for subscripted variables
is similarly motivated.

Internally, all numerical data require three %bit words (Fig.
1). The first two words contain the four-digit mantissa, packed two
per word in a 4-bit code for each digit. A decimal point is assumed
to exist to the left of the most significant digit. The most significant
two bits of the third word are zero. The third bit is 0 if the
mantissa is positive, or 1 if it is negative, and similarly the fourth
bit is 0 or 1 if the exponent is, respectively, positive or negative.
The single exponent digit occupies the least significant four bits
of this word. All other characters occupy a full 8-bit word of which
the two most significant are 1’s. Any numeric characters which
are symbols of a variable, e.g., the “2” in ABZX, also occupy a
full word of this type. Statement numbers are simply packed 2
digits per word and always occupy 2 full words.

Before proceeding with the description of the overall charac-

Chapter 31 I System design of a FORTRAN machine 365

+0.5739 E-4 in three consecutive words in memory

Mantissa i W o r d 1 { 1 0 1 1 1 0 1 1 1 0 1 1 I l l 1 1

Word 2 [I 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 I
Word 3 { I 0 I 0 I 0 I 1 I 0 1 1 1 0 1 0 I -

Not used Exponent -\\ Exponent sign
Number sign

Fig. 1. Data format in memory.

teristics of a machine that loads and executes the language speci-
fied above, it may be well to indicate two basic design goals.

1 The card deck or tape containing the Hollerith or BCD
version of the English language form of a source program
should be the only deck or tape required at any time to
execute the program.

Once this program is loaded into memory and execution
started, any look “into the machine” should reveal infor-
mation in the same form in which it was entered. Thus if
the program is executing X = A + B , then one should find
“ X ” , “=”, “A”, “+ ”, “R”, at least in their BCD form.

2

The second goal has been compromised somewhat as far as the
internal representation of the program is concerned in the interest
of execution speed. However, all such compromises have been kept
to a minimum. In addition, the mechanisms by which one can take
such looks “into the machine” are such as to conceal these com-
promises.

Memory organization

The machine is, in effect, a hardware version of on “one-pass-
load-and-go” compiler and it operates in two modes. In the load
mode FORTRAN statements are read. They are analyzed as re-
quired and stored in memory. When the last statement has been
stored, the execution mode is entered and program execution
begins at the first executable statement that was read. The input/
output device for the machine design is a Flexowriter Model SPD.
Programs are assumed to be punched onto a paper tape, one

statement per line, followed by a “carriage return” which gen-
erates a paper tape symbol to separate statements. When this tape
is read into memory, blanks are automatically “squeezed out.”

The memory around which the machine is designed is a 4096-
word, 8-bit-per-word, random-access core mem0ry.l It is treated
by the control circuits as though it consisted of three distinct
regions.

1 Input/output (I /O) buffer: One statement at a time is loaded
sequentially into memory locations 0-99. The six-bit paper
tape codes are first converted to internal (often different)
six-bit memory codes and stored in the six least significant
positions of the &bit words. The carriage return symbol is
encoded into a special “end-of-statement” symbol repre-
sented in the paper as “$.” When this symbol is read the
tape is also automatically stopped.

Symbol table area: Memory locations 4095 and sequentially
downward in memory hold the programmer’s names for
variables, statement numbers, etc., as well as “pointers” to
machine addresses, plus empty (before execution) locations
for data.

Program area: Memory locations 100 and sequentially up-
ward hold the FORTRAN program, in a slightly modified
form.

2

3

Operating modes

The load mode circuits control the input of FORTRAN statements.
They place certain information in the Symbol Table Area and the
modified form of the FORTRAN statements in the Program Area.
It is while in this mode that the necessary searches for variable
names take place and machine addresses are assigned. These ad-
dresses replace portions of the variable names in the statement
as it appears in the Program Area. Similar processing replaces
programmer-assigned statement number references in the Program
Area with various internal “pointers” for control of GO TO, DO,
and IF statements. This modification is done so that statement
execution in the execute mode can proceed at high speed. In short,
the FORTRAN statement in the Program Area is modified to the
extent that variable names are replaced by actual data addresses
and statement number references are replaced by actual addresses
of statement locations in the Program Area. This translation is
done once only, when the statement is analyzed in the load mode.
It might be noted here that because of the “one-pass’’ nature of
the translation (a given statement is analyzed only once), certain

‘5-ps cycle time, EE Co Model 781.

366 Part 4 I The instruction-set processor level: special-function processors

of the pointers correspond to indirect addresses. Figure 2 shows
a sketch of the overall system control and Tables 2 to 7 show to
what extent the original statements have been altered.

Loading a program

A program, which is punched in a paper tape, is loaded into
memory by energizing the tape read circuit which reads a state-
ment on the tape, including the end-of-statement symbol &, into
the 1/0 buffer. The read circuit is then de-energized. The least
significant 6 bits of each word of the buffer hold the internal BCD
representation of each symbol.

A scan circuit (Fig. 3) now picks up each symbol in the state-
ment from left to right and as each symbol is decoded it reacts
as follows.

1 If the first symbol is a digit, control is turned over to a
Statement Number Load circuit. This circuit shifts the
statement number digit by digit into a register (SHR). The
maximum allowable length of a statement number is 4 digits
and all statement numbers are carried internally in this
form, i.e., a programmer's statement number 13 is carried
in 2 words as 0013. A search is now made of the Symbol
Table area. One of three possibilities exists:
a The statement number is not found in the Symbol Table.

I

1/0 buffer T
Execute 7

t
Input- Program

output

Read /print - -

Section 4 1 Processors based on a programming language

It is put into the Symbol Table followed by the value
of the current Program location. The statement number
is also put.into the Program Area starting at this location
and the Program Counter incremented appropriately,
Le., by 2 since two 8-bit words are used.
The statement number is found in the Symbol Table
because it has been previously referred to by an IF or
GO TO. The current value of the Program Counter is
placed into the two memory locations following the
statement number. (These were left blank when the
statement number was previously processed.) The state-
ment number is put into the Program Area and the
Program Counter is incremented.
The statement number is found in the Symbol Table
because it has been previously referred to by a DO
statement. A description will be deferred until the DO
statement loading is described since the circuit's behav-
ior is more meaningful in that context.

b

c

2 After a statement number has been processed in this fashion
or if the first symbol in the statement was not a digit (no
statement number was assigned) then the scan circuit con-
tinues to pick up each symbol from left to right until it
is able to classify the statement as to type. It then turns
over control to the appropriate loading circuit as indicated
in Fig. 3.

All of these loading circuits put the statements into the Pro-
gram Area after replacing variable names and statement number
references in the program with addresses or pointers. They also
replace reserved names such as GO TO or CONTINUE with a
single 8-bit code (token). Each unique variable name in the pro-
gram, however, is also stored in the Symbol Table once using an
8-bit code for each symbol. For nonsubscripted variables the three
words following the name are reserved for the data that will be
associated with this name when the program is executed. Sub-
scripted variable names are found in DIMENSION statements
which must precede the use of these variables in the program.
In this case as many locations following the name are reserved
as have been computed from the DIMENSION statement. The
name in the Symbol Table is preceded by a special symbol a , to
indicate that it is a subscripted variable. In addition, the first of
the two subscript values in the DIMENSION statement is also
stored immediately following the name. This number is needed
during program execution for constructing the proper element
of the array specified by a subscripted variab1e.l The address of

'A pointer to the next available location in the Symbol Table is also stored
for speed in Symbol Table searching. Fig. 2. FORTRAN computer system.

Chapter 31 I System design of a FORTRAN machine 367

PRINT Process ‘ P R I N T

I F J Process

PAUSE Process
PAUSE

CONTINUE Process

I F

’ C O N T I N U E

P a p e r - t o p e
contro l

p rogram swi tch

.

I- -

Process
end

s t a t e m e n t

Process
D I M E N S I O N

Process P- ARITHMETIC

O f f I

L

Fig. 3. Load processing sequence and control.

DO Process
DO

Process
GO TO

COMPUTED GO TO Process
COMPUTED GO TO “On

CKT hD- Process

the data location replaces all symbols of the variable name in the
Program Area except for the first. This symbol, which must be
alphabetic, is retained in the Program Area as an indicator that
this is indeed a variable. All special symbols such as (,), +, -,
etc. are simply stored sequentially in the Program Area in the &bit
BCD form as they appear in the original statement.

Statement numbers in IF and GO TO statements are similarly
replaced by the address in the Symbol Table which holds the
address in the Program Area of the statement having that number.
Note that this is an indirect address to the statement. Statement
numbers in DO statements are dealt with somewhat differently
as will be explained later. Because variable names and statement
number references can appear many times in a program, these
searches of the Symbol Table are controlled by two special circuits,
the Variable Match Unit (VMU) and the Statement Match Unit

(SMU). These circuits indicate either that the name or statement
number is already in the Symbol Table or it is not. Thus the first
appearance of a variable name, statement number, or reference
to a statement number causes it to be put into the Symbol Table.
Subsequent references merely utilize these previously assigned
data or Program addresses. Therefore each name or statement
number is stored in the Symbol Table only once with an exception
noted below. In general, the programmer’s statement is altered
only in the above described fashion. However, for ease of execution
the computed GO TO has its index parameter name, i.e., the “i”
in GO TO (nl, n2. . . . , nm), i, changed from the position following
the parenthesis to a position preceding the parenthesis,

The DO statement requires the most complex loading algo-
rithm. Basically, the idea is to place the DO statement itself,
essentially unchanged, into the Program Area but to extract the

368 Pari 4 I The instruction-set processor level: special-function Drocessors

range statement number (which specifies the last statement in the
range of the DO) and put it into the Symbol Table. It is there
preceded by a special symbol A, designating it as being referenced
by a DO, and followed by the Program Area address of the corre-
sponding DO statement. The DO statement in the Program Area
has its original statement number replaced by a special symbol,
A, and an internal address which is determined as follows (see
Table 6).

a If this DO is one of a nest of DO’s, the internal address
is the Program Area address of the X token of the next
preceding DO statement, This is easily found by a Symbol
Table search for the range statement number since there
is an entry in the Symbol Table corresponding to every DO
statement. Thus for a DO nest three deep all ending in
statement number 100, for example, there will be three
entries in “DO nest order” of the number 0100 each fol-
lowed by the corresponding DO statement Program Area
address.

If this DO is the first of a nest of DO’s, or if it is the only
DO specifying a particular range statement number, then
this internal address is the program address of the next
statement outside the DO range, Le., the address to which
control should go if this DO or DO nest is satisfied.

b

This outside address is found by the Statement Number Load
circuit at the time the last statement in the range appears in the
1/0 buffer for loading. The circuit first detects that a matching
statement number in the Symbol Table is preceded by a A. It then
extracts and saves the Program Area address of the first DO and
the last DO, if there is a nest, or simply the only address if there
is just one. The statement number is put in the Program Area as
always. In addition, the Program Area address of the h token of
the last DO in the nest is also put in the Program Area immediately
following it. In addition, a special flip-flop, the LSFF, is set. The
loading circuit for each statement type allowed to be the last
statement in a DO range, tests this LSFF after it has loaded the
statement into the Program Area. If it is on, the current contents
of the Program Counter, the address of the next statement outside
the DO range are used as the internal address in the first (or only)
DO of the nest.

It should be noted that this DO range statement number
together with its own Program Area location will also appear in
the Symbol Table without a preceding A. This is necessary because
it is possible (and even legal in some cases!) to have an IF or
GO TO refer to it also.

The method used to design the circuits which implement these

Section 4 I Processors based on a programming language

functions is the same in each case. From the English language
description of the function a sequential circuit state diagram is
constructed. The circuit is then synthesized from the state diagram
using established methods. The state diagrams of the Arithmetic
Statement Loading circuits and the Variable Match Unit, which
are used during Loading, are shown in the Appendix.

The hardware implementation of the state diagram of the
Variable Match Unit is also described there.

Executing a program

When the END statement signaling the end of a source program
is encountered by the scan unit, the machine leaves its load mode,
executes an automatic RESET, and enters the execution mode.
(Reset forces the address 100 into the Program Counter.) Pressing
the console start button causes statement execution to begin at
the first executable statement which is always found at memory
address 100. There is a separate statement execution circuit for
each statement type. In addition, the Statement Number proc-
essing circuit reacts to a digit as the first symbol in a statement.
Each of these circuits is in an initial state when execution begins.
One and only one can leave its initial state when the first symbol
of a statement is read from memory. The responding circuit then
retains control as it executes the statement until the $ (end of
statement symbol) is read from memory. It then returns to its
initial state. The first symbol of the next statement, as indicated
by the Program Counter, is read and causes some circuit to leave
its initial state, etc. Thus the first symbol of a statement acts like
the “operation code” portion of a conventional computer instruc-
tion word. The first symbol must be (since the load circuitry causes
this) one of the 8-bit tokens for the various statement types, or
a digit of a statement number, or the alphabetic character of the
variable on the left of the “=” symbol of an arithmetic statement.
The tokens are represented in this paper shown in Table 1.

Table 1

Statement type Token

GO TO n
GO TO (n l , n2, . . . , nm), i
IF (e) nl, nz, n3
PAUSE
DO n i = ml, m2, m3
CONTINUE
READ
PRINT

GO TO
COMGOTO
IF
PA US E
DO
CONTINUE
READ
PRlNT

Chapter 31 1 System design of a FORTRAN machine 369

It is possible, however, for the DO execution circuitry to leave
its initial state either by reading of the DO or by reading of the
A token immediately following it. The former causes DO initial-
ization, the latter causes DO indexing and testing as will be
described later.

The action of the execution circuits is briefly given below.

Statement number processing

When the first symbol of a statement is a digit this circuit is
energized. If there are only four digits (packed into two memory
words) the circuit returns to its initial state and the remainder
of the statement is executed. If there are eight digits (packed into
four memory words), the last four digits (the address of the A of
the last, or only, DO in a nest) are saved in a register, SSAR. The
LSFF is turned on, the circuit returns to its initial state and the
remainder of the statement is executed. If the remainder of the
statement is not an IF, GO TO, or DO statement, the execution
circuitry in control executes the statement and then tests for the
LSFF being on. If it is on, the Program Counter contents are re-
placed with the SSAR contents, the LSFF is reset, and the circuit
returns to its initial state. In this case the SSAR holds the program
address of the h token of the innermost DO. When this A is read, DO
indexing and testing take place. If the LSFF is off, the circuit returns
to its initial state.

GO TO n

The GOTO token energizes this circuit. The four-digit address
(packed into two memory words) immediately following the token
is extracted. The contents of this address are put into the Program
Counter and the circuit returns to its initial state.

Exump2e.l GO TO 15$ (Table 2).

GO TO (nl, nq, . . . , nm), i
The COMGOTO token energizes this circuit. The initial alpha-
betic symbol of i, now immediately following the token, is read
and discarded and the four-digit address immediately following
is extracted. The contents of this address (the current value of i)
are put into a register and decremented by one.

1 If the result is zero, the four-digit address following the
left parenthesis is extracted. The contents of this address
are put into the Program Counter and the circuit returns
to its initial state.

‘All examples are written as though this statement or statements were the
first in the program.

Table 2

Symbol table Program area

Address contents Address contents

4095 00 Machine form for 0100

0102
0103

4094 15)Statement 15 0101

0250
0251

GOTO
40 Address of the address
93 I of Statement 15
$

00 Statement 15
15 I in the program

If the result is nonzero, the four-digit address following the
left parenthesis is read and discarded. The register is decre-
mented by one again.

If the result is zero, the four-digit address following the next
comma is treated as in 1 above.

If the result is nonzero, the four-digit address following the
next comma is read and discarded. The register is decre-
mented by one again.

Steps 3 and 4 above are repeated until the register is zero. If
the right parenthesis is read while the register is nonzero an error
condition has been found and will be indicated.

Exumple. GO TO (5, 10, lSO), ITALY2 (Table 3) .

IF(+,, n2, n 3

The IF token energizes this circuit. The left parenthesis immedi-
ately following the token is read. Control is then given temporarily
to the Arithmetic Statement execution circuit. The latter circuit
is forced to the state in which it would be if it were ready to
evaluate an expression to the right of the equal sign in an Arith-
metic Statement. A special F/F, the IFFF, is also set to 1. The
expression e of the IF statement is read and evaluated until the
final right parenthesis of the IF statement is read. Since the Arith-
metic Statement circuit was not allowed to read the initial left
parenthesis, it would normally go to an error condition under these
circumstances of “unbalanced’ parentheses. However, sensing that
the IFFF is set to 1, it resets the IFFF, places the value of the
expression e just evaluated into the accumulator, returns to its own
initial state, and re-energizes the IF statement circuit. The ac-
cumulator is equipped to sense its own contents and energizes one

370 Part 4 I The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

Table 3 ExampZe. IF(A - B) 10, 20, 2 0 2 (Table 4).

Symbol table Program area

Address contents Address contents

4095
4094
4093
4092
409 1
4090
4089
4088
4087
4086
4085
4084
4083
4082
408 1
4080
4079
4078
4077
4076

I
m
1

A
L
Y

00 Representation of
05 I Statement 5
02
50
00
10
03 Address of
50 I Statement 10
01
50
05 Address of
53 1 Statement 150

0100
0101
0102
0103
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112

0250
0251

COMGOTO
I
40 Address of the
90 ! data for ITALY
(
40 Address of the address
85)of Statement 5

40 Address of the address
8 1 I of Statement 10

40 Address of the address
77)of Statement 150

) *

00
05

0350 00
0351 10

0553 01
0554 50

of three signal lines depending on whether the number is zero,
positive, or negative. The IF circuit senses these lines and reacts
as follows.

1 If the accumulator signal is negative, the next four-digit
address (n,) is extracted. The contents of this address are
put into the Program Counter and the circuit returns to
its initial state.

If the accumulator signal is zero, the next four-digit address
is skipped over. The four-digit address following the next
coininas (nz) is treated as in 1 above.

If the accumulator signal is positive, the next 2 four-digit
addresses and the intervening comma are skipped over. The
four-digit address following the next comma (n3) is treated
as in 1 above.

2

3

PA USE

The PAUSE token energizes this circuit. The end of statement
symbol, $, is read and discarded. All execution circuits are forced
to a state 0 and automatic reading of the memory ceases. A
START signal, initiated by a console switch, is required to return
these circuits to state 0 and to initiate memory reading at the
location specified by the current contents of the Program Counter.

Example. PAUSE $ (Table 5).

DO n i = m,, m2, m3 (or DO n i = m,, m2)

This circuit is energized (i.e., caused to leave its initial state) either
by a DO token or by the h token. Its action is different in these
two cases and will be described separately.

Table 4

Symbol table Program area

Address contents Address contents

4095
4094
4093
4092
409 1
4090
4089
4088
4087
4086
4085
4084
4083
4082
4081
4080

A

B

00
10
03 Address of
50 I Statement 10
00
20

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
01 10
0111
0112
01 13
0114
0115
01 16
0117
0118

IF
(
A
40
94

B
40
90
)

-

40 Address of the address
81 I of Statement 20

40 Address of the address
81 I of Statement 20
t

0350 00
0351 10

0441 00
0442 20

Chapter 31 1 System design of a FORTRAN machine 371

Table 5 d

Symbol table Program area

Address contents

(not applicable) 0100 PAUSE
0101 $

1 The circuit is energized by the DO token: The h token and
the four-digit address immediately following are read and
discarded. The initial alphabetic symbol of i is read and
discarded and the four-digit address immediately following
is extracted and saved in a register called SAR. The =
symbol is read and discarded. The initial value m, of this
statement can be either purely numeric or it may be the
name of a variable.
a If it is purely numeric the load circuitry will have re-

placed it with the internal machine representation of
the number. Therefore this number is simply read and
stored in the Symbol Table starting at the address given
in the SAR register.
If it is the name of a variable, the initial alphabetic
symbol is read and discarded. The four-digit address
following is extracted. The contents of this address are
treated as in a above.

In either event then, i , is given the value ml as required.
The remainder of the DO statement including the $ sym-
bol is read and discarded and the circuit returns to its
initial state.

h

2 The circuit i s energized by the X token: The four-digit
address immediately following is extracted and saved in the
SSAR. The initial alphabetic symbol of i is read and dis-
carded, the four-digit address immediately following is put
into the SAR and the contents of this address are placed
in the accumulator. (This is the current value of i.) The =
symbol and all symbols up to and including the next comma
are read and discarded. The final value, m2, may be numeric
or the name of a variable.
a If it is numeric, this value is placed in a numeric register,

SHR.
h If it is the name of a variable the initial symbol read

and discarded. The contents of the four-digit address
following is extracted and placed in the numeric register
SHR. The next symbol is read. This will be a comma
if m, has been specified or ,i i f m, has not been specified.
If it is a comma either the following purely numeric
value is added to the contents of the accumulator or the
contents of the following four-digit address is added.

c

If it is the $ symbol then the contents of the accumulator
are incrementedby one. In either event, after the current
value of i has been incremented by either m3 or one, the
contents of the accumulator are put in the Symbol Table
starting at the address given in the SAR.

Now the final value, saved in the SHR, is subtracted from the
accumulator. If the accumulator signal is positive then the value
of i must be greater than the final value of m2. Therefore the
address in the SSAR is placed in the Program Counter and the
circuit returns to its initial state. The address in the SSAR will
either be the address of the h token of a preceding DO in the
nest or it will be the address of the next statement outside the
DO nest depending on which DO statement is being executed.
If the accumulator signal is not positive then the value of i is less
than or equal to m2 and the circuit just returns to its initial state.
Thus the next statement after the DO statement will be executed.

Example. (See Table 6.)

DIMENSION B(20, IO)$
DO 5
DO 5 J = N, M $

5 A = B (K J) S

IT = 1, 100, L$

CONTINUE

The CONTINUE token energizes this circuit. The 1 symbol is read.
If the LSFF is not on, the circuit returns to its initial state. If
the LSFF is on, it is turned off. The contents of the SSAR re-
place the contents of the Program Counter and the circuit
returns to its initial state. Thus if this statement is either not
labeled or is not the last statement in a DO range, its execution
has no effect on the program. The example assumes the usual case
where it is the last statement in a DO range.

Example. (Table 7)

DO 5 I = 1, 150$
5 CONTINUE$

READ, list. (PRINT, list.)

The READ token energizes this circuit which then energizes the
Flexowriter read circuits. Data from paper tape is read into the
I/O buffer until the end-of statement symbol, #, is stored. The data
must be punched as one to four decimal digits for fixed point
numbers or one to four decimal digits preceded by a decimal point
for floating point numbers. The latter may also be followed by

372 Part 4 I The instruction-set processor level: special.function processors Section 4 1 Processors based on a programming language

Table 6

Symbol table Program area Symbol table Program area

Address contents Address contents
- _ _ _ _ _ _ _ ~

Address contents Address contents

4095
4094
4093
4092
409 1
4090
4089

3488
3487
3486
3485
3484
3483
3482
348 1
3480
3479
3478
3477
3476
3475
3474
3473
3472
3471
3470
3469
3468

a
B
34 1 Next free symbol
88 1 Table Address

Machine form of
the constant 20

A
00 Machine form
05 J Statement 5

I
T

L

A
00
05
01 Address of 2nd
21 I DO in nest
J

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
01 10
0111
01 12
01 13
01 14
0115
01 16
0117
0118
01 19
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130

DO
h
01 Address of Statement
57 1 following the DO nest
I
34 Address of data
81 I for IT

00
01
04

- -

01
00
04

L
34
77
$
DO
h
01 Address of preceding
01 I DO in the nest
J
34
68

w
34
64

- -

3467
3466
3465
3464
3463
3462
346 1
3460
3459
3458
3457
3456
3455
3454
3453
3452
345 1
3450

0131
0132

N 0133
0134
0135
0136

M 0137
0138
0139
0140

00 0141
05 0142

0143
0144

A 0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157

M
34
60

00
05
01 Address of last
21 1 DO in the nest
A
34
52

B
40
91
(
1
34
81

$

- -

J
34
68
)
$

the letter E and a single positive or negative digit indicating a
power of ten. Numbers must be separated by a comma to distin-
guish them, since no FORMAT information is available and the
read circuits ‘‘squeeze out” blanks.

The first set of digits starting at the beginning of I/O buffer,
memory address 0, is read into a 24-bit register (which is the size
of the three &bit memory words required for data). Numerical

Both registers are set to zero initially. If the first character is a
minus sign, the bit in the mantissa sign position of X is set to one.
(The internal form of data representation was described earlier
in the section on Language-Design Philosophy.) If it is a plus sign
no action is required since a zero in the mantissa sign position
indicates a positive mantissa. Further action depends on the next
character.

1 If the next character is numeric (or if there was no sign
given and the first character is numeric) this must he a fixed

information in the 1/0 buffer is in a 6-bit code. The two most
significant bits are 0 if the code is for a numeric character. The

Q placing of information into the 24-bit register is easier to under-
stand if we consider it as a 16-bit mantissa register M , which can
hold four decimal digits, and an 8-bit sign and exponent register
X , which can hold 2 bits of sign information and an exponent digit.

point constant. The four bits of numeric information are
gated to the least significant four positions of register M .
If the next character is numeric, M is shifted left four posi-
tions and this character is also gated to the least significant

Chapter 31 1 System design of a FORTRAN machine 373

Table 7

Symbol table Program area

Address contents Address contents

4095 A 0100 DO
4094 00 0101 h
4093 05 0102 01
4092 01 0103 22
4091 01 0104 I
4090 I 0105 40
4089 0106 89
4088 0107
4087 0108 00
4086 00 0109 01
4085 05 0110 04
4084 01 0111 ,
4083 16 0112 01

0113 50
0114 04
0115 %
0116 00
0117 05
0118 01 Address of the
0119 01 I DO statement
01 20 CONTINUE
0121 ?
0122

position. This continues until the comma is read. The nu-
meric code for four is now gated to the least significant four
positions of X . Since the arithmetic unit assumes a decimal
point at the left of all data, this action insures that a fixed
point number is properly interpreted.

If the next character after the sign (if there is one) is a
decimal point this must be a floating point number. In this
case the following digits are stored into M as indicated
above, but three shifts of M are always taken, whether or
not four digits are stored in M . This is required to insure
proper interpretation of the number. If a comma follows
the series of digits no further action is taken. If an E follows
then the digit following it is placed in the least significant
4 positions of X . If a minus sign is found following the E
a setting of the exponent sign position of X precedes this
action. The comma is then read.

2

After this first piece of data has been placed in M and X , the
alphabetic character following the READ token is read and dis-
carded. The next 4 digits are used as the address in which the

most significant two digits in M are stored and it is then decre-
mented appropriately to store the remainder of the data.

The remaining data in the 1/O buffer are then stored one by
one in sequence at the addresses given by the remainder of the
READ list. A subscripted variable on this list requires additional
arithmetic operations to compute the correct address from the
current index values and the original DIMENSION information
stored in the Symbol Table. These operations will be given later
in the Arithmetic Statement description.

When the $ token in the I/O buffer is reached, the next char-
acter in the READ list is read. If this character is also the $. token
then the circuit returns to its initial state. If, however it is not,
then the Flexowriter is again energized such as to read data into
the 1/0 buffer, and processing proceeds as before until reading
of the $ of the READ statement returns the circuit to its initial
state.

The PRINT statement circuit operates in almost exactly inverse
fashion and will not be described in detail. The list variables are
used in sequence to extract data from the proper memory locations
and place it in the M and X registers. The contents of these regis-
ters are then put sequentially into the 1 /0 buffer, together with
6-bit codes for the decimal point, plus and minus signs, commas,
and the E symbol at appropriate places. All data are thus output
in floating point form. When the $. token is read, the Flexowriter
print circuits are energized and the circuit returns to its initial
state.

Example.

READ, A, B, C(I, I) $
PRINT, B, C(I , I)+$

The appearance of the Symbol Table and Program Area should
be apparent from previous examples. Since this would add little
to the description of circuit action they will be omitted.

a = b

The Arithmetic Statement execution unit is energized by any 8-bit
alphabetic character code. This first character of the variable name
represented above as “a” is discarded. Then either the following
four-digit data address is saved or the data address of a subscripted
variable is computed and saved in a register. After reading and
discarding the = symbol, the circuit executes the expression h
in accordance with the given sequence of arithmetic operator
symbols, +, -, *, /, which are used to control the arithmetic
unit. The partial results at any time during the execution are stored
in the 1/0 buffer area which is, of course, otherwise unused during

374 Part 4 I The instruction-set processor level: special-function processors

Arithmetic Statement execution. These storage areas for partial
results are called di,, di,, where i specifies the “level” at which
computation is taking place,, i is equal to zero until a left paren-
thesis is encountered which increases the current value of i by
1. An exception occurs if the left parenthesis immediately follows
the = symbol. In this case the level remains at zero. It is also
necessary to store control information which relates to these par-
tial results.

Two control values are required at every level. The count of
left parentheses at any i level is stored as a number, Z i . Before
i is incremented, the incompleted arithmetic operations still re-
quired at the current level are indicated by giving an indicator
t, the value 1, 2, or 3. Also needed are indicators t + and t * to
distinguish + from - and * from /. To clarify the significance of
these control values an analysis will be made of the following ex-
pression, which contains some unneeded but legitimate sets of
parentheses:

A = ((B + (C / ((D + E * (F)))) + G))$

1 The circuit reads and saves the address of A, then reads
and discards the = which puts the circuit at the level i = 0.
The first two left parentheses cause I , to be set to 2. The
value of B is stored in do,,. The plus sign followed by a left
parenthesis cause the indicator to to be set to 1 to indicate
the condition “B + (”. Since we might in other cases find
“ B - (”, to is set to zero to indicate the plus sign.

The left parenthesis also causes i to be incremented to one
and since it is the only one at this level, I , is also set to
1. The value of C is stored in d,,,. The division symbol
followed by a left parenthesis causes t , to be set to 2 to
indicate the condition “C/(”. Since we might find “C*(” in
other cases, t *

The left parenthesis also causes i to be incremented to 2
and the next left parenthesis increments 1, to 2. The value
of D is stored in d,, and the value of E put into d,,, respec-
tively. The multiplication symbol followed by a left paren-
thesis causes t, to be set to 3 to indicate the condition
“ D + E * (”. t + , and t * , are each set to zero to indicate
the plus and multiplication symbols, respectively.

The left parenthesis before the F causes i to be incremented
to 3 and Z:, to be set to 1. The value of F is placed in d3,.

The Arithmetic Statement circuit always puts the final
value computed at any level into the arithmetic unit regis-
ter, SR. It does this whenever Zi = 0 for any i. Clearly Zi
must be decremented by one for each right parenthesis.

‘Basic circuit operation at any level is described in the earlier report. See
page 363, footnote 2.

2

is set to 1 to indicate the division.

3

4

Section 4 I Processors based on a programming language

Therefore the first right parenthesis after the F causes 1,
to equal zero. This condition causes the value stored in
d,, to be placed in the SR. The value of i is decremented
to 2.

tz being 3 (and t + = t * , = 0) causes the computation,
d,, + d,, * SR to be stored in dzo. The next two paren-
theses after F caiise I, to equal zero. Therefore, this result
is placed in the SR. The value of i is decremented to 1.

Since t, is equal to 2 and t * , is equal to 1 the computation
d,,/SR is made and stored in d,,. The final parenthesis after
the F causes 1, to equal zero. Therefore this result goes to
SR. i is decremented to zero.

Since to is one and t + , is zero the computation, d,, + SR,
is made and the result is stored in do,.

The + G causes the computation do, + G to be made and
stored in do,. The final two parentheses cause 1, to be zero;
therefore the value in do, is placed in SR. (If another right
parenthesis were found, this would cause an error condition
to be indicated.) The 3 symbol causes the contents of SR
to be stored at the previously saved memory address for A.

Any subscripted variable addresses are computed easily from
the initial DIMENSION statement information, saved in the Sym-
bol Table, and the current value of the subscripts. Assume the first
data location for an array A(1, J) is stored at a location Abase + 1.
If the DIMENSION statement read DIMENSION A(5, 10) then
the computation, Abase + 5 * (J - 1) + I, gives the correct data
address for any nonzero value of I and J . (This is true only if a
complete data word is stored per memory word; in this machine
the expression is slightly more complicated.)

In this machine the partial result locations d,, and d,, are
actually 3 words long, of course, to accommodate the data. An
additional word is used to store control information where 4 bits
are used for ti. t + ,, and t * and the remaining 4 bits for the
Zi count. The i counter therefore is actually incremented or decre-
mented by 7 instead of one. Thus at any level, of which there
can be 14 since the 1/0 buffer is 100 words long, the li count
can be as great as 15. This is more than adequate since it allows
for 210 left parentheses, which is much longer than the 1/0 buffer
length.

Since the appearance of the Symbol Table and Program Area
would add little to this discussion, an example will be omitted.

Conclusion

We have illustrated in some detail that a machine for direct trans-
lation of a simple algebraic language is possible. It would therefore

Chapter 31 I System design of a FORTRAN machine 375

seem that further investigation be made of the economic position
of this solution vis-k-vis the software compiler solution. Unfor-
tunately, the present authors are not sufficiently versed in compiler
construction to make such a comparison.

The actual construction of such a machine as an independent
unit is probably not reasonable except under particular circum-
stances in which only small one-shot scientific problems form the
bulk of the computing. However, as an adjunct to a larger general
purpose machine, it may well serve a need as a hardware inter-
preter for widely used higher level languages.

As a result of a fairly complete design of the control circuits
of this machine, it is estimated that 10,000 diodes and 100 flip-flops
would be needed for these alone (not including arithmetic circuits).
The design techniques used are simple and straightforward but
rather expensive. These designs should probably only be consid-
ered for use with integrated circuitry.

References

AndeJ61; BashT64; International Business Machines Corporation, General
Information Manual; FORTRAN, Form F28-807401, December, 1961; IBM
1620 FORTRAN: Preliminary Specifications, Form J2R-4200-2, April, 1060

APPENDIX’

The variable match unit (VMU) (Fig. 4)

The Symbol Table at the end of the load mode should contain
all variable names used by the program, together with empty
locations reserved for data associated with these names. The Pro-
gram Area at the end of the load mode should have a program
in which all variable names have been modified in that only the
first letter is retained, followed by the Symbol Table address of
the data associated with this name. Since any variable name may
appear many times in a program, a search is required, during the
loading, to see if the name already exists in the Symbol Table.
The search of the Symbol Table (ST) consists of comparing each
name there with the variable name in the statement being loaded.
All statements are loaded by an appropriate circuit of Fig. 3 from
the 1/0 buffer and into the Program Area of the memory. There-
fore the variable name in the Statement exists physically in the
I/O buffer.

It is the function of the VMU to make this search when ener-
gized or “called” by the loading circuits for DIMENSION, DO,
computed GO TO, READ, PRINT, IF and Arithmetic statements
in which variable names appear. The output action of the VMU

‘Symbols used in this Appendix are described in Table 8.

is to set either the OK, AOK or EOL flip-flops. These flip-flops
respectively indicate that the ST either:

holds the variable in question as a result of previous loading,
or

that the variable is subscripted and has been previously
loaded by the DIMENSION statement loading circuit, or

that the End-of-List (EOL) token was found, indicating the
absence of the variable in the ST.

The state diagram for this circuit is shown in Fig. 4. When
triggered by the START VMU signal in state 0, the circuit goes
to state 1, the next clock pulse sends it to state 2 from which it
starts its search of the ST. In going from 1 to 2, the 1/0 Counter
(CIO) contents are saved in register SCIO since the name may
have to be scanned again. The Symbol Table Counter (STC) is
initialized to 4095 since the ST is scanned sequentially downward.

If a character of a variable name in the 1/0 buffer is found
in the corresponding position of a name in the ST, the character
is said to be matched. The VMU proceeds from state 2 to state
3 if the first character of the name under scan matches. Otherwise
the state changes from 2 to 8, if the NO MATCH signal is given.
The MATCH or NO MATCH signals are generated as a result
of comparing the contents of the ST location undergoing the scan
(the contents reside in the Memory Buffer Register, MBR), with
the contents of the register COMP which has the character from
the 1/0 buffer. The first character is put into COMP by the calling
circuit, thereafter the VMU picks them up in the 3-4 transition.
The ClO and STC counters are incremented and decremented,
respectively, and the VMU oscillates between states 3 and 4 as
long as matching continues. This comparison process will termi-
nate when, either an arithmetic operator So, is read from the 1/0
buffer sending the circuit to state 6 from state 3, or the ST contents
cause a NO MATCH signal with respect to the contents of the
COMP unit causing the transition from state 4 to 5.

In state 6, if a digit is next read from the ST, corresponding
in position to the appearance of the operator from the 1/0 buffer
clearly the names are the same and the OKFF is set to 1, and
the transition from 6 to 0 is macle. On the other hand, if another
alphameric character in the ST corresponds to an operator, So,
in the 1/0 buffer, the names are not the same and the transition
from 6 to 5 is made. In state 5 the circuit just reads to the end
of the nonmatching name in the ST. A digit at the end of this
name causes the transition 5-7 during which the STC is stepped
over the 3 data locations to the next ST entry and the CIO reini-

376 Part 4 1 The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

//
/

a/ STC
READ (ST

d/SET OKFF

READ (STC)

c VMU/-

:OL/SET EOLFF

/ N O MATCH/-

S y / t STC c/ / R E A D (STC)

READ (STC)

\

d -+STCL
SAVE -STCM

d -STCL
d SAVE-STCM

SCIO -CIO I- R E A D 110

\

/READ I/O
*

Fig. 4. Variable match unit.

tialized to the start of the name being sought. The first character
in this name is read and placed in COMP as circuit goes to 2.

As stated earlier, when the first character from the 1/0 buffer
does not match the contents of ST, the state becomes 8. If the
mismatch was caused by the EOL token in the ST the EOLFF

is set to 1 and state 0 is reached. If the mismatch was due to a
A at the present ST location, the STC is decremented by 5 which
steps over the 2 four-digit numbers stored after a A and the circuit
returns to 2 to try a match on the next ST entry. If the mismatch
is caused by a digit then this is statement number information

Chapter 31 1 System design of a FORTRAN machine 377

Table 8

CIO

CP

COMP

SAR

SAVE

SClO

SH R

SR

SSAR

STC

s,

Sd

S O

(Y

A

x

d

EOL

MATCH

Counter for the input output buffer, 4 BCD numeric char-
acter (4 bits each), counts up. Can be set to any given
num ber.

Program Counter. (During execution it points to the state-
ment to be executed, during loading it points to the loca-
tion where the program is to be loaded.) 4 BCD numeric
characters, counts up. Can be set to any given value.

Comparator register, 8 bits. During loading holds a char-
acter to be matched with some other character in the
memory, during execution saves the input symbol that
drives the execution circuits. (Acts a s second rank of
Memory Buffer Register.)

Save Address register, 4 BCD numerics. Counts down. Dur-
ing loading holds the address of the last DO in a nest.
During execution it is a n auxiliary counter.

2 BCD (8 bits total) auxiliary register, each bit can be set
independently of the others.

4 BCD numeric register, holds temporarily the value of CIO.

Special Shift register, 4 BCD character, can be shifted to
the left 1 BCD character (4 bits) at a time.

24-bit register, used with the accumulator in the arithmetic
unit. Bits 1-8, 9-16, 17-24 can be gated independently.

Special Save register, 4 BCD numeric (used as auxiliary
register in loading and execution).

Symbol Table counter, 4 BCD character, counts down.

The 8 bits in the MBR are decoded as a single alphabetic
character (A-2).

The 8 bits in the M B R are decoded as a digit (0-9) and bits
1-4 represent in BCD the value of the digit.

The bits in the M B R are decoded as one of the following
operators. + - / (),

8-bit character that precedes a subscripted variable name
in the Symbol Table.

8-bit character that precedes the statement number of a
last statement of a DO nest in the symbol table.

An 8-bit character that follows the DO token in the program
area.

The 8 bits in the MBR are decoded as 2 BCD digits of 4 bits
each.

An 8-bit character that is placed at the current end of the
Symbol Table.

Signal that is generated when the content of the MER is
identical to the content of the COMP.

which requires a decrement of STC by 4 to get to the next entry.
If an unmatched alphabetic character in the ST was the reason
for the mismatch, this variable is read to its end in state 12 as
was done in state 5.

The only other ST symbol which could have caused a mismatch
is an a , the array symbol. This symbol sends the VMU to state
9. If a match is now to occur, it will be with a subscripted variable
name. Thus a match causes a transition from 9 to 13 and states
13 and 14 correspond to state 3 and 4 for a simple variable as
matching proceeds.

Reading an arithmetic operator in the 1/0 buffer causes transi-
tion to 16 where a corresponding digit in the ST causes the AOKFF
to be set and the circuit returns to 0, during which time it decre-
ments the STC. This is necessary in order for the STC to hold
the address of the first constant given in the DIMENSION state-
ment which caused this ST entry. The transition 16 to 15 corre-
sponds to the 6 to 5 transition, the ST name is longer than the
1/0 buffer name, and in state 15 the rest of the name is stepped
over. Now, however, the next two words in the ST hold the address
of the next ST entry. Therefore, these are saved and put into the
STC during transition 15-17-7, which otherwise corresponds to the
transition 5-7 for a single variable.

If, however, there was no match in state 9, the circuit steps
over the rest of the name in the ST in state 10 and initializes the
STC to the next ST entry in the transition 10-11-12.

Note that when the VMU returns to its 0 state after setting
either EOL or OK or AOK flip-flops, the STC holds precisely the
address needed for further action. An EOL needs to be replaced,
starting at this STC address, with the new variable name. In the
case of OK or AOK this STC address is the one to be placed in
the program since it holds the data address for simple variables
or the address of the required indexing constant for subscripted
variables.

After the calling circuit has used the VMU it has received one
of the 3 signals from the VMU. For certain statements these signals
can be used to detect syntax errors. If there are none then the
calling circuit takes whatever further action is necessary on the
variable name being scanned.

The arithmetic statement loading circuit (Fig. 5)

An arithmetic statement consists of a string of alphameric symbols,
S,S,, grouped to form variable names, of numeric symbols, S,,
grouped to form constants, and of arithmetic or other operator sym-
bols, So, which separate them. The Arithmetic Statement loading
circuit calls on the VMU circuit to find the variable names as has
been described. It then puts a new name into the ST (if required)

378 Part 4 1 The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

START VMU
3 ARITH STAT/- -- A v W

+ - PROG
9 CP-(SSAR) I START READ

,

8 LSFF.1 RES LSFF

/'
/

,/
I
I /

A
/SHIFT SHR

-SHR

Fig. 5. Arithmetic statement loading.

I /ADJUST SHR

or it puts the data address into the program. The 8-bit BCD forms
of the operator symbols are simply put into the program. The
constants are put into the program after conversion to machine
form. The state diagram of this circuit is shown in Fig. 5. The
scan circuit signal ARITH STAT sends the circuit from 0 through
1 to 2. The scan circuit has saved the address of the beginning
of this statement in a register SCIO. This is used to initialize the
CIO so that this statement can be read from the beginning.

The first symbol of an arithmetic statement, which must be a
variable and not a digit, takes the circuit to state 3 after this
symbol has been put into the program (S, + PROG) and the VMU
initialized and started. Any one of the VMU signals is possible
and valid and simply forces the circuit to state 5. During the 3-5
transition the circuit loads the appropriate address into the pro-
gram when the name has matched. If it has not matched any
existing name the circuit first goes to state 4 and puts the name

into the Symbol Table before going to state 5. State 5 is that from
which all further loading is accomplished. Variable names are
separated by operators, which are loaded into the program by the
cycle in state 5 (So -+ PROG). Note the convention that So repre-
sents any operator symbol not explicitly specified on another exit
from 5. Any variable names cause a transition to state 3 with the
same output action as from state 2. Floating point constants are
loaded via states 5-9-5. A decimal point indicates a floating point
constant and takes the circuit to state 7. (Note that a minus sign
preceding a constant is simply an operator and is processed in state
5.) The SHR is cleared in preparation for the storing of the follow-
ing digits in state 7. When E is received the digits of the fraction
in the SHR are left adjusted (ADJUST SHR), if there are less than
four of them, and placed in the program area. The exponent sign
is found in the transition 8 to 9. The exponent digit together with
the exponent sign bit is stored in the program area during the

Chapter 31 1 System design of a FORTRAN machine 379

9 to 5 transition. Fixed point constants are handled in state 6. The
important difference is that the digits are not left adjusted in the
SHR and a 04 is put into the program as the exponent since a
decimal point is assumed to precede the first data word. See
Fig. 1.

The $ takes the circuit to its initial state. If this statement
happens to be the last in a DO nest, the Statement Number Load
circuit has set the LSFF to 1. It has also put the ST address of
the word following the A symbol of the first DO of the nest into
the SSAR register. Since the program counter (CP) now holds the
correct exit address for this DO statement it is placed at the
address given by the SSAR during the transition to state 0. During
the transition the signal START READ is also sent to the paper
tape reader in order for it to put the next Statement into the 1/0
buffer.

Hardware implementation of the VMU state diagram

Each function mentioned in the paper plus some other auxiliary
ones are initially represented in a state diagram form, such as the
state diagram for the loading of the Arithmetic Statement
(Fig. 5) and the Variable Match Unit (VMU) (Fig. 4).

We will describe the method used to realize a circuit which
will perform the function defined by a given state diagram (SD).
As an example we will use the VMU. All the information needed
is present on the SD. The operations on the right-hand side of
the “/,, in the SD are the output operations required to be per-
formed. In order to implement these operations we must specify
the actual register gating signals, memory read and write signals,
arithmetic unit signals, etc., required by them. We will call these
various signals the microsteps of an output operation. Therefore
to realize the SD of a given function we must implement the
microsteps corresponding to the output operations.

We begin by listing from the state diagram some output opera-
tions and their corresponding microsteps. For example, in state
2 of Fig. 4, if a MATCH signal is present we are supposed to
increment the CIO counter and then read the 1/0 buffer.

Consequently the microsteps required are:

TCIO This signal causes the CIO to be incremented by one.
CIO- MAR This signal causes the CIO to be gated to the

READ This signal initiates a memory read cycle.
CHANGE STATE This signal causes the VMU to go from state

memory address register.

2 to state 3.

Therefore the execution of the above microsteps, in that order,
would implement the 2-3 transition of Fig. 4. Some microsteps

for the VMU are listed at the end of this Appendix. The largest
number of microsteps for a transition from one state to another
is 8, which occurs in the transition from state 8 to state 2. Once
this maximum number of microsteps is determined, a control cycle
counter is constructed, which can count as high as this maximum.
Since in this case the number is 8 we need 3 flip-flops to realize
it. In addition, a “one hot line” decoder is needed such that at
each count one and only one line of the decoder has a “one” at
its output. Also needed is a state diagram counter which realizes
the “skeleton” of the state diagram. This skeletal counter tells us
which state we are in and which to change to, given the present
input signal or symbol. Thus the skeletal counter “knows” that
if the circuit is in state 2 and a MATCH signal is present, it should
change to state 3 upon receipt of a change state signal. The real-
ization of such a skeletal counter has been described [Bashkow,
19641. Now we use the outputs of the skeletal counter which will
indicate to us the state we are in, the outputs of the decoder of
the control cycle counter, and the input lines (Sv, So, MATCH,
NO MATCH) and connect them as shown in Fig. 6. Each AND
gate in this figure has 3 inputs except those not requiring input
line information. One input comes from the input set (So, S,,
MATCH, etc.). The second input comes from the state diagram
skeletal counter which indicates a unique state of the state dia-
gram, and finally the third comes from the control cycle counter.
The output of each AND gate is a line indicating a unique micro-
step. The AND’s feed OR gates, which actually energize the given
microstep. For example the output lead of the “READ” Or gate
is connected to the “READ” terminal of the memory.

If we assume that the control cycle counts in sequence 1, 2,
etc., then the lead numbered 1 will go to the first microstep of
each sequence. The one numbered 2 will go the second, etc.
Therefore we see that the following microsteps should be executed
in the order listed below for states 0, 1, 2, 5 of Fig. 4. The circuit
which causes the execution is shown in Fig. 6.

State 0

State 1

State 2

and START VMU
CHANGE STATE
CIO + SCIO
0100 0000 1001 0101 - STC
STC - MAR
READ
CHANGE STATE
and MATCH
INCREASE CIO
CIO + MAR
READ

380 Part 4 I The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

Ld
S"
MATCH
NO MA1

Sta tes
'

- 0
1
2

VARIABLE ~

__
4,

17 ' -
I

Clock

Reset t o 0

I

E
t-

t-

Star t VMU

Change ST

CIO-SCIO -
01000000100~0101-STC

STC -MAR
pi
-

Fig. 6. State diagram implementation.

Chapter 31 1 System design of a FORTRAN machine 381

CHANGE STATE

CHANGE STATE

DECREASE STC
STC + MAR
READ
CHANGE STATE

State 5 and d
DECREASE STC
DECREASE STC
DECREASE STC
SCIO + CIO
CIO + MAR
READ
CHANGE STATE

State 2 and NO MATCH

State 5 and S,

In state 0 of Fig. 4 a START VMU signal takes it to state 1. This
is accomplished by the top AND of Fig. 6. The only microstep
needed is CHANGE STATE. In state 1 of Fig. 4, the next clock
pulse (after reaching state 1) causes a transition to state 2. In this
case we need to save CIO contents in register SCIO, (CIO + SCIO)
set the STC to 4095 (4095 + STC shown above in BCD form) and
get the contents of the address now in the Symbol Table Counter
(READ(STC)). This latter is implemented by the two microsteps
STC -+ MAR followed by a READ command to the core memory.
This transition from 1 to 2 of Fig. 4 is accomplished by the next
5 AND gates shown in Fig. 6. The next AND gates shown accom-
plish the transition from state 2 to 3 if there is a MATCH. The
next AND accomplishes the transition from 2 to 8 if there is NO
MATCH (in this case nothing need be done). Finally the lowest
two groups of AND gates implement the required microsteps as
the circuit changes from state 5 to 7 if a 4-bit digit code is sensed
or causes the circuit to remain in state 5 after decrementing the
STC if an 8-bit variable code is read.

Chapter 32

A microprogrammed implementation
of EULER on IBM System/360 Model 301

Helmut Weber

Summary An experimental processing system for the algorithmic language
EULER has been implemented in microprogramming on an IBM System/360
Model 30 using a second Read-only Storage unit. The system consists of a
microprogrammed compiler and a microprogrammed String Language In-
terpreter, and of an 1/0 control program written in 360 machine language.

The system is described and results are given in terms of microprogram
and main storage space required and compiler and interpreter performance
obtained. The role of microprogramming is stressed, which opens a new
dimension in the processing of interpretive code. The structure and content
of a higher level language can be matched by an appropriate interpretive
language which can be executed efficiently by microprograms on existing
computer hardware.

Introduction

Programs written in a procedure-oriented language are usually
processed in two steps. They are first translated into an equivalent
form which is more efficiently interpretable; then the translated
text is interpreted (“executed”) by an interpretation mechanism.
The translation process is a data-invariant and flow-invariant
operation. It consists of two parts-an analytical part, which
analyzes the higher level language text, and a generative part,
which builds up a string of instructions that can be directly inter-
preted by a machine. The analytical part of the translator depends
on the higher level language; the generative part depends on a
set of instructions interpretable by a machine. Historically there
was only one set of instructions which could be interpreted effi-
ciently by a machine, its “machine language.” Figure 1 outlines
this scheme.

Some of the processors of the IBM System/360 family are
microprogrammed machines. On them the “360 machine lan-
guage” is interpreted not by wired-in logic but by an interpretive
microprogram, stored in control storage, which in turn is inter-
preted by wired-in logic. Therefore, in a certain sense the 360
language is not the “machine language” of these processors but
the (efficiently interpretable) language in which the processors of

‘Cvmm. ACM, vol. 10, no. 9, pp. 549-558, September, 1867.

the System/360 family are compatible. The true “machine lan-
guage” of these processors is their microprogram language. This
language is on a lower level than the “360 language”; it contains
the elementary operations of the machine as operators and the
elements of the data flow and storage as operands.

Now it is conceivable to compile a program written in a higher
level language into a microprogram language string. This string
would undoubtedly contain substrings which occur over and over
in the same sequence. We could call these substrings procedures
and move them out of the main string, replacing their occurrence
by a procedure call symbol, followed by a parameter designator
pointing to the particular procedure. Our object program then
takes on the appearance of a sequence of call statements. From
here it is only a final step to eliminate the call symbols and furnish
an interpreting mechanism which interprets the remaining se-
quence of “procedure designators.”

The process just described will result in the definition of a string
language and the development of a microprogrammed interpreta-
tion system to interpret texts in this string language. The situation
is similar to the System/360 case: the string language corresponds
to the 360 language. Programs written in a higher level language
are compiled into string language text to be stored in main storage.
The string language interpreter corresponds to the microprogram

Fig. 1. Processing programs written in higher level languages via trans-
lation to machine language.

I82

Chapter 32 I A microprogrammed implementation of EULER on IBM System/360 Model 30 383

which interprets 360 language texts. It consists of a recognizing
part to read the next consecutive string element and to branch
to an appropriate action routine and of action routines to execute
the particular procedure called for by the string element.

The essential difference between our situation and the 360 case
is that the string language reflects the features of the particular
higher level language as well as the features of the particular
hardware better than the general purpose 360 language.

What is gained by defining this string language and by provid-
ing a microprogrammed interpreter for it? From the method of
definition described, it can be seen that the elements of the string
language correspond directly to the elements of the higher level
language after all simplifying data-invariant and flow-invariant
transformations have been performed. But the elements of the
string language are also well-adapted to the microprogram struc-
ture of the machine. Therefore, during the compiling process (see
Fig. 2) only a minimum of generation is necessary to produce the
string language text. The compiler is shorter and runs faster.

But the more important aspect is that object code execution
is also faster. The string language interpreter in case 2 will be
coded to take care of all necessary operations in a concise form,
whereas in case 1 it will be necessary to compile a whole sequence
of machine language instructions for an elementary operation in
the higher level language. Examples of this are the compilation
of 360 code for an add operation in COBOL of two numbers with
different scaling factors or the compilation of machine instructions
for table lookup or search operations, etc. In these cases the string
language interpreter of Fig. 2 will execute a function much faster
than the machine language interpreter of Fig. 1 will execute the
equivalent sequence of machine language instructions. Therefore,
object code execution will be faster in scheme 2.

If object code performance is not as much in demand as object
storage space economy, the string language interpreter can also
be written such that the string language is as tightly packed as

Input Doto

Ovtput
Doto

Intermediate
--t

Analyrir

Higher-Level

intermediate text

I
I"tcrprcter

Fig. 2. Processing programs written in higher level languages via trans-
lation to interpretive language.

possible so that the translated program is as compact as possible
and will take up less storage space than the eqnivalent machine
language program under the scheme of Fig. 1.

These ideas are applied in an experimental microprogram sys-
tem for the higher level language EULER [Wirth and Weber,
1966a and 1966133 described below. Problem areas in this approach
are indicated and some ideas for future development are offered.

Special considerations for EULER

The higher level language EULER [Wirth and Weber, 1966a and
1966bl is a dynamic language. This means that for programs
written in it many things have to be done at object code execution
time which can be done at compile time for other languages.
EULER also contains basic functions which do not have compara-
ble basic counterparts in the machine languages of most machines.
To compile machine code for these dynamic properties and for
those special functions would require rather lengthy sequences of
machine language instructions, which would consume considerable
object code space and require high object code execution time.
Therefore, for a language like EULER, interpretation at the string
language level by an interpreter into which the dynamic features
and special functions are included by microcode will yield much
higher object code economy and object code performance than
compilation to machine language and interpretation of this ma-
chine language.

Three examples from EULER are given here.

1. Dynamic type handling. To a variable in EULER, constants of
varying type can be assigned dynamically. For example in

A t 3; . . . ; A c 4.51,,-,5; . . . ; A c true; . . . ; A t ' . . . ';
the quantities assigned to the variable A have the types: integer,
real, logical, procedure. Therefore, in EULER each quantity has
to carry its type indicator along and each operator operating on
a variable has to perform a dynamic type test. The adding operator
+ for instance in A + B has to test dynamically whether both
operands are of type number (integer or real). This type testing
is done by the String Language Interpreter in minimum time,
whereas it would require extra instructions if the program were
to be compiled to 360 machine language.

2. Recursive procedures and dynamic storage allocation. In
EULER, procedures can be called recursively, e.g.,

F c 'formal N ; if N = 0 then 1 else N * F(N - 1)';

384 Part 4 1 The instruction.set processor level: special-function processors

and storage is allocated dynamically, e.g.,

new N; . . .; N t 4; . . .; begin new A; A t list N;

In order to cope with these problems the EULER execution system
uses a run time stack. Each operation is accompanied by stack
pointer manipulations which by the microprogram can be accom-
plished in minimum time (in general, even without extra time
because they are overlapped with the operation proper), whereas
extra instructions would be required, if the program were com-
piled.

3. List processing. EULER includes a list processing system, and
lists are of a general tree structure, e.g.,

A c (3, 4, (5, 6, 7), true, '. . .');

List operators are provided like tail and cat and subscripting:

B c A [3] ; C +- B cat A; C t tail C;

The string language interpreter handles list operations directly and
efficiently by special microprograms. If the program would be
compiled to 360 machine language, a sequence of instructions
would be required for each list operation.

EULER system on IBM System/360 Model 30

An experimental processing system for the EULER language has
been written to demonstrate the validity of these ideas. It is a
system running under the IBM Basic Operating System and con-
sists of three parts:

1 A translator, written in Model 30 microcode.' This trans-
lator is a one-pass syntax-driven compiler which translates
EULER source language programs into a reverse polish
string form.

An interpreter, written in Model 30 microcode,l which
interprets string language programs.

An 110 Control Program written in 360 machine language.2
This IOCP links the translator and interpreter to the oper-
ating system and handles all 110 requests of the translator
and interpreter.

2

3

Stored in the second Read-only Storage (Compatibility ROS) of Model
30.
"he 360 microprograms are stored in the first Read-only Storage (360
ROS) of the Model 30.

Section 4 I Processors based on a programming language

The system is an experimental system. Not all the features of
EULER are included,-only the general principles that are to be
demonstrated. The restrictions are:

1 Real numbers are not included; only integers are recog-
nized.

The interpreter microprograms for the operators Divide,
Integer Divide, Remainder, and Exponentiation have not
been coded.

The type 'symbol' is not included.

No garbage collector is provided. Therefore, the system
comes to an error stop if a list processing program has used
up all available storage space (32K bytes).

2

3

4

Also for reasons of simplicity, the system is written only for
a 64K System/36O Model 30 and the storage areas for tables,
compiled programs, stacks and free space are assigned fixed ad-
dresses.

The string language into which source programs are translated
is defined as closely as possible to the interpretive language used
in the definition of EULER [Wirth and Weber, 1966a and 1966b].
The question whether this is the ideal directly interpretable lan-
guage corresponding to the EULER Source language given the
Model 30 hardware is left open. Also no attempt is made to define
the string language so that it becomes relocatable for use in time
sharing or conversational processing mode.

The three storage areas used by the execution system are:

1 Program area
2 Stack
3 Variable area

Program area. A translated program in string language consists of
a sequence of one-byte symbols for the operators (+, -, begin,
end, c, go to, etc.). Some of the symbols have trailer bytes associ-
ated with them; for instance, the symbol +number has three
trailer bytes for a 24-bit absolute value of the integer constant.

The symbol reference (@) has two trailer bytes, one containing
the block number (bn) , the second one the ordinal number (on).

Chapter 32 I A microprogrammed implementation of EULER on ISM System/360 Model 30 385

The operators then, else, and, or and ' have two trailer bytes
containing a 16-bit absolute program address, e.g.,

1-1
Other operators with trailer bytes are label and the list-building

operator.

Stack. The execution time stack consists of a sequence of 32-bit
words. It contains block and procedure marks to control the proc-
essing of blocks and procedures and temporary values of the
various types. The first 4-bit digit of a word in stack always is
a type indicator. The format of these words is given in Fig. 3.

Variable area. The variable area is an area (32K bytes long) of
32-bit words used for the storage of values assigned to variables
and lists (and also for auxiliary words in procedure descriptors;
see type procedure in Fig. 3). The format of the entries is exactly
the same as the format of the stack entries (see Fig. 3), the only
exception being that a mark can never occur in the variable area.

Microprogramming the IBM System/360 Model 3 0
[Fagg et al., 19641

Microprograms are sequences of microprogram words. A micro-
program word is composed of 60 bits and contains various fields
which control the basic functions in the IBM System/360 Model
30 CPU. These basic functions are storage control, control of the

I Type procedure

IoW/"/A Type undefined

U I
I I I

I value: magnitude in hexadecimal (< 169

Type logical
value. t rue 1 13 > u p M f l / J

false 0

Type lahel I

mp:
the block in ah ich the label is defined.
na : 1Wiit absolute Drogram address

mark pninter, points to the stack location of the mark for

[5: d p [I ~ C J Type reference

mp: mark poiiiter. poinis t o the stack Irwation of the mark for
the tilnck in a -h i rh the variahle i$ defined.
lot: location nf n-nrd i n variahle area which rontains value
assigned trr variable.

mp: mark pr,inter. p<,int- i n the stack lncarion of the mark for
the hlnck f o r prrjcediire, in which the p r r ~ e d u r e is defined.
link: pointer tr, a a n r d in variahle area which contains
additional infnrmatir,n.
hn: hlock niimher r,f the t,lnrk for procedure) in which the
procedure is defined
pa: 16-hit program arldresq. where string code for procedure
s tar ts .

length: numher of elenicrit; in list I < 163)
Ioc:
are stored i n coiiFecutive storage locations).

16-bir lucatinn f,f first liit element in variable area (lists

Mark

A mark coiisistl; of 3 rrords in stack; it is hililt each time a block o r
a procedure is entered.

static link: static link t o mark of embracing block.
hn: hlrrck numher.
dynamic link. dynamic link to mark of emhracing block (or
procedure),
return address: &hit program address to which to return
upon normal exit of procedure ifor procedure marks only. this
field is 0 for hlock marks).

The last stack word i t i a mark is a list descriptor (see type list)
for the variable list (in a hlork mark) or the actual parameter list
(in a procedure mark).

I

Fig. 3. Format of words in stack and variable area.

386 Part 4 1 The instruction-set processor level: special-function processors Section 4 I Processors based on a programming language

2 BUS

I

,

’ CARRY

Fig. 4. Simplified data flow of the IBM System/360 Model 30.

data flow registers and the Arithmetic-Logic-Unit (ALU), micro-
program sequencing and branching control, and status bit-setting
control. Microprogram words are stored in a Card Capacitor
Read-only Storage (CCROS). Fetching one niicroprogram word
and executing it takes 750 nsec, the basic machine cycle.

Figure 4 shows in simplified form the data flow of the IBM
System/360 (IBM 2030 CPU). It consists of a core storage with
up to 65,536 8-bit bytes and a local storage (accessible by the
microprogrammer but not explicitly by the 360 language pro-
grammer), a 16-bit storage address register (M, N), a set of 10 %bit
data registers (I, J, . . . , R), an arithmetic-logic-unit (ALU), con-
necting 8-bit wide buses (Z , A, B, M, N-bus), temporary registers
(A, E), switches and gates.

Figure 5 shows the more important fields of a microprogram
word. Only 47 bits are shown. Other fields contain various parity
bits and special control bits. The field interpretation given in Fig.

5 is as for microprogram words in the second Read-only Storage
unit (Compatibility ROS) if the machine is equipped with the 1620
Compatibility Feature. The meaning of the microprogram word
fields is explained in connection with Fig. 6 which shows the
symbolic representation of a microprogram word together with
an example as it appears on a microprogram documentation sheet.

The fields of the microprogram word can be grouped in five
categories:

1

2

3

ALU control fields: CA, CF, CB, CG, CV, CD, CC

Storage control fields: CM, CU

Microprogram sequencing and branching fields: CN, CH,
CL

Status bit setting field: CS 4

5 Constant field: CK

Chapter 32 I A microprogrammed implementation of EULER on IBM System/360 Model 30 387

0000
000 1
0010
001 1

0100
0101
0110
01 1 1

1000
1001
1010
101 1

~ _ - _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ ~

0 t
I 1 NOOCC~SI L S X L 1 * L L - +I LL-SS
RO * Store 3f X D 2 X H H X And Ht-S4 * Through Thr m Or ~ z c s 4 , ~ z - s ~ S I
* G I UV-MN S 4 * * r0,roveC O-tS4.O-SS * 5 X RzVal id d R LT-MN * XL t1,50vec 1-s L

ALU corry R L X * 6 S XH +c,sovec 0-so
so t = c * R 7 R X XOR I-SO

R2 G7 D 8 D o-sz
52 53 L ANSNZ-S2

S6 57 T X'B' T 1 4 6

0 Wrlte MS * R o 0 c + +o N&;;;?

* IJ-MN Y X K 3
-.

5 4 55 G X3A" h 0-S6

Fig. 5. IBM System/360 Model 30 microprogram word. (Detailed explanation is provided in text.) The field inter-
pretation is given for microprogram words in compatibility ROS if the machine is equipped with the 1620 compati-
bility feature. Fields marked ' I * " contain designators not explained here in order not to confuse the basic principles.

1100

ALU control fields. On the line designated "ALU" in Fig. 6, an
ALU statement can appear. It will specify an A-source and a
B-source, possibly an A-source modifier and a B-source modifier,
an operator, a destination, and possibly a carry-in control and a
carry-out control.

CA is the A-source field. It controls which one of the 10 8-bit
data registers is connected to the transient A-register and therefore
to the A-input of the ALU.

CB is the B-source field. It controls whether the R, L, or
D-register or the CK-field is connected to the transient B-register
and therefore to the B-input of the ALU. If "K" (CB = 3) is speci-
fied in this field, the 4-bit constant field CK is doubled up; i.e., the
same four bits are used as the high digit and the low digit.

Between the A-register and the ALU input is a straight/cross
switch and a high/low gate. Its function is controlled by the
CF-field. Depending on the value of this field, no input is gated
into the ALU (0) or only the low (L) or high digit (H) is admitted.
CF = 3 gates all eight bits straight through, whereas the codes
CF = 5, 6, and 7 cross over the two digits of the byte before
admitting the low (XL) or high digit (XH) or both digits (X).

Between the B-register and the ALU input is a high/low gate
and a true/complement control. The high/low gate is controlled
by the CG-field in the same manner as the high/low gate in the
A-input. The true/complement control is operated by the CV-field.
It admits the true byte to the ALU (+) or the inverted byte (-)
or controls a six-correct mechanism for decimal addition (@).

The operator and carry controls are given by the CC-field. This
field specifies binary addition without carry handling (+O) , addi-

X 6 X 7 ROS ADDR

C O N S T A N T

A L U

STORAGE

STATUS SETTING

B R A N C H I N G SEQUENCE

COORD- ~ COORD

Format of symbolic representation

01 -

1101

R f K H - D C

WRITE

HZ -54, L Z - S 5

G4 .G5 c4

c4 ~ ~ CD

Example

Fig. 6. Symbolic representation of a System/360 Model 30 micro-
program word.

388 Part 4 I The instruction-set processor level: special-function processors

tion with injection of a 1 (+ 1) (for instance, to simulate subtraction
in connection with the B-input inverter), addition with saving the
carry in bit 3 of register S (+O,Save C, and +l,Save C), and
addition using an old carry stored in bit 3 of register S and saving
the new carry in this same bit (+C,Save C). Other codes specify
logical operations (AND, OR, XOR).

The CD-field specifies into which register the result of the ALU
operation is gated. Any one of the 10 data registers can be speci-
fied. Z means that the ALU output is gated nowhere and will be
lost.

Storage control fields. On the line designated “storage” in Figure
6, a storage statement can appear. It will specify whether this
microcycle is a ready cycle, a write cycle, a store cycle or a
no-storage access cycle, and from where the storage address is
supplied (CM-field) and whether storage access is to main storage
or local storage (CU-field). Note that a full storage cycle (1.5 psec)
corresponds to two read-only storage cycles (750 nsec).

The codes CM = 3, 4, or 5 specify read cycles. The addresses
are supplied from the register pairs I], UV, and LT, respectively.
A read cycle reads one byte of data from core storage into the
storage data register R.

A write cycle regenerates the data from the storage data regis-
ter R at the address supplied in the last read cycle.

A store cycle acts exactly as a write cycle except that it inhibits
in the read cycle immediately preceding it the insertion of the
data byte from storage into the R-register.

The CU-field specifies whether storage access should be to main
storage (MS) or to a local storage of 256 bytes not explicitly ad-
dressable by the 360 language programmer.

Microprogram sequencing and brunching. Each microprogram
word is stored at a unique address in ROS. A 13-bit ROS address
register (W3. . . W7, X0. . . X7) holds the address of the word being
executed. For the symbolic representation of a microprogram (Fig.
6) the ROS address is given in hexadecimal in the upper right
corner, and the last two bits of this address are repeated in binary
on the upper margin.

After execution of a microprogram step, the next sequential
word will not be executed. Instead the address of the next word
to be executed is derived as follows. The high five hits (W) remain
the same, unless they are changed by a special command in the
microword, not explained here (so-called module switching). The
next six bits (XO. . .X5) are supplied from the CN-field (written
in hexadecimal in the symbolic representation of Fig. 6). The low
two bits are set according to conditions specified in the CH and
CL fields. X6 is set according to the condition specified by CH.

Section 4 I Processors based on a programming language

For instance, if CH = 8, then the bit R2 is transferred to X6; if
CH = 6, then X6 is set to one if in the last ALU operation a carry
had occurred. It is set to zero if no carry had occurred. X7 is
controlled by CL. If, for instance, CL = 0, then X7 is set to zero;
if X7 = 5, then X7 is set to one if both digits in R are valid decimal
digits (Le., RO. . .R3 5 9 and R4. . .R7 5 9), X7 is set to zero if
either digit in R is not a valid decimal digit (Le., RO. . .R3 > 9
or R4. . . R7 > 9). This microprogram sequencing scheme allows
a four-way branch after the execution of each microprogram word.

Status bit setting. The CS-field allows the unconditional or condi-
tional setting of certain status bits to be specified, combined in
Register S. If, for instance, CS = 3, then S4 is set to one if the
result of the ALU operation performed in this microprogram cycle
shows a zero in the high digit (Le., ZO = Z1 = 22 = 23 = 0); S4
is set to zero otherwise. At the same time, S5 is set to one if the
result of the ALU operation shows a zero in the low digit (Le.,
24 = Z5 = Z6 = 27 = 0); S5 is set to zero otherwise. If CS = 9,
then S2 is set to one if the result of the ALU operation is not
zero (i.e., at least one of the bits ZO. . .Z7 is equal to 1). If the
result of the ALU operation is zero, then S2 is not changed.

Constuntfield. The 4-bit CK-field is used for various purposes. One
instance explained in the ALU statement is to supply a constant
B-source for an ALU operation. Other examples not explained here
any further are the addressing of a few specific scratchpad local
storage locations, module switching (replacement of the high part
W of the ROS address), and the control of certain special functions.

Symbolic representation of microprograms. Microprograms are
symbolically represented as a network of boxes (Fig. 6) each
representing a microword, connected by nets indicating the pos-
sible branching ways. Figure 7 gives an example of a microprogram
(to be explained in the next section). There exist programming
systems to aid in the development of microprograms. They contain
symbolic translators to translate the contents of a box according
to Fig. 6 into the contents of the actual fields of the microprogram
word according to Fig. 5. A drawing program generates documen-
tation (Fig. 7 is drawn with such a program). These systems usually
also contain programs for simulation and generation of the actual
ROS cards.

String language interpreter for EULER

The string language interpreter for EULER is entirely written in
Model 30 microcode. It consists of a few microprogram steps to
read the next sequential symbol from the program string and to

Chapter 32 I A microprogrammed implementation of EULER on IBM System1360 Model 30 389

Fig. 7. Microprogram for the operators AND, OR, and THEN.

do a function branch on the symbol and of a group of micropro-
gram routines which perform the necessary operations for the
program byte read. These routines also take care of dynamic type
testing and stack pointer manipulations. The routines are equiva-
lent to the routines described in the definition of the string lan-
guage for EULER [Wirth and Weber, 1966a and 1966b].

Figure 7 shows, as an example, the microprogram to interpret
the program string symbols and (internal representation X'52''),
or X'50' and then X'53'. These operators test if the highest entry
in the stack is a value of type logical. The logical operators in
EULER work in the FORTRAN sense, not in the ALGOL sense:
if after the evaluation of the first operand the result is determined
(false for and, true for or), then the second operand is not evalu-
ated but skipped over. If an and operator finds the value false,
then a branch occurs to the program address given in the two

'X 'mi' represents the hexadecimal number composed of the digits n
(n = 0 , . , , , 9 , A , . . , , F) .

trailer bytes. If an and finds the value true, then it deletes this
value from the stack and proceeds to the next symbol in the pro-
gram string (to evaluate the second operand of and). Similarly if
an or operator finds the value true, then a branch occurs to the
program address given in the two trailer bytes. If an or finds the
value false, then it deletes this value from the stack and proceeds
to the next symbol in the program string. The then operator is a
conditional branch code: it deletes the logical value from the
stack. If this value was false, then a branch is taken to the program
address given in the two trailer bytes. If this value was true, then
the next symbol in the program string is executed.

The pointer to the symbol in the program string (the instruction
counter) is located in the functionally associated pair of registers
I and J in the Model 30. The pointer to the left-most byte of the
highest entry in the stack (the stack pointer) is located in the two
registers U and V in the Model 30.

In the following the individual steps in this microprogram are
explained in more detail.

390 Part 4 I The instruction-set processor level: special-function processors Section 4 1 Processors based on a programming language

Location Location
Address in Figure Description Address in Figure Description

1161:

11 17:

1171:

11 5D:

11C4:

c1: The instruction counter IJ addresses main stor-
age. The addressed byte in main storage is
read out into the storage data register R. The
instruction counter is updated by adding 1 to
register J. A possible carry is saved to be added
to 1.

The operator has been read out f rom main
storage into R. It is also transferred (through
the ALU)to register G. A four-way branch occurs
on the two highest bits RO and R1 of the oper-
ator. For the operators 52, 53, and 50 this
branch goes to ROS word 1171, whereas other
operators cause a branch to 1170, 1172, or
1173, indicated by the three lines not continued.

To complete the updating of the instruction
counter, the carry f rom 1161 is added into I.
The first byte of the highest entry of the stack
is addressed by UV and read out into R . A fur-
ther four-way branch on the operator is made
(G2, G3). For our operators the branch goes to
115D.

The high order byte of the highest stack entry
has been read out of storage into R. It contains
the type of entry in the high digit and if this
type was logical then i t contains the value true
(1) or false (0) in the second digit. This byte is
tested by adding X'DO' to i t and observing the
result, ignoring the carry. S4 is set to 1 when
the type was 3 (logical) otherwise to 0. S5 is
set to 1 when the low digit of this byte was 0
(value false), S5 is set to 0 when the low digit
of this byte was 1 (value true). Another four-
way branch occurs on the bits G4 and G5 of the
operator. If the operator is 50(or), 5 1 (cannot
occur), 52 (and), or 53(then), then a branch to
11C4 occurs.

The next byte is read from the program string,
it is the high byte of the two-byte program ad-
dress trail ing the operator. The instruction
counter is updated again by adding a 1 to J,
saving a possible carry. Another four-way branch
occurs on the bi t G6 of the operator and the
value of the stack entry. If the operator was
and or then (G6 = 1) and the value was false
(S5 = l), then branching to llCB occurs; if
the operator was or (G6 = 0) and the value
was true (S5 = O) , then branching to l l C 8
occurs. I f the operator was or (G6 = 0) and
the value was false (S5 = l), then branching

c2:

c3:

c4:

L4:

11CB: G5:

l l C 3 , J6, J7:
11 1E:

l l C 3 , J6. L7:
111F:

l l C E , N8, N9:
1144:

l l C 8 : J5:

l l C 9 : N5:

11CA: 45:

to 11C9 occurs. If the operator was and or then
(G6 = 1) and the value was true (S5 = 0),
then branching to 11CA occurs.

This word is executed for the operators and and
then when the value was false. Here the type
test is made. If the type was not logical (S4 = 0).
then a branch to l l C l occurs. If the type was
correct, then the microprogram proceeds to
fetching the trailing program address (two bytes)
to store it as the new instruction counter in IJ.
This is done for the and operator (G7 = 0) in
this word and the following two words l l C 3
and 11 1E; for the then operator (G7 = 1) it is
done in this word and the words 11C3 and 11 1F.

The two bytes trail ing of the operators and or
or are stored as the new instruction counter IJ.
The operation is completed. The microprogram
branches back to 1161 to read out the next
operator.

The two bytes trailing of the operator then are
stored as the new instruction counter in IJ. The
carry-saving bit S3 is forced to zero.

The stackpointer is decremented by four (the
operator '-' means complement add) which in
effect deletes the highest entry from the stack.
Observe that when these two words are entered
from l l l F (then operator with value false) the
microprogram will not go through 1145 be-
cause we have forced S3 to zero in l l l F. The
operation is completed, and the microprogram
branches back to 1161 to read out the next
operator.

This word is executed for the operator or when
the value was true. Similarly as in l l C B , the
typetest is taken. For types not logical a branch
to l l C l occurs. I f the type was correct, then
the microprogram proceeds to fetching the
trailing program address (two bytes) to store it
as the new instruction counter in IJ (words
l l C 3 , 111E).

This word is executed for the operator or when
the value was false. A typetest is made. If the
type was correct, then the trailing program ad-
dress is skipped and IJ is updated by 1 twice
in 11C4, 11C9 (possible carries out of J handled
in 11CF or 1145). The stackpointer is decre-
mented by four in l l C E , 1144.

This word is executed for the operators and and
then when the value was true. A typetest is
made. If the type was correct then the trailing

Chapter 3 2 I A microprogrammed implementation of EULER on IBM System/360 Model 3 0 391

Location
Address in Figure Description

address is skipped, IJ is updated by 1 twice in
llC4, llCA (possible carries out of J handled
in llCF or 1145). The stackpointer is decre-
mented by four in llCE, 1144.

11C1, G6,L6,N6 These words are executed when a typetest
occurs. An error code 01 is set up in L and a
branch occurs to the error routine not drawn
here.

11%
11CD:

It can be seen from Fig. 7 that the execution times of the
microprograms including the readout of the operator (I-Cycle) are
the following:

and
or
then

6 pet' (8 microprogram steps)
6 psec (8 microprogram steps)
6 psec for value true (8 microprogram steps)
7.5 p e c for value false (10 microprogram steps)

In order to compare this with a hypothetical EULER system
for System/360 language, let us assume that the compiler produces
in-line code (which probably will give the highest performance
although it will be very wasteful with respect to storage space).
Then a reasonable sequence for and might be:

CLI 0 (STACK), LOGFALSE
BE ANDFALSE
CLI 0 (STACK), LOGTRUE
BNE TYPEERR
SH STACK, = ’4’

Timing: true: YO psec; false: 32 psec.

This comparison seems to indicate that the microprogram in-
terpreter is about an order of magnitude faster than the equivalent
program in 360 language. However, this comparison will only yield
such a high factor for functions of EULER which do not have
simple System/360 language counterparts (as for instance the
list-operators, begin-, end-, and procedure-call-operator) or where
the overhead for dynamic testing and stackpointer manipulation
is heavy as in the above example of the logical operations. For
functions which do have System/360 language counterparts and
which are slower so that the overhead is relatively lighter as, for
instance, arithmetic operations (especially for real numbers), the
microprogrammed interprete- will still be faster than the System/
360 language program, but not by a factor of 10.

‘The cases where carries occur in the IJ and UV updating are disregarded
for timing purposes.

The total ROS space requirement for the String Language In-
terpreter is:

Coded routines 1000 microwords
Routines for real number 500 microwords (estimated)

Divide, Exponentiation, etc. 400 microwords (estimated)
Garbage collector ~ 600 microwords (estimated)

handling

2500 microwords

EULER compiler

The translator to translate EULER source language into the Re-
verse Polish String Language is a one-pass, syntax-driven compiler.
The syntax of the language and the precedence functions F and
G over the terminal and nonterminal symbols are stored in table
form in Model 30 main storage. There is also main storage space
reserved for translation tables for character delimiters and word
delimiters and for a compile time stack, a name table, and, of
course, for the compiled code. All these areas are at fixed storage
locations because of the experimental nature of the system.

The microprogram consists of the following parts:

A routine reads the next input character from the input
buffer to translate it to a 1-byte internal format, if it is a
delimiter, or to collect it into a name buffer if it is part
of an identifier, or to convert it to hexadecimal if it is part
of a numeric constant and to collect the number into a
buffer. This “prescan” requires 100 + microwords.

As soon as an input unit is collected (delimiter, identifier,
number) the main parsing loop is entered which makes use
of the precedence tables and the syntax table in main stor-
age. This syntactic analyzer loop requires 100- micro-
words.

When the parsing loop identifies a syntactic unit to be
reduced, it calls the appropriate generation routine which
performs essentially the functions described as the semantic
interpretation rules in the EULER definition. The micro-
program space required for these programs amounts to
approximately 250 ROS words.

If a syntactic error is detected, the system signals an error
and does not try to continue with the compilation process.
Though this procedure is totally inadequate for a practically
useful system, it was deemed sufficient to prove the essential
point. For this minimum error analysis and for linkage to
the 360 microprograms (IOCP), approximately 60 micro-
words are required.

392 Part 4 I The instruction-set processor level: special-function processors

The total compiler microprogram space is therefore approxi-
mately 500 ROS words. The total main storage space required is
approximately 1200 bytes.

The speed of this compiler is limited by the speed of the card-
reader of the system (1000 cards/minute). This excellent per-
formance has three main reasons: (1) EULER as a simple prece-
dence language is a language extremely easy to compile. (2) The
functions of a compiler are mainly of a table lookup and bit and
byte-testing type. Microprogramming is extremely well-suited for
these kinds of operations. (3) Since the target language is String
Code and not, for example, 360 Machine Language, the generative
part of the compiler is relatively short.

It is very difficult to assess the individual contributions of these
three main reasons to the high compiler performance. Therefore,
it is not possible at this stage to make a statement as to whether
the nature of the language EULER or the fact that the compiler
is microprogrammed is the dominant factor.

Development of the microprogram

Since there is no higher level language to express microprogram
procedures and no compiler to compile microcode, the micropro-
grams were written in the symbolic language explained in Fig.
6. Actually the process was a hand translation of the algorithms
in the EULER definition to the symbolic microprogram language.
The microprograms were translated into actual microcode and
simulated before they were put on the System/360 Model 30 by
means of a general microprogram development system.

Outlook and general discussion

It is hoped that the development of this experimental system for
EULER shows that with the help of microprogramming we can
create systems for higher level languages or special applications,

Section 4 I Processors based on a programming language

which utilize existing computer hardware to a much higher degree
than conventional programming systems.

Among the thoughts which are raised by this scheme are the
following:

There should be an investigation to determine the ideal
directly interpretable languages which correspond to higher
level languages. Although several attempts have been made
to define string languages for interpretive systems (for in-
stance in Wirth and Weber [1966a and 1966bI and Mel-
bourne and Pugmire [1965]), to the author’s knowledge no
work has been published which attacks this question in a
general and theoretically founded manner.

A proliferation of interpretive languages and the develop-
ment of microprogrammed interpreters can be justified
when better tools are developed to reduce the cost of
microprogramming. It is necessary that we be able to ex-
press microprogramming concepts (and also machine design
concepts) in a higher level language form and that we
develop compilers which translate the microprograms from
higher level language form to actual microcode. Also, good
microprogram simulation and debugging tools are called for.

The whole relationship between programming, micropro-
gramming, and machine design should be viewed with a
common denominator: how should the tradeoffs be made
such that the ultimate goal can be reached more effec-
tively, . . . how to solve a user’s problem? Green [1966]
offers some thinking in this direction but the state of the
art has to progress further before we will have a complete
understanding of what these relationships and tradeoffs are.

References

WebeH67; FaggP64; GreeJ66; HainL65; MelbA65; WirtNBBa, 66b; FOR-
TRAN Specifications and Operating Procedures, IBM1401, IBM Systems
Ref. Lib. ‘224.1455-2.

Part 5

The PMS level

This part presents the PMS structure dimension of the computer space. The sections
are arranged in order of increasing organizational structure complexity. The sections
are as follows; 1 Pc; 1 Pc with multiple Pio; multiprocessing with n Pc; parallel
processing with n Pc; computers which are networks; and networks of computers.

In Chap. 37 Lehman defines the terms multiprogramming, multiprocessing, and
parallel processing.

393

Section 1

Computers with one central processor

The computers with one Pc and no Pio’s control T and Ms in
either of two ways. First, the Pc contains the K for T and Ms;
second, a separate K controls a data transmission while Pc
initializes the K. In the latter case, a K is like a P where each
instruction is received from Pc instead of being fetched auto-
matically by K itself.

processing concurrency is difficult to achieve. The structure is
first discussed in Part 2, Sec. 1, page 90.

The SDS 910-9300 series

The SDS 910-9300 series is presented in Chap. 42 and is dis-
cussed in Part 6, Sec. 2, page 542. The input/output and the
interrupt system are especially interesting.

The Whirlwind I computer

Whirlwind (Chap. 6) controls data transmissions between Ms
or T and Mp by using Pc. Thus, arithmetic and input/output

395

Section 2

Computers with one central processor
and multiple input /output processors

The computer structures discussed in this section are manu-
factured mainly by IBM. The reason for this bias toward IBM
is that only fairly elaborate or very specialized structures have
Pio’s; computers of other manufacturers which have Pio’s tend
to have also the more general multiprocessing capability1 that
would place them in Sec. 3.

The DEC PDP-8

The PDP-8 is presented in Chap. 5, and its 338 P.display ap-
pears in Chap. 25. Discussions are given in Part 2, Sec. 1 and
Part 4, Sec. 1, respectively. For this section, the reader should
look at the methods for transmitting data between Ms or T and
Mp. Three methods are used: Pi0 or P.display is used to control
T.displays (Chap. 25); Pc directly transmits a word to the buffer
of a K for low-data-rate devices, here a K may request data,
using the program interrupt; and a K transmits data directly
to Mp.

The IBM 1800

Chapter 33 describes the 1Pc-9Pio IBM 1800 computer. There
are five Pi0 types, depending on the components they control.
Although we classify them as Pio’s, they are barely processors
since the instruction counter has a very restricted behavior.
Unless the data channel has “data chaining” capability (in
effect a jump instruction), it is not a processor.

The IBM 7094 II

The IBM 7094 II computer is discussed in Part 6, Sec. 1, page
515; its description appears in Chap. 41. The earlier 709 was
about the first computer to use independent Pio’s. UNIVAC
(Chap. 8) has a very extensive K for data transmission con-
current with processing, whereas the 701 and 704 both required
Pc to control each data word transmitted. The Pio’s of the 7094
I I might be looked a t as an overreaction or overdesign inspired
by the 701-704.

‘For example, the CDC-3600 [Casale, 19623, and the SDS Sigma 7 [Mendelson
and England, 19661.

The structure of System/360,
Part I-outline of the logical structure

The structure of the 360 is presented in Part 6, Sec. 3. A dis-
cussion of an alternative implementation of the 360 by the
authors of this book, using multiprocessors, is given (page 585).
Chapter 43 gives an overview of the ISP, and Chap. 44 presents
the implementations of various 360 models. The implementa-
tions of physical processors to give multiple logical processors
using microprogramming are interesting. IBM is rather conserv-
ative in regard to providing structures convenient for multi-
programming; and a multiprocessing design appears too com-
plex for them to attempt outside a research environment.

The engineering design of the Stretch computer

Stretch (also known as Model 7030) and the UNIVAC LARC
[Eckert, et al., 19591 are perhaps the first computers with the
principal design goal of maximizing numerical computing
power. Stretch, aptly named because of its influence on the
technology (and on the IBM organization), was initiated by the
Atomic Energy Commission at Los Alamos. It was designed to
interpret large-scale scientific programs for nuclear engineer-
ing. Like a number of other high-risk major developmental
efforts in the computer field, Stretch was not outstandingly
successful as a computer system. Only a few(5 - 10) were built
at a cost substantially exceeding their contract price and with
performance only modestly better than the art at the time of
their production. However, again in common with other similar
efforts, they had a substantial positive effect on the state of
the art. In the Stretch case, in particular, the 2.18-microsecond
Mp core technology developed for Stretch was transferred to
the 7090. In fact, this was a major contribution to why Stretch
was only modestly better than 7090. The design goal was per-
formance 100 times an IBM 704. The computer is described
at a high level in Chap. 34. Buchholz’s book on Project Stretch
[Buchholz, 19621 is outstanding as a text on computer struc-
tures and as a description of Stretch. It should be read by all
computer designers.

Computers built t o maximize numerical computing power
also include, besides the UNIVAC LARC for the Lawrence Radia-

396

Section 2 1 Computers with one central processor and multiple input/output processors 397

tion Laboratory at Livermore, the Control Data 6600 (Chap. 39),
and the IBM System/360, Models 91 and 85.

Stretch derives its power through:

1 Compound and complex ISP instructions

2 A PMS structure with Mp(2.18 ps/w),Pc(0.25 - 1 ps/w),
Pio’s, and a satisfactory switch between P’s and Mp

3 Many data-types

4 Parallelism within the Pc, involving concurrent interpre-
tation of the instruction stream using the ”Instruction
look-ahead’’ mechanism

The last of these, internal Pc parallelism, is the most novel.
Stretch was possibly the earliest computer to make use of it;
each of the other “maximum” power C’s listed above also uses
some version of instruction look-ahead, for each of these
“maximum” systems is faced with how to obtain computing
power that goes beyond the basic logic and memory technology
available at the time the system is designed. The conclusion,
reached in all these cases, is to move toward internal paral-
lelism.

In Stretch the instruction look-ahead mechanism fetches the
next several instructions and partially interprets each future
instruction. The mechanism is elaborate compared with the
straightforward instruction stack in the CDC 6600 (Chap. 39,
page 489). The Stretch look-ahead complexity stems from par-
tially interpreting instructions which may later have to be un-
done.

Stretch uses a basic Mp(core; 16384 w; (64 + 8 parity) b/w;
tc:2.18 ps). Sixteen Mp’s can be connected to the P’s via the
S(’Memory Bus; time multiplexed). The 8 parity bits are used
to give single-error correction and double-error detection, which
is a very substantial amount of error protection compared with
standard design practice. This is the memory that was incor-
porated in the IBM 7090 and became operational even before
Stretch was delivered. Thus, as is often the case with large
development efforts, the by-products are as important as the
main product.

There is a single well-designed physical Pio, called the Ex-
change, consisting of several logical Pio’s. Its ability to have
the state of all the logical Pio’s accessible in Mp is useful and
important. This design seems better than the data channels
in the IBM 709-7094 series. It is almost a prototype for the IBM
System/360 Pio’s.

The Stretch word length is 64 bits. It has operations on the
following data-types: binary integers, decimal integers, address

integers, variable-length integers, boolean vectors, single and
double floating point. The length of thevariable integer is speci-
fied by parameters in the instruction. Noisy-mode floating-point
data provide a method of introducing a roundoff error in the
least significant bit under program control. Thus a problem can
be run in conventional and noisy modes and the results com-
pared. An instruction is either 32 or 64 bits.

The ISP processor state has an instruction counter, a dou-
ble-length accumulator, 15 index registers, about 6 registers,
and about 100 miscellaneous bits. Computing power is obtained
by having an instruction set with complex instructions. Hence,
there is an instruction for almost every possible operation,
though inverse subtract and inverse divide instructions are
lacking. However, there is a “multiply and add” instruction.
Stretch has the complete set of 16 operators for boolean vec-
tors. Compound instructions, formed from a sequence of sim-
pler instructions, also increase power. These instructions
specify the array element to be accessed, an operation on the
element, and a calculation to get the next element, in a single
instruction. Notice that several of these instructions are
oriented toward operations on arrays (i.e., matrices), which are
the type of numerical-analysis tasks for which the system was
built.

Multiprogramming was done with Stretch [Codd et al., 19591
and undoubtedly had some influence within IBM. Stretch has
a pair of bounds registers to relocate and protect a single
program. The interrupt scheme for Stretch [Brooks, 1957al was
better than that of existing IBM computers, though it is not
described in Chap. 34.

The importance of Stretch lies in the by-products it inspired
and its influence on IBM, encouraging a concern with hardware
project management. The elaborate ISP and the complex im-
plementation of Stretch may not have been worth the effort,
especially when one compares this computer with the later,
larger but elegant CDC 6600. It is, however, interesting to note
that Stretch was used as a central component in an early spe-
cialized multiprocessor system called the IBM Harvest [Herwitz
and Pomerene, 19601, which provides extremely powerful data-
processing capabilities.

PILOT, the NBS multicomputer system

The National Bureau of Standards’ PILOT computer (Chap. 35)
was first described in 1959. A t that time it was a multiple
computer; by our criteria, we classify it as a multiple-processor
computer, as shown by its PMS structure (Fig. 1). However,

398 Part 5 1 The PMS level Section 2 1 Computers with one central processor and multiple input/output processors

I Mp(l p s / w ; 60 w; 16 b /w) -Pc('Secondary Computer)-T.console -

Pc('Pr imary Computer)-T.console -

P i o (' T h i r d Computer) M s h a g n e t i c t a p e) -

T(reader) +

Fig. 1. National Bureau of Standards' PILOT computer PMS diagram.

unlike present multiprocessors with several identical proces-
sors, each PILOT processor is different.

PILOT is a good example of an early attempt to use multi-
processors; successors look little like it. It has one of the best
analytical discussions of any computer [Leiner et al., 19571.
With this machine there was an attempt to resolve the contro-
versy between the short-word EDSAC (17 bits) and the long-
word Institute for Advanced Studies computers (40 bits) by
providing a processor and memory (i.e., computers) for each
problem. Only the first computer had substantial Mp, and the
other computers, or processors, could be concerned only with
the first computer. The third computer was introduced to proc-

ess devices such as Ms(magnetic tape) and used a plugboard
program memory. The idea of an independent processor (IBM
7094) or computer (CDC 6600) for input/output processing is
used now, though it is doubtful that PILOT inspired these de-
signs.

The capacitor-diode store is novel and daring for the tech-
nology. Two- and three-address computers are used in the pri-
mary and secondary computers. The secondary computer, with
16-bit words, is not very useful; its memory is very limited, and
it is essentially used only for address calculations. The book-
keeping operation for a three-address computer could easily
keep a small processor busy.

Chapter 33

The IBM 1800

Introduction

This third-generation computer is constructed with hybrid-circuit
technology (semiconductors bonded to ceramic substrates) known
as SLT (Solid Logic Technology). It has a core primary memory.

The 1800 is designed for process control and real-time applica-
tions. It is nearly identical to the IBM 1130, which is designed
for small-scale, general-purpose, and scientific calculation appli-
cations. The two C’s perform about the same for computation
bound problems. The 1130 and 1800 are not program compatible
with the “universal” IBM System/360 series, though introduced
at about the same time. However, the 1800 uses terminals and
secondary memories similar or identical to the System/360. These
are organized about the standard IBM System/360 8-bit byte. Thus
their common information media provide a link between the two.
Hence an 1800 is sometimes connected to the System/360 as a
preprocessor. The relative performance of the IBM 1130, 1800,
and the IBM System/360 can be seen on page 586. The 1800 has
a better cost/performance ratio than a System/360, Model 40 and
has the performance of a Model 30. From now on we will refer
only to the IBM 1800, although much applies to the IBM 1130.

The 1800’s interface facilities include a large number of T’s
which can connect to different physical processes; a multiple
priority interrupt facility with fast response; multiple Pio’s which
can transfer information at high data rates;’ and a complete
instruction set for real-time, nonarithmetic processing.

We include the 1800 because it is a typical, 16-bit, real-time,
process control computer. The ISP is the most straightforward of
the IBM computers in the book (and perhaps the nicest). The
several different Pio’s and their implementations are unusual and
should be carefully studied. Important aspects of the 1800 include
the PMS structure as it links to real-time processes, e.g., analog
processes; the straightforward Pc ISP (Appendix 1 of this chapter);
the specialized Pio’s for real-time T’s; the Pc implementation; and
the Pi0 implementation. The chapter is written to expose and
explain these aspects.2

By comparing the 1800 with Whirlwind, an evolutionary pro-
gression can be seen. Their ISP’s are similar but, because of better

lAkhoigh we refer to the data channels as Pio’s, they have a very limited
ISP for a Pio; in fact, they might better be called Ks.
‘Some of the material in the chapter ha5 been abstracted from the JBM
1800 Functional Characteristics Manual.

technology, the 1800 shows an increase in capability. The 1800
Pc has a medium-sized state (ISP has six registers) including three
index registers. The implementation is not elegant; a single register
array and adder would provide the basis for a straightforward Pc
implementation. The 1800 has features which facilitate higher
information processing rates compared with Whirlwind. The major
change between Whirlwind and the 1800 machines was brought
about by the decreasing cost of registers and primary memory.
In the 1800, all K‘s have independent memory (usually 1 - 2
words or characters) so that concurrent operation of almost all
the T and Ms via their K’s is possible. In contrast, Whirlwind has
only a single, shared register in Pc, and only one device can
operate at a time.

Lower hardware costs allow multiple Pio’s in the 1800. The
Pio’s represent an unusual approach to information processing in
this period. The Pio’s which process standard disk, magnetic tape,
and card reader are conventional, but the Pio’s for analog and
process signals are novel and interesting. The latter Pio’s are the
most unusual part of the 1800, and they allow independent pro-
grams in each Pi0 to do some very trivial processing tasks such
as alarm-condition monitoring independent of Pc. However, the
Pio’s are limited; for example, it is difficult to transmit or receive
a data block between Ms and Mp (using a Pio) without surrounding
the data block with Pi0 control words (thereby transmitting the
control words).

The interrupt system is typical of second- and third-generation
computers and is comparable to the SDS 900 series (Chap. 42).
In later computers interrupt conditions are used to determine a
fixed address to which the processor interrupts. There are generally
many conditions (100 to 1,000), but only a few discrete levels (8
to 20). The 1800 depends on program polling within a discrete
interrupt level; each level has a unique, fixed address.

A principal ISP design problem is the addressing of the 65,536-
word Mp. Thus, a 16-bit number has to be generated within Pc
for an address. In this regard the 1800 behaves like the 12-bit
machines which have to address a 212 (4,096) word memory, and
the modes or methods the 1800 uses for addressing are reasonable.
It should be noted that it is relatively difficult to write programs
which do not modify themselves. For example, the instruction,
Store Status, is changed by its execution.

399

400 Part 5 1 The PMS level Section 2 I Computers with one central processor and multiple input/output processors

A peculiar feature of the 1800 is its storage protection (see page
408). This feature should provide program relocation capability
in addition to protection, but it does not.

PMS structure

A simplified picture of the IBM 1800 structure is given in Fig.
1, without Pio('Data Channel)'s and K('Device Adapter)'s. Each
T and Ms have a K which connects Pc's In and Out Bus, the S('Pc
to K). Some K's attach to Pio's and some directly to Pc. Information
can be transferred between Mp and K via Pi0 at rates up to 0.5
megawordis or 8 megabitsis. The IBM Configurator (Fig. 2) gives
the restrictions on the possible structures, together with minute
L details. It is presented as an alternative to the PMS structure
(Fig. 1). The Configurator is intended to show the "permissible
structures" but does not show the logical or physical structure.
The PMS diagram (Fig. 3) alternatively shows the physical-logical
hardware structure and performance parameters. l t should be
noted that a PMS diagram with the information of the computer
component Configurator (Fig. 2) would require slightly more de-
tails (and space).

The central processor'-primary memory

The IBM 1800 is a fixed-word-length, binary computer with 4, 8,
16, or 32-kword memories of 16 + 1 + 1 bits, and a memory cycle
time of 2 or 4 microseconds. Of the 18 bits 1 bit is used as a parity
check (P bit) and 1 bit is used for storage protection (S bit). The
Pc instruction set operates on 16-bit and 32-bit words. Indirect
addressing and three index registers are used in address modifica-
tion. The Pc has a 24-level interrupt system, three interval timers,
and a console.

The Pc interrupt is a forced branch (jump) in the normal
program sequence based upon external or internal Pc conditions.
The devices and conditions that cause interrupts are hardwired
in fixed priority levels. An interrupt request is not honored while
the level of the request itself or any higher level is being serviced,
or if the level requested is masked. Examples of interrupt condi-
tions are:

1 An external process condition that requires attention is
detected.

'IBM name: the Processor-Controller or PC.

PROCESSOR- 1 PROCESS I/O
CONTROLLER I pn.log Input Points

DATA PROCEjSING I/O

Fig. 1. IBM 1800 data acquisition and control system. (Courtesy of International Business Machines Corporation.)

Chapter 33 1 The IBM 1800 401

t '
M W S MPX, R

I DIGITAL INPUTS

I

Fig. 2. IBM 1800 data-acquisition and control-system configurator.
(Courtesy of International Business Machines Corporation.)

402 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple input/output processors

I A

I I
I I

I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
I
I
I +
I
I
I
I
I
I
I
I
I
I
I

t
i

Chapter 33 1 The IBM 1800 403

T
~

ANALOG INPUTS

404 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple input/output processors

T.console -
I K (t i me)+

T (# l : t y p e w r i t e r) -

T(#2:4: page: p r i n t e r) +

T(#5; t y p e w r i t e r) -

"ST: T(#6:8: paqe; p r i n t e r) +

M p l PC"- s?

K ~ T(incrementa1 p o i n t p lo t) '

K T(paper tape: reader 1punch)-

P i 0 4 K T(card; reader1 punch)-

P i 0 K - s - M s (# ~ : ~ ; magnetic tape)-

P i 0 (# I : 3)

P i 0 K T ('?ystem/360 i n t e r f a c e) -

Pio6-s

Ms (removable ;d i skpak)-

K(#l:3)-SS-KT #I:R; d i q i t a l : i npu t ; 1 w; c contacts l l o g i c vo l tage 3
K(#4:6)-S-KT i q i t a l : event pu lse: t 1

1
i n p u t : counters ; c (#1:16: 8 b) I (# l : R : 16 b)

d i g i t a l : contact

i npu ts ; t o : i n t e r -

u p t : 16 b

K-S - K (# l :4)-S-KT I : 4 : d i g i t a l : ou tpu t :

c o n t a c t l l o g i c v o l t a g e /

u lse: 16 b

p i o s - s L K - S-KT ' 10113 1:4: analoq: b output :

P i 07- t?-S-K- :-L #1:-1024: analog: i npu t ;
a

I

I

I
I

I , vo l tage, cu r ren t : (+lo1
I I +20 1+50/+100 /+200j+500) 'I I mv1+5 v1+10 V I (-20)ma)

p io8- K L L Z - - - - - - - -

'Mp(core: 214 p / w : 4096 - 32768 w;

2Pc('1801 11802; 1 - 2 w/ ins t ruc t i on ; technology: hyb r id : Mps(- 6 w): 1 address/

(16, p a r i t y , p r o t e c t) b/w)

i n s t r u c t ion: -1965)

3 ~ (1 ~ n B U S , ou t BUS)

4Maximum o f 9 P i 0 pe r C

' P i o (' D i g i t a 1 Input Data Channel)

" P i o (' D i g i t a 1 , Analog Output Data Channel)

'Pio('Anal0g Input Data Channel)

'Optional P i 0 t o c o n t r o l analog channe l ; (s t ruc tu re i s q r e a t l y s i m p l i f i e d)

'K('ADC; analog: i npu t : 9 , 12, 15 b/w; i . r a t e : 9 ... 24 kw/s)

Fig. 3. IBM 1800 PMS diagram (simplified).

Chapter 33 I The IBM 1800 405

2

3

An interval timer has counted a previously set time interval.

A magnetic-tape drive has completed a data transfer previ-
ously requested and is ready for another request.

An operator has initiated an interrupt from the Pc console.

A device such as a typewriter has just printed a character
and is ready to receive the next one.

4

5

Primarymemory communication and data transmission with
terminals and secondary mentory

Two methods are used to transmit data between Mp and Ms, or
Mp and T. First, low-speed devices are controlled directly by
the program. Each character or word of data is transmitted to or
from the Pc and onto T by means of an Execute I/O(XIO) instruc-
tion. The Pc program and device synchronization are accomplished
by using the interrupt mechanism. Devices operating under direct
program control include typewriter, printer, plotter, paper tape
reader and punch, analog-to-digital converters, contact sense,
voltage-level sense, pulse counters, etc.

The second method of transferring data is via the Pio(’Data
Channe1)’s. The Pi0 program is started by the XI0 instruction of
the Pc. The transfer of data words then proceeds under control
of the specified Pio, completely asynchronous to and in parallel
with Pc program operation. The Pi0 gains Mp access independent
of Pc (Pc operation is suspended for one Mp cycle). During the
Mp cycle, the data are taken from or placed into core storage by
Pi0 (via internal Pc control and registers). As soon as the Pi0 has
been satisfied, which normally takes one cycle, the Pc proceeds.
The logical state of the Pc, or the Instruction-set Processor, is not
changed by Pio’s access to Mp. This method of access is referred
to as “cycle stealing.” Devices (Ms and T) operating under Pi0
control include magnetic tapes, disks, line printer, card reader-
punch, and the link to the IBM System/360.

Some devices can operate under both Pc and Pi0 control,
depending on their characteristics and the configuration, e.g.,
analog input, analog output, digital input, and digital output.

Process Z/O, controls and transducers

Analog inputs. Analog-input equipment includes analog-to-digital
converters, multiplexors, amplifiers, and signal conditioning equip-
ment to handle various analog-input signals. The data input rates
are up to 20,000 16-bit samples per second, with program selecta-
ble resolution and external synchronization. There can be 1,024
(via relay) and 256 (via high-speed solid state) multiplexed analog-
input channels connected to a single K (analog-to-digital con-
verter). The Confignrator (Fig. 2) shows the allowable inputs.

Digital inputs. The Digital Input provides up to 384 process in-
terrupts; up to 1,024 bits of contact sense, digital input, or parallel
register input; and 128 bits of event input counters as 1-, 8-, and
16-bit counting registers.

Analog outputs. Up to 128 analog outputs can be provided.

Digital outputs. Digital Outputs provide up to 2,048 bits of pulse
output, contacts, and registers.

ZO processors (data channels)

Pio(’Data Channels) give a T or Ms the ability to communicate
directly with Mp. For example, if an input unit requires a primary
memory cycle to store data that it has collected, the Pi0 communi-
cates directly with Mp and stores the data.

The Pio’s run even if Pc is waiting. The Pio’s have two registers:
a Word Count which is used to count the number of words being
transferred in a block between a device and Mp memory; and a
Channel Address which points to the next word transferred in a
block. The Channel Address is also used to select the next instruc-
tion in the program for the next block transfer task.

Two basic types of Pio’s are used, nonchaining and chaining.’
The Pio’s provide the ability to transfer either a single block
(nonchaining) or multiple blocks (chaining) directly to Mp inde-
pendent of Pc.

The central processor

Registers in the physical processor

Figure 4 shows the relationship of the registers in Pc, together
with those in the Instruction-set Processor. Those registers acces-
sible by the program are shown with an *. All the registers are
accessible from the console. A description of the functions of each
register is given below.

Storuge address register (SAR). All Pc references to Mp are selected
or accessed by this 16-bit register. Pi0 references to Mp use the
Channel Address Register (CAR) of the active Pio.

Instruction register (I)* . This 16-bit counter register holds the
address of the next instruction.

Storuge buffer register (B) . This 16-bit register is used for buffering
all word transfers with Mp.

‘A descriptive name undoubtedly concocted by one of IBM’s marketing
departments.

406 Part 5 I The PMS level Section 2 1 Computers with one central processor and multiple inputloutput processors

Console

I Core Storage '
A
d
d
r
e ?

I
I

-I s s i n g c -

Timers +

1

I U I

Operot ion 1 Monitor

I
t + 4

I
+
I f w

0 B 5 P S

1
I A *

D I #I

1 Connected to

t In Bus Input Dev i ces

Connected to
Output Devices o u t Bus

Control Registers

*regis ers accesslb t o Instruct on

I sc
(6)

Overflow*, Carry*

:t Processor

**allows processor reg is ters to be reed or w r i t t e n

Fig. 4. IBM 1800 Pc data flow. (Courtesy of International Business Machines Corporation.)

Arithmetic factor register (0). This 16-bit register is used to hold
one operand for arithmetic and logical operations. The Accumu-
lator provides the other factor.

Accumulator (A)", This 16-bit register contains the results of any
arithmetic operation. It can be loaded from or stored into core
storage, shifted right or left, and otherwise manipulated by specific
arithmetic and logical instructions.

Accumulator extension (Q)". This register is a 16-bit low-order
extension of the Accumulator. It is used during multiply, divide,
shifting, and double-precision arithmetic.

Shift control counter (SC). This 6-bit counter is used primarily to
control shift operations.

Accumulator temporury (U). The U register is used to store A
temporarily during an instruction or an operation which requires
the A's facilities.

OP register (OP). This 5-bit register is used to hold the operation
code portion of an instruction.

Index registers'. The three l6-bit registers are used in effective-
address calculations.

Chapter 33 I The IBM 1800 407

Op Code

OverJlow and carry indicators". The two indicator bits associated
with the Accumulator are Overflow and Carry. The Overflow
indicator can be turned on by Add, Subtract, or Divide instruction
and indicates a result larger than can be represented in the Accu-
mulator. The Overflow indicator can also be turned on by a Load-
status instruction. Once Overflow is on, it will not be changed
except by testing the indicator, or by a Load-status or Store-status
instruction. The Carry indicator provides the information that a
carry (or borrow) from the high-order position of the Accumula-
tor has occurred.

The Carry indicator is used with the Add, Subtract, Shift-left,
Load-status, Store-status, and Compare instructions.

F T Displacement

In-bus. This 18-bit bus is a link(L) used to carry information from
a K to Pc. Generally only 16 of the 18 bits are used, although
transfers to magnetic tape can be made three 6-bit characters.

Out-bus. This 18-bit bus is used to carry information from Pc to
a K.

Instruction-set processor

The operation of the Pc from a program viewpoint follows. The
ISP registers were declared (") in the previous section and in Fig.
4. The ISP registers are the 18bi t I, A, Q, XR [l, 2, 31, and the
1-bit Overflow and Carry.

An SSP description of the 1800 appears in Appendix 1 of this
chapter. It is incomplete in the following respects: The memory
protect bit checking is not described; the illegal (undefined) in-
struction action is not described; double word data must be aligned
on even and odd address word boundaries or else a fault occurs;
and the IO instruction and interrupt operation are not given.

Instruction formats. Two basic instruction-word formats are used,
one word (Fig. 5) and two word (Fig. 6). The bits within the
instruction words are used in the following manner:

OP Operation Code. These 5 bits define the instruc-
tion.

I I

Fig. 5. IBM 1800 one-word-instruction format. (Courtesy of Inter-
national Business Machines Corporation.)

I 5 8 9 1 0 15 0

1
Fig. 6. IBM 1800 two-word-instruction format. (Courtesy of Inter-
national Business Machines Corporation.)

F Format bit. A 0 indicates a single-word instruc-
tion, and 1 a two-word instruction.

Tag. These 2 bits specify which of the three index
registers is used in address modification or the shift
count.

Displacement. These 8 bits are usually added to
the instruction register or the index register speci-
fied by T for one-word instructions. The modified
address is defined as the Effective Address (EA).
If T is 00, the displacement is added to the in-
struction register (then EA = I + DISP). The
displacement is in two's complement form if nega-
tive, with the sign in bit 8. The bit in position
8 is automatically extended to the higher-ordered
bits (0 to 7) when the displacement is used in EA
generation.

Indirect addressing. This bit is used only in the
two-word-instruction format. If 0, addressing will
be direct. If a 1 , addressing will be indirect. Only
one level of indirect addressing is permitted. (The
Load Index and Modify Index and Skip instruc-
tions have exceptions, as shown in the ISP descrip-
tion.)

Branch Out. This bit is used to specify that the
Branch or Skip on Condition (BSC) instruction is
to be interpreted as a Branch Out (BOSC) when
used in an interrupt routine.

Conditions. These 6 bits select the indicators that
are to be interrogated on a BSC or BSI instruction.
The bit, assignments for conditions are:

Cond(10) A = 0
Cond(l1) A < 0
Cond(l2) A > 0
Cond(13)
Cond(l4) (Carry = 0)
Cond(15) (Overflow = 0)

These 16 bits usually specify a core storage address

T

DISP

SA

BO

COND

(A(15) = 0) that is, A is eoen

ADDRESS

408 Part 5 I The PMS level

F = O
(direct addressing) t (direct addressing)

(F = 1) A (1A = 0)

Section 2 1 Computers with one central processor and multiple input/output processors

(F = 1) ~ (1A = 1)
(indirect adressing)

T = 00
T = 01
T = 10
T = 11

EA t I + DispS
EA t XR[1] + Disp
EA c XR[2] + Disp
EA t XR[3] + Disp

EA t Address
EA t Address + XR[1]
EA t Address + XR[2]
EA c Address + XR[3]

EA c C(Address)§
EA t C(Address + XR[l])
EA t C(Address + XR[2])
EA t C(Address + XR[3])

in a two-word instruction. The address can be
modified by the contents of an index register or
used as an indirect address if the IA bit is on.

Effective-address generation. The Effective Address (EA) is devel-
oped as shown in Table 1. The instruction set is divided into five
classes as shown in Table 2.
Storuge protection. The storage-protection facility protects the
contents of specified individual locations of Mp from change due
to the erroneous storing of information during the execution of
a program. The status of each location is identified as “read only”
or “read/write” by the condition of the Storage Protect Bit, S.

The Store-status instruction is used to write and clear Storage
Protect Bits. The execution of this instruction is under control of
the Write Storage Protect Bits switch on the console. Any attempt
by the program to write into a read-only protected location results
in a storage-protect violation which causes the Internal Interrupt
(the highest priority interrupt).

Instruction interpretation process

The simplified Pc data-flow block diagram (Fig. 4) shows instruc-
tions and data entering and leaving memory via the B register.
Additional bits in Pc hold the P and S bits for Mp. Input devices
send data and instructions to the B register via the 18-bit In-bus.
Output devices receive data from the B register via the 18-bit
Out-bus. Eighteen bits can be transferred between Pc and K(mag-
netic tape). As each stored-program instruction is selected, its
various parts (op code, format bit, etc.) are directed to the control
registers via the B register and the Out-bus. The control registers
decode and interpret each instruction before the instruction is
executed.

Except for Pi0 operations, all instructions and data in memory
are addressed by the Storage Address Register (SAR). SAR obtains
the memory address from the I register or the A register. The

Table 2 Instruction set

class Znstnrction
Indirect
addressing Mmmnic

Load and
store

Arithmetic

Shift

Branch

I/O

Load accumulator
Double load
Store accumulator
Double store
Load index
Store index
Load status

Store status

Add
Double add
Subtract
Double subtract
Multiply
Divide
And
Or
Exclusive Or

Shift Left instructions:
Shift left logical (A) t
Shift left logical (AQ) t
Shift left and count (AQ)t
Shift left and count (A)?

Shift Right instructions:
Shift right logical (A) t
Shift r ight arithmetically (AQ)t
Rotate right (AQ)’

Branch and store I
Branch or skip on condition
Modify index and skip
Wait
Compare
Double compare

Execute 1/0

Yes
Yes
Yes
Yes
$
Yes
No
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No

No
No
No

Yes
Yes *
No
Yes
Yes

Yes

LD
LDD
STO
STD
LDX
STX
LDS
STS

A
AD
S
SD
M
D
AND
OR
EOR

SLA
SLT
s LC
SLCA

SRA
SRT
RTE

BSI
BSC (BOSC)
M DX
WAIT
CMP
DC M

XI0

t Letters in parentheses indicate registers involved in shift operations.

$See the section for the individual instruction (MDX and LDX).

Chapter 33 1 The IBM 1800 409

contents of the I register are developed by one of the following
means, depending on the Pc operation:

1

2

The I register is incremented for each instruction.

The effective address of each instruction is developed in
the accumulator (A register) and then transferred to SAR.
The contents of the accumulator are saved in an auxiliary
(U) register during effective-address computation. If the
instruction was a branch, the contents of SAR is transferred
to the I register.

The following examples illustrate the data flow or instruction
interpretation process for the Load Accumulator (LD) instruction.

One-word load instruction
Instruction Cycle

A register transfers to U register.

I register transfers to SAR (I register is then incremented).

SAR addresses the memory location containing the instruc-
tion.

Memory location transfers to the B register and Out-bus.

Control registers store various parts of the instruction (op
code, format, and tag).

Displacement is stored in the D register.

a
b

Displacement (D register) is added to A register.

If tag = 00, I register transfers to A register.
If tag # 00, the specified XR transfers to A register.

Execute Cycle

9

10

11 SAR addresses data word.

12

13

A register transfers to SAR (effective address).

U register transfers to A register.

Data word transfers to B register.

B register loads into A register (via D register).

Two-word load instruction, direct addressing
Instruction Cycle 1

1

2

A register transfers to U register.

I register transfers to SAR (I register is then incremented).

3 SAR addresses the memory location containing the instruc-
tion (first word).

Memory location transfers to B register and Out-bus.

Control registers store various parts of the instruction (op
code, format, and tag).

If tag # 00, the specified XR transfers to A register.

4

5

6

Instruction Cycle 2

7

8

9

10

11

I register transfers to SAR (I register is then incremented).

SAR addresses second word of instruction.

Second word of instruction (address) is read into B register.

Address (from B register) is stored in D register.

a
b

If tag = 00, D register transfers to A register.
If tag # 00, D register is added to A register (A register
contains contents of XR)

Execute Cycle

12

13

14

15

16

A register transfers to SAR (effective address).

U register transfers to A register.

SAR addresses memory at effective address (data word).

Data word transfers to B register.

B register loads into A register (through D register).

Central-processor communication with the controls'

Direct program controZ of the controls

Pc direct programmed control of 1/0 devices is on the basis of
single-word or character-at-a-time transfers for each X I 0 instruc-
tion executed. One data word or character is transferred to or from
Mp to K. The X I 0 instruction specifies an 1/0 Control Command
(IOCC) with a function of Control, Sense, Read, or Write to a
controlled device. This command is either directly to a device or
to a Pio.

It is possible for the program sequence to execute an X I 0
instruction to a device that is busy responding to a previous XI0
instruction. Each device has a Busy indicator, which signals
whether or not the device can accept data or control information.
(Incorrect program sequence timing may cause undetected errors.)

'IBM name: Adapter or Device Adapter.

410 Part 5 I The PMS level Section 2 1 Computers with one central processor and multiple input/output processors

It is possible for a device operating synchronously with the
program to request a data word transfer before the program
sequence is ready to service the request. Devices with this poten-
tial have a “program check” indicator to signal when data have
been lost (that is, Pc has not kept up with the device).

Execute Z/O instruction (XZO)

This instruction is used for programmed 1/0 operations and to
initialize Pio; it may be either one or two words in length, as
specified by the F bit. In the two-word instruction the address
is either a direct or indirect address, as specified by the IA bit.
For proper operation the effective address must be an even ad-
dress. The effective address is used to select a two-word 1/0
Control Command (IOCC) from storage.

The IOCC specifies the 1/0 operation, 1/0 device, and core
storage address. The format of the two-word IOCC follows, with
an explanation of the assigned fields:

Area := IOCC[1](0:4). The area field specifies a unique segment
of 1/0 which may be a single device (1442 Card Read-Punch, 1443
Printer, etc.) or a group of several units (magnetic-tape drives,
serial 1/0 units, contact sense units, etc.). (Area 00000 is used to
address system devices such as the console and the Interrupt Mask
Register.)

Function : = IOCC[1](5:7). The primary 1/0 functions are speci-
fied by the 3-bit function code of the IOCC:

000

001

010

011

100

Removes an 1/0 device from on-line status and places
it in a “free” mode.

Write
Transfers a single word from storage to an 1/0 unit.
The address of the storage location is provided by the
Address field of the 1/0 Control Command.

Read
Transfers a single word from an 1/0 unit to storage.
The address of the storage location is provided by the
Address field of the 1/0 Control Command.

Sense Interrupt Level
Directs the selected 1/0 device to make its status
available in the Accumulator as the Interrupt Level
Status Word (ILSW).

Control
Causes the selected device to interpret the address
and/or Modifier of the IOCC as a specific control
action. Examples are feed card and load interrupt mask
register.

101

110

111

Initialize Write
Initiates a Write operation on a device or unit which
will subsequently make data transfers from storage via
a Pc.

Initialize Read
Initiates a Read operation from a device or unit which
will subsequently make data transfers to storage via a
Data Channel.

Sense Device
Reads the selected device status word into the Accu-
mulator. A Device Status Word (DSW) and the Process
Interrupt Status Word (PISW) are sensed with this
instruction.

If Area 00000 is specified, the Console status and
Interval Timer status may be brought into the Accu-
mulator as specified by a unit address code in the
Modifier field.

The current contents of the Accumulator are destroyed by the
execution of Sense Interrupt Level, Sense Device, Initialize Read,
Initialize Write, Read, or Write.

Modijier : = IOCC[1](8:15). This %bit field provides additional
detail for either Function or Area. For example, if the Area spe-
cifies a disk and if the Function specifies Control (100) then a
particular modifier code specifies the direction of the Seek opera-
tion. In this case, the Modifier serves to extend the function.

If, however, the Area specifies a group of 1/0 devices, and if
the Function specifies Write (OOl) , then the particular unit address
is specified by the modifier.

Address : = lOCC[O](0:15). The meaning prescribed for this 16-bit
field is dependent upon the Function specified by this 1/0 Control
Command:

If Function is Initialize Write (101) or Initialize Read (110),
then Address specifies the starting address of a table in
storage (an 1/0 block). The contents of this table are data
words and control information.

If Function is Control (100) and if, for example, Area speci-
fies the 1443 Printer, the Address may specify a specific
control action.

If Function is Sense (011 or ill), the Address field is ignored.
Instead, an increment of time equivalent to a memory cycle
is taken, during which the selected 1/0 device or Inter-
rupt Level places its status word in the accumulator.

Chapter 33 1 The IBM 1800 411

4 If Function is Write (001) or Read (010), the Address speci-
fies the storage location of the data word.

X I 0 execution interpretation process

1 The EA of the XI0 is developed in the accumulator (A)
and routed to the Storage Address Register (SAR) to locate
the IOCC (as for any EA).

Bit position 15 of SAR is forced on to select the EA + 1
where the IOCC Area, Function, and Modifier are found.

The Area, Function, and Modifier are routed through the
B register to the Out-bus to the control of the device speci-
fied by the Area.

Bit position 15 of SAR is turned off to allow the address
portion of the IOCC word to be transferred from the Mp
location specified by the Effective Address (EA) to the B
register.

If the Function is an Initialize Read, Initialize Write, or
Control, the address part of the IOCC is routed through
the B register to the Out-bus. The address part of the
Initialize Read/Write IOCC goes to the Channel Address
Register (CAR) of Pio. If the Function is Read or Write, the
address is routed from the B register through the A regis-
ter to the SAR. SAR addresses the memory location to or
from which the data are transmitted.

2

3

4

5

Interval timers

Three timers are provided to supply real-time information to the
program. They are in core-storage locations 0004 (Timer A), 0005
(Timer B), and 0006 (Timer C). Each timer is incremented ac-
cording to its associated or permanent time base and can be
hardwired to be 0.125, 0.250, 0.5, 1, 2, 4, 8, 16, 32, 64, or 128
milliseconds.

The timers can be started or stopped under program control.
When the count reaches zero, an interrupt is requested on the
level assigned to the timers.

Interrupt

The interrupt feature provides an automatic branch from the
normal program sequence, based upon an external condition. A
maximum of 24 external interrupt levels (groups) are available,
arranged in order of priority. Twelve external interrupt levels are
standard. Each interrupt level has a unique core-storage address
assigned to it. Several devices may be connected to a single inter-
rupt level, and program polling can be used to differentiate the
possible signals causing the interrupt. The Interrupt Level Status
Word, ILSW, is used to identify the specific condition causing its
interrupt level to request service.

Internal interrupt. When any one of the following error conditions
occur, there is an internal interrupt in Pc: an invalid op code;
a Mp parity error (an even number of bits); a storage-protect
violation; and Channel Address Register check error. The internal
interrupt takes priority over all external interrupts and cannot be
masked.

A mask register exists for the masking and unmasking of inter-
rupt levels. An interrupt level that is masked cannot initiate a
request for service until it has been unmasked.

Device status word (DSu/?. DSW indicators usually fall into three
general categories:

1

2

3 Routine status conditions

Error or exception interrupt conditions

Normal data or service-required interrupts

Process interrupt status word indicators (PISW). The P E W indi-
cators are physically located in Pc and are turned on by events
external to the computer, e.g., contact closures or voltage shifts.

IO processors1

The Pc initializes each Pi0 with an XI0 instruction. The Pi0 has
priority to the extent that, when the 1/0 device is ready to send
or receive a data word, the Pc is stopped while the word transfers
to or from core storage. Pc data and conditions are undisturbed
except for the memory locations that receive data from an input
device.

1 / 0 devices that are to be operated concurrently must be on
separate Pio's.

The X I 0 instruction for a Pi0 specifies an 1/0 Control Com-
mand (IOCC) with a function of Initialize Read or Initialize Write.
However, even though a device operates with a Pio, the X I 0
instructions in Pc are used to sense device status and for control.

Registers

Channel address register. The Channel Address Register (CAR)
is a 16-bit register used to store the M p address of the next word
that will be addressed by the Pio. Each Pi0 has a CAR. Pi0 and
its associated CAR are selected when their assigned 1/0 device
is selected by the Area Code and Modifier of an IOCC word.
CAR is incremented by 1 after each transfer of its contents
to CAB.

'IBM name: Data Channel (DC).

412 Part 5 I The PMS level Section 2 1 Computers with one central processor and multiple input/output processors

Channel address buffer. A common Channel Address Buffer (CAB)
is used by all Channel Address Registers to address Mp. When a
cycle steal request occurs, the CAR for the requesting Pi0 is
transferred into the Channel Address Buffer.

Channel-address-register check bit. Channel Address Register
(CAR) checking is provided to ensure that the first word addressed
by a selected CAR is the first word of the correct data table. Thus
the check determines if a Pc program has set up the Pi0 program
correct1y.l A CAR check is made for all devices after the address
from the IOCC word is transferred to the selected CAR. A bit-
by-bit comparison is made between the contents of the selected
CAR and the contents of the B register. If any of the corresponding
bits are not equal, a CAR check error has occurred. This CAR
check error terminates the Pi0 task and initiates an internal inter-
rupt.

Word count register. A Word Count Register is provided in each
Pio. The Word Count Register is loaded with the contents of the
word-count portion of the data table, (2:15). This register is
decremented each time a data word is transferred from (to) the
data table.

Scan control register. A Scan Control Register is provided in each
Pi0 that has chaining ability. Scan Control register bits are stored
in the first word of the first data table (bit positions 0 and 1) and
in the second word (bit positions 0 and I) of the second data
table and all subsequent data tables in a chain.

The Scan Control Register controls the 1/0 device and the Pi0
operation at the end of the data table as follows: single scan of
data table and stop with an interrupt; single scan of data table
and stop (no interrupt); continuous scan of this data table or a
different data table with an interrupt at the end of this table; and
continuous scan of this data table or a different data table with
no interrupt.

The IO processor program operation

The sequence of steps for a Pi0 program is given below. The
memory map or format of the program is shown in Fig. 7.

1 Pc issues an XI0 instruction which references the IOCC
word and initializes Pio.

The Area Code and Modifier of the IOCC select the 1/0
device. Function specifies the type of operation (Initialize
Read or Initialize Write, etc.).

2

'Not a completely arbitrary program fault to check, since processors are in-
volved.

3 a The address portion of the IOCC word is stored in CAR
for the selected Data Channel and 1/0 device.

A CAR check is made between the selected CAR and
the B register.

b

4

5

A cycle steal is requested by Pio; CAR transfers to CAB.

CAB addresses core storage for the first word of the data
table while CAR is being incremented by 1.

The first word of the data table contains
a Scan Control bits (bit positions 0 and 1)
b Word Count (bit position 2 to 15)
These are transferred to their respective registers in the 1 / 0
device. This is the end of the first cycle steal.

When another cycle-steal request from Pi0 occurs, CAR,
which was incremented in step 5, now transfers the next
higher address to CAB. CAB then addresses core storage
while CAR is being incremented.

The first data word is transferred to or from the 1/0 device
via the B register and Data Channel. The Word Count Reg-
ister in the 1/0 device is decremented by 1. This is the
end of the second cycle-steal cycle.

6

7

8

Steps 7 and 8 now continue on a cycle-steal basis; that is, they
occur as the 1/0 device requests data transfers. The CAR is
incremented with each data transfer and the WCR is decremented.
This sequence continues until the last data word of the data table
is transferred. The last word transfer is sensed by the WCR reach-
ing zero or through some indicator in the device. If the device
does not have chaining ability, no more demands for data transfer
are made until the device is reinitialized with another XI0 instruc-
tion.

Chaining. These steps are for the second and all subsequent data
tables. See above for steps 1 through 8.

9 The contents of the word following the last data word in
the first data table are transferred to CAR. This word must
contain the address of the next data table.

a 10 When the next cycle is requested, CAR is transferred
to CAB to address core storage. The contents of the
first word of the next data table is transferred to the
B register. This word must contain the address of itself.

10 b CAR check is performed and CAR is incremented

When the next cycle steal is requested, CAR is transferred
to CAB and CAB addresses Mp. The Scan-control bits and
Word-count bits are transferred from the second word of

by 1.

11

Chapter 33 I The IBM 1800 413

0 15 0 15

X10 Ins t ruc t ion

sc Word Coun t
Word Coun t = 22
SC = Cont inuous w i t h

No In ter rup t 1001 Fi rs t Da ta Word
Word Count = 54

i n g l e Scan 1002

1022 1-1 Last Data Word

a

2002 1-1 Fi rs t Data Word

c I

1
2055 Last Data Word

b .

ond Stop w i t h an

In te r rup t

Fig. 7. IBM 1800 data-channel tables for chaining memory maps. (a) First data table; (b) second data table. (Courtesy of International Business Machines
Corporation.)

the data table to their respective registers. CAR is incre-
mented by 1.

Data are transferred to (from) the 1/0 device on a cycle-
steal basis via the B register and the Data Channel. CAB
addresses core storage to transfer a data word to the B
register. Each time CAB addresses core storage, CAR is
incremented by 1. When the next cycle-steal request
occurs, CAR is transferred to CAB. The Word-count Reg-
ister is decremented for each word transferred.

When the last data character is transferred (word count
is decremented to zero), operation will continue as speci-
fied by the Scan Control Register. (See above section for
Scan-Control Register.)

12

13

Special data channels

The four Pi0 types for special functions are:

1 Analog input (block data transfers, and comparisons of
analog inputs for limits)

2 Digital input/output

3 Analog output

4 Digital output

Analog-input datu channels. Memory maps (Fig. 8a and b) illus-
trate the command formats interpreted in the Analog Data Chan-
nel programs. A list of limit values is placed in a table (Fig. sa),
and each analog input is compared with the limits. The operation
sequence is: Read a specific addressed analog voltage, called the
multiplex' point (mpx); compare the input voltage with the limits
stored in the table following the analog address (the limit word
contains a high and low value in bits (0:7) and (8:15), respec-

lThe IBM multiplexor is an S which allows multiple inputs to be read
into the T(Ana1og to Digital Converter) sequentially.

414 Pari 5 I The PMS level

I O

Section 2 1 Computers with one central processor and multiple input/output processors

ADDRESS A First Mpx Point Location
J " " ~ I i I I I I I I

L 1 I 1 1 d I 1 I I I I l I

LIMIT WORD

1 1 ADDRESS 6

LIMIT WORD

J l I I I I ~ I I I I I I I .

L l n c l I I I I I I / I I _

0 0 ADDRESS C

1 1 ADDRESS D

LIMIT WORD

I O ADDRESS E
J P .

ETC.

L = I, Limit Word Follows
K = I, Perform Comparison

I

This word contains
i t s own address
MPX Address 47

Limits Not Used

Second Mpx Point

Comparison i s Performed

Third Mpx Point

Fourth M p x Point

Comparison i s Performed

Fifth Mpx Point

31 I9

Not Used

31 23 A I - ln t . WR

a.

3012

Location

2999 1:: I Word Count = 12 1

Starting Toble Addrerr(BO15)

3000 I Multiplex Address I
I 1 3001 1 Value 1

3011 T Value 1 1 T
I
I

Locaticm

301 5 Car Check Word
= 3015 1

3016 I %$ I Word Count = 25 I
3017 1 Mult iplex Address I

1 3018 1
3041 T Value 35 T

Value 12

3043 A/l -1nit iol ize Read

b .

Location

3201
-

3202

3203
3204

3321

Loccr im

3402
-

3403
3434

3521

3522

SicrtinS IOCC
35 24

This word contains its own address

LVord Count

ADC dolue (47)
ADC F l u e (82)

ADC Value (14)

ADC Volue (47)
ADC value (82)

ADC Value (141

1 I Starting Table Addr.
(3201)

Starling Table Addr .
IOCC

1 A/I - In1 . Rd. I I

d .

Fig. 8. IBM 1800 data-channel analog-input instruction format and memory maps. (a) Multiplexor address table
with limit words for comparisons. (b) Data table, chained sequential control. (c) Multiplexor address table, random
addressing. (d) Analogto-digital converter storage tables, random addressing (used with a second data channel).

Chapter 33 I The IBM 1800 415

Word Count= m + 1 I Control I
I Initial Digital Input Group Address 1

Scan
Word Count = n + 1 Control

I D or A Output Address I

Data 2
I Data 1

I Data rn I

a .

I I z;rol I Word Count = 2m

Digital Input Group Address1

I Data 2 I --
Data rn

b .

I Data n

C .

Scan Control Word Count = 2n

I Initial D or A Output Address 1
I Data 1

D or A Output Address

Data2

D or A Output Addresses

Datag

d .

Fig. 9. IBM 1800 data-channel digital or analog-output instruction formats and memory maps. (a) Digital input,
sequential; (b) digital input, random addressing; (c) digital or analog output, sequential; (d) digital or analog out-
put, random addressing. (Courtesy of International Business Machines Corporation.)

tively); and if the analog-input value lies outside the limit range,
initiate an interrupt.

Figure 8h describes a second use of this data channel. Pi0
accepts a sequence of analog inputs and packs them into a table
following the address initiation instruction. The analog inputs from
the T’s are either fixed or selected in a cyclic fashion from a
Multiplexor.

Two Pio’s can be used concurrently: One Pi0 controls the input
from a series of analog-input addresses (Fig. 8c); the second Pi0
packs the corresponding analog values in a second table (Fig. 8 4 .

Digital-input data channels. Digital parameters or events can be
read into Mp under the control of a Digital-input Data Channel.
The memory map (Fig. 9a) shows the control format for selecting
and inputting a block or sequence of external data. The memory
map (Fig. 9h) illustrates a more general ability to address inputs
at random and read them into succeeding Mp locations.

Digital- and analog-output data channels. Memory maps (Fig. 3c
and d) show the program format used by the Digital- or Analog-
output Data Channels. These channels output selected data points

416 Part 5 I The PMS level Section 2 1 Computers with one central processor and multiple input/output processors

to external analog or digital K’s. This Pi0 is similar to the Digital-
input Data Channel.

Conclusions

We have tried to show a typical, third-generation computer used
for process control. Many of the facilities the 1800 possesses are

general. The Pio’s are rather special, designed to monitor and
control a process, independent of Pc. Although the Pio’s are
powerful (by providing parallel data transmission), their use, like
other multiprocessing systems, is nontrivial. The Pc ISP is fairly
straightforward, and one should write a program using it to ap-
preciate its simplicity.

Chapter 33 I The IBM 1800 417

APPENDIX 1 THE IBM 1800 ISP DESCRIPTION

P c S ta t e

A<O:15>

Q<O:15>

1<0:15>

XR[1 : 3 1<0 : l5>
o v

C

R""

Mu S ta te

M [O : F F F F l 61<P, S ,0: l5>

Pc Console S t a t e
Check Stop Switch

USPB Switch

S P V Ind ica tor

Ins t ruc t ion Format

i n s t r u c t i o n / i [0 : 1] < 0 ; 1 5 >

o p d : 4 > := i[O]<n:4>

shop<O:7> := opoi [0]<5.8,9>
f := i [O] < 5 >

t 4 : 1 > := i [O] ib :7>

d&:15> := i [O] & : 1 5 >
d s g n a : 15>:= s i g n g x t e n d (d c 8 m Q : 15;)

a<0:15> := i[11<0:15>

i a := i [O l d >
bo := i C o l d >
cond4 :5> := i [O] < l O : l 5 ;

E.Ffect iv~ Address c'alculation Process

z<O:15>:= (

(t = 0) A f -,(dsgn + I) ;

(t # O) A 7 f i (dsgn + X R [t 1) ;
(t = 0) A f A ia-> a;

(t # 0) A f A

(t = 0) A f A i a + M[n1;

(t # 0) A f F\ i a + (M[a + X R [t l l))

i a + (a + X R [t]) ;

z'<0:15> := (? f -> (dsgn + I) ;

f A 7 i a +a:

f A i a -Mia])

Appendix I

I B M 1800 I S P D e s c r i p t i o n

Accwnulator

Accumulator Frtension ,for mu; t ip l ier , auotient and double

Instruet ior . Location Counter

Index Regis ters
0iierfloi.i Indicator

Carru Indi ea t or
denotes runn ing comutcr

length

Mp with P a r i t y and Protect b i t s

p c stops i f storage pro tec t wiolat ion occurs
Write .Storage Protect Elits; enables the wr i t i ng of b i t s i n
a arord

Storage Protect V io la t ion ind ica tor : s e t t o 1 if a memory
reference is made to a orotected iuord

operation code

s h i f t ooeration code count
f o rmat ; s p e c i f i e s a 1 or 2 word in s t ruc t ion

tag: index r e g i s t e r spec i f i ca t ion

disnlacement or short address

afldress

irr'irect aciiress b i t

branch o u t b i t
coniYtions for t e s t

e f f e c t i v e address
1 word, r e l a t i v e

7 word, r e la t ioe , indexed

2 word, direct
2 ii)ord, d irect , indexe,i
2 i,,ord, in?irect

2 word, indirect, indexed
e . f fec t ive address for index r e g i s t e r i v s t r u c t i o n s

418 Part 5 1 The PMS level Section 2 I Computers with one central processor and multiple input/output processors

APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued)

z d i n : 1 5 > : = (~ z < 1 5 > + z + I ; process f o r locating -econd operand for double length

z<15> i z)

xi<D:15> := (7 f i d s g n ; index increment

f A 7 i a + a ;

f A i a ->M[al)

s<0:5> := (shift count caZcuZatCnn
(t = 0) +d<10:15>

(t # 0) ->XR[t]<lO:l5>)

Tnstruction I n t e r a r e t o t i o n Process

R u n - (i n s t r u c t i o n [O : l l + M [l : I + I] ; n e x t f e t c h

~f + (I 6 1 + I) ; f + (I tl + 2) ; n e x t 1 or 2 uord i n s t r u c t i o n

I n s t r u c t i o n u e x e c u t i o n) execute

Instructicrr Y e t an” Tnstruction Fzerutior Pr0ces.s

I n s t r u c t i o n d x e c u t i o n := (

Load and Arithmetic

LO

LDD (:= op = IlDOl) i (AOQ t M [z] O M [z d]) ; double load

STO (:= op = 11010) 4 (M[z] + A) ; store a c c m l o t o r

STD (:= op = I l O l l) i (M[Z]oM[zd] t A o Q) ; double s tore
A

AD

S (:= op = 10010) + (OV,CoA + A - M[z]) ;

SD (: = op = IOOIl) -) (Ov,Col\Oa +AOQ - M[z]CCl[zd]): double subtract

M

D

(:= op = 11000) + (A + M [z l) : load a c c m lator

(:= op = IOOOO) -> (Ov,Cd + A + M[z]) :

(: = op = IOOOI) + (Ov,CoAoQ (-Ana + M[zloM[zd]) ;

add

double add
subtract

(:= op = 10100) 3 (AOQ +A x M[z]): muztipzy

(:= op = I O l O l) + (Ov,Q t A o Q / M[z];

A +A@ mod M[z]) ;

div ide

i o g i c a I i n s t r u c t ion:;

AND (:= op = l l100) + (A + A A M[z]) ;

OR (:= op = I l l O l) + (A +A v M[z]) ; logical or
EOR (: = op = I l l l o) ->(A +A @ M [z]) ; loy:cal ezclusiiie or

logical and

Compare

CMP (:= op = 10110) - ((A < M[z1) + (I I + I) ; compare

(A = MCzl) - (1 1 + 2)) ;

DCM (:= op = lOll1) + ((AW< M[z lP([zd l) + (I 1 + I) ; double comnare

(AQ = M [z l M [z d l) - (I + I + 2)) ;

S h i f t s

SLA (: = shop = OOOlOcOcOO) + (s h i f t lef t l o p i c a l

A + A x 2’ [l o g i c a l] ; c -AG-I>);

A@ + A @ x 2’ [log ica l 1; c ~A+,-I>):

SLT (: = shop = 000106)o10) i(s h i f t douhle l p f t lopi?al

SRA (:= shop = O O O l l c O ~ O) +(A + A / 2’ s h i s t r i g h t logical

SRT (:= shop = O O O l l ~ o l O) + (Ana +Am / 2’): s h i f t r i g h t A on? 0

RTE (: = shop = 0001 IOOOl 1) +(A@ <-AOQ / 2’

SLCA(:= shop = 00010oD;101) i(S h i . f t 7e.ft cv4 court P

[l o g i c a l]) ;

(r o t a t e)) : rotate r i g h t A an? 0

Chapter 33 I The IBM 1800 419

APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued)

(t = 0) + (A + A X 2': c ~ A + , - I >) ;

(t f 0) + (A +normaI ize(A) ;

C ~ X R [t] < l 0 : 1 9 t normal ize,exponent(A):

XRC t 1<8 ,9 + 0) 1 :
SLC (:= shop = O O O l C n ~ l l) + (7 ((s = 0) V A<O>) + (

(t = 0) -? (PaQ t PaQ x 2'; C c A < s - l >) :

(t # 0) + (bQ tnorrnaI ize(AnQ);

C O X R [t] t n o r m a l ize,exponent(A@))));

LOX (:= op = 01100) + ((t = 0) + (I tz'):

(t # 0) + (X R [t l tz'));

STX (:= op = 01101) + ((t = 0) + (M[z'] t I) ;

(t # 0) + (M [z ' I t X R [t l)) ;

STS (: = op = O O l O l) + (

(f A bo) + M [z] < b c cond<l5>:

?bo + (M[~] < 8 : ID c OOOOcbcOOv; CoOv t 0 0)) ;

LOS (: = i [o] = ooiomcoomoooooomm) + (C t i [O l < l l u :

B S C (:= (op = 01001) A i<9>) - (

Ov t i [O l < l P) ;

(

(,skip,condition A f) + (I t z) ;

skip,condition A 7 f) + (I t I + I) :

K I D -) ov c 0) ;

e k i b c o n d i t i o n := (

(~ O V A d<15>) V

(i C A d<l4>) V

(A<l5> A d<13>) V

((A > 0) A d<l2>) V

(A<O> A d<l I >) V

((A = O) A d<l O>))

BOSC (: = (o p = OlOOl) A i s >) - (
(skip,condition A 7 f) + (I + I + 1 ; I n t e r r u p t + I) ;
(7 skip,condition A f) + (I + z ; I n t e r r u p t + I) ;
d<l$> -9 (O V t o)) ;

B S I (:= op = OIOOO) + (
if + (1 t z + I ; M[z] t I) ;

f + (d<15> - Ov + 0) ;

- , sk ip jond i t i on + (I t z + I ; P [z l - 1)) ;

MDX (:= op = 01110) -f (

(t = 0) A f - (I + I + dsgn);

(t = 0) A f + (M [a l t M [a l + dsgn;
(Msum=O) v (M101<0> @Msum<O>) - (I - I + I)) ;

Msurn,O:15> := (M ta l + dsgn)

(t # 0) - t (X R [t l t X R [t l + x i ;

(Xsurn=o) V (~ ~ [t l a . , @xsurnQO') - (1 + I + 1))) ;

Xsurndl:15> := (XR[t] + dsgn)

Wait (:= i = 3 0 0 0 ~ ~) + (I t I - I) ;

s h i f t l e f t and count

load index or i n s t r u c t i o n counter

s tore index or i n s t r u c t i o n countei

s tore s t a t u s

load s t a t u s

branch or sk ip on condition

overflow o f f
carry o f f
Accumulator even
Accumulator greater than zero
Accumulator negative
Accumulator zero

branch out of i n t e r r u p t s

branch and s tore i n s t r u c t i o n regie

modify index and sk ip
local branch

r e s u l t zero or s ign change

r e s u l t zero or s ign change

420 Part 5 1 The PMS level

APPENDIX 1 THE IBM 1800 ISP DESCRIPTION (Continued)

Section 2 I Computers with one central processor and multiple input/output processors

IO Control In s t ruc t ion :

XI0 (:= op = OOOOl) + (Execute I / O , not defined
l O C C [O : l l eM[z lOM[zdl ; next

Execute,lO,inst r u c t ion)

) end Ins t ruc t iondzecu t ion

I O Ins t ruc t ion Format:
I O Address<O:15> := iOCCC0l address i f I O data
I O Device o r Area<9:4> := I O C C C I I < o : 4 > io device name
10 Function<5:7> := l O C C [l 3 < 5 : 7 >

I O Modifier<8:25> := l O C C [l] C 8 : 1 5 > device func t ion d e t a i l s
Device mode o f f l i n e := (I O Funct ion = 0)

Device mode w r i t e := (I O Funct ion = I)
Device mode read := (I O Funct ion = 2)

Device mode sense I n t e r r u p t l e v e l := (I O Funct ion = 3)
Device mode con t ro l := (I O Funct ion = 4)
Device mode i n i t i a l i z e w r i t e := (I O Funct ion = 5)
Device mode i n i t i a l i z e read := (I O Funct ion = 6)
Device mode sense := (I O Funct ion = 7)

Chapter 34

The engineering design of the Stretch
co m pu terl

Erich Bloch

Summary The Stretch computer is an advanced scientific computer with
variable facilities for floating-point, fixed-point, and variable-field-length
arithmetic and data-handling facilities.

The performance goal of 100 x 704 speed is achieved by high-speed
circuits, multiplexing, and simultaneous-operation technique of instruction
and data-fetching, as well a overlap within the execution units. This
massive overlap and multiplexing results in complicated recovery routines
between the look-ahead and instruction units. These units are described
in detail, as are the arithmetic units and significant algorithms used in the
floating-point arithmetic.

A flexible set of circuits using a current-switching technique with
overriding-level facility is described, as well as the packaging of circuits
on printed cards. The frame and gate concept is also shown. Performance
figures and hardware count illustrate the size, complexity, and performance
of the system.

Introduction

The Stretch computer [Dunwell, 19561 project was started in order
to achieve two orders of magnitude of improvement in perform-
ance over the then existing 704. Although this computer, like the
704, is aimed at scientific problems such as reactor design, hydro-
dynamics problems, partial differential equation etc., its instruc-
tion set and organization are such that it can handle with ease
data-processing problems normally associated with commercial
applications, such as processing of alphanumeric fields, sorting, and
decimal arithmetic.

In order to achieve the stated goal of performance, all factors
that go into the computer design must contribute towards the
performance goal; this includes the instruction set [Buchholz,
19581, the internal system organization, the data and instruction
word length, and auxiliary features such as status-monitoring
devices, the circuits, packaging, and component technology. No
one of them by itself can give this hundred-fold increase in speed;
only by the combining and interacting of these contributing
factors can this performance be obtained.

'Proc. EJCC, pp. 48-59, 1959

This paper reviews the engineering design of the Stretch System
with primary concentration on the central computer as the main
contributor to performance. In it, these new techniques, devices,
and instructions have been pushed to the limit set by the present
technology and, therefore, its analysis will convey best the prob-
lems encountered and the solutions employed.

The Stretch system

Early in the system design, it appeared evident that a six-fold
improvement in memory performance and a ten-fold improvement
in basic circuit speed over the 704 was the best one could achieve.
To meet the proposed performance criteria, the system had to be
organized in such a way that it took advantage of every possible
overlap of systems function, multiplexing of the major portion of
the system, processing of operations simultaneously, and anticipa-
tion of occurrences, wherever possible. The system had to be
capable of making assumptions based on the probability that
certain events might occur, and means had to be provided to
retrace the steps when the assumption proved to be wrong.

This simultaneity and multiplexing of operations reflects itself
in the Stretch System at all levels, from overall systems organiza-
tion to the cycle of specific instructions. In the following descrip-
tion, this will be discussed in more detail.

If one considers the Stretch System (Fig. 1) from an overall
point of view it becomes apparent that the major parts of the
system can operate simultaneously:

a The 2-psec, 16,384-word core memories are self-contained,
with their own clocks, addressing circuits, data registers and
checking circuits. The memories themselves are interleaved
so that the first two memories have their addresses distrib-
uted modulo 2 and the other four are interleaved modulo
4. The modulo-2-interleaved memories are used primarily
for instruction storage; since, for high-performance instruc-
tions, halfword formats are used, the average rate of ob-
taining instructions is one per '/z psec. Similarly, a 0.5-psec

42 1

422 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple input/output processors

INSTRUCTION MEMORIES
(MOD 2 INTERLEAVED) I

OPERAND MEMORIES
(MOD 4 INTERLEAVED)

2 p SEC CORE 2p SEC CORE Zp SEC CORE, 2p SEC CORE ,2p SEC CORE 2 p SEC CORE GI GI/G Gi '-I GI
I I 1 1 1 I , I / I

MEMORY I N BUS

1 MEMORY OUT BUS

I
CENTRAL

COMPUTER

t 1
I/O EXCHANGE

DISK SYNCH
UNIT

1 DISK 1 1 CONSOLE 1 1 READER
CONTROL ADAPTER ADAPTER

f?$pt,; &
4 x lo6 WORDS

-
T 5

TAPE TAPE TAPE
ADAPTER ADAPTER ADAPTER

729- IX
TAPE

Fig. 1. The Stretch system.

Y -
the transfer of information from and to the memories by
a memory bus permits new addresses, information, or both
to pass through the bus every 200 mpsec.

linked with the memories and the computer through the
Exchange, which, after initial instruction by the computer,
coordinates the starting of the 1/0 equipment, the checking
and error-correction of the information, the arrangement
of the information into memory words, and the fetching and
storing of the information from and to memory. All these
functions are executed without the use of the computer,
so it can in the meantime continue its data processing and
computation.

The central computer processes and executes the stored
program. Here, now, the simultaneity and multiplexing of
functions has reached its ultimate.

a

h The simultaneously-operating Input/Output units are b

C

c

data-word rate is achieved by the use of four modulo-4
organized memories. The addressing of the memories and

Before discussing the computer organization, a few general
features must be mentioned for completeness:

Word length: fj4 bits plus eight bits for parity checks and
error-correction codes.

Memory capacity and addressing: A possible 256,000 words
can be randomly addressed. These storage positions are all
in external memory, except for the 32 first addresses. These
positions consist of the internal registers (accumulators, time
clocks, index registers).

The instructions are single-address instructions with the
exception of a number of special codes that imply the
second address explicitly.

The instruction set (Fig. 2) is generalized and contains a
full set for single- and double-precision floating-point arith-
metic, and a full set for variable-field-length integer arith-
metic (binary and decimal). It also has a generalized set for
index modification and a branching set, as well as a set of

Chapter 34 1 The engineering design of the Stretch computer 423

1/0 instructions. All told, 765 different types of instructions
are used in the system.

The instruction format (Fig. 3) makes use of both half and
full words; half words accommodate indexing and floating-
point instructions (for optimum performance these two sets
of instructions use a rigid format), and full-word formats
are used by the variable-field-length instructions. Notice
that the latter specifies the operand field by the address of
its left-most bit, the length of the field, and the byte1 size,
as well as the starting point (offset) of the implied operand

‘Byte: a generic term to denote the number of bits to be operated on as

d

(accumulator). Both halves of the word are independently
indexable.

A general monitoring device used for important status
triggers is called the Interrupt [Brooks, 19571 System. This
system monitors the flip-flops which reflect internal mal-
functions, result significance (exponent range, mantissa zero,
overflow, underflow), program errors (illegal instruction,
protected memory area), and input/output conditions (unit
not ready, etc.). The status of these flip-flops can cause a
break in the normal progression of the stored program for
fix-up purposes. Their status is automatically interrogated

e

a unit by a variable-field-length instruction. at all times.

COMPUTER V O C A B U L A R Y

M O D I F I E R I E X A M P L E S
INSTRUCTION

CATEGORY
N U M B E R

O F I N S T R C L A S S

V A R I A B L E F I E L D
L E N G T H A R I T H M E T I C

B I N A R Y D E C I M A L SIGNED ADD (TO M E M O R Y)
U N S I G N E D LOAD / S T O R E
SAME SIGN
NEGATIVE S I G N D I V I D E

280

32 3 l N / D E C RADIX CONVERSION

LOGIC CONNECTS

I

48 I 16 LOGIC S T A T E M E N T

FLOATING POINT
A R I T H M E T I C

N O R M A L I Z E D
U N N O R M A L I Z E D

SAME SIGN
OPPOSITE S I G N
N E G A T I V E SIGN
NOISY MODE

ADD (S I N G L E 8 D O U B L E)
L O A D I S T O R E
M P Y / (S I N G L E 8 D O U B L E)
DIV (W I T H R E M A I N D E R)
I N T E R C H A N G E D I V I D E
C U M U L A T I V E M P Y
SQUARE ROOT 24 0

I N D E X I N G A R I T H M E T I C D I R E C T

I M M E D l A T E

P R O G R E S S I V E 43

B R A N C H E S U N C O N D I T I O N A L
I N D E X I N G
I N DICATOR
B I T “ { b

S E T 0
L E A V E B I T
I N V E R T B I T STORE I N S T CTR 68

T R A N S M I T / S W A P

I10 I N S T R U C T I O N 24

I T O T A L 735

Fig. 2. The instruction set.

424 Pari 5 I The PMS level

I I I I I I I

I I I I I I I
YTE 8 BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1

Section 2 I Computers with one central processor and multiple input/output processors

ECC
PTY

DATA FORMATS

INDEX
WORD

ECC -
I PARITY
I+ COUNT REFILL VALUE

LUAl INb I EXPONE NT~Y POINT

DATA WORD ADR Isin/&! I I COUNT
WORD

MANTISSA (FRACTION 1

ECC
PARITY REFILL

4- " tLl 1-1 I PAR

I

I
ADDRESS DI R ECT

INDEX J OP I

,FLAG

0 I8 25 28 46 63 71

INSTRUCTION FORMATS

I ADDRESS 1;' S OP\Ol I I POINT I 1 I

0 18 28 31

'BINARY
DECIMAL

Fig. 3. Data word-and instruction word formats.

organization of Stretch, where two instruction words and four
operands can be fetched simultaneously. In addition, the execution
of the instruction is done in parallel and simultaneously with the
described fetching functions.

All the units of the computer are loosely coupled together, each
one controlled by its own clock system, which in turn is synchro-
nized by a master oscillator. This multiplexing of the units of the
computer results in a large number of registers and adders, since

The Stretch computer

If one considers the internal organization of the majority of corn-
puters that have been produced during the last eight years (and
the 704 is a case in point), the organization looks as shown in Fig.
4a. There is a sequential flow of instructions into the computer,
and after due processing and execution, the next instruction is
called from memory. Compare this with Fig. 4b, showing the

Chapter 34 I The engineering design of the Stretch computer 425

time-sharing of the major computer organs is no longer possible.
All in all, the computer has 3,000 register positions and about 450
adder positions.

Despite the multiplexing and simultaneous operation of suc-
cessive instructions, the result appears as if sequential step-by-step
internal operation were utilized. This has made the design of the
interlocks quite complex.

Data flow

The data flow through the computer is shown in Fig. 5 and is
comparable to a pipeline which in a steady state (namely, once
filled) has a large output rate no matter what its length. The same
is true here; after start-up the execution of the instructions is fast
and bears no relation at all to the stages it must progress through.

D A T A W O R D

1
I N S T R U C T I O N

I N S T R U C T I O N
F E T C H

I N S T R U C T I O N

D A T A W O R D

I N S T R U C T I O N

E X E C U T I O N

4 I N S T R U C T I O N S 4 D A T A W O R D S

I N S T R U C T I O N I N S T R U C T I O N I U P D A T I N G I I E X E C U T I O N I

70 4 S T R E T C H

Fig. 4. Comparison of Stretch and 704 organization.

426 Part 5 1 The PMS level

r 2 WORD

Section 2 I Computers with one central processor and multiple inputloutput processors

I 2WORD

FR EXCHANGE

TO EXCHANGE

I INSTR WORD BUFFFR~ A [OPERAND BUFFER I
INSTR WORD BUFFER

INDEXING UNIT

OPERAND BUFFER
OPERAND BUFFER e
OPERAND BUFFER

LOOK-AHEAD
CHECKER IN BUS - v I1

,;PiTRANSFER BUS 11
I

I I OPERAND 171 I REGISTER
ACCUMULATOR 1 A.B INTERRUPT 1 SYSTEM I AR ITH METlC 1 CHECK

11 ARITH CHECKER INBUS fi

SERIAL
ARITH UNIT

Fig. 5. Stretch computer-units and data flow.

The Memory Bus is the communication link between the mem-
ories on one side and the exchanges and the computer on the other.
It monitors the requests for storage to, or fetches from, memory,
and sets up a priority scheme. Since 1/0 units cannot hold up
their requests, the exchange will get highest priority, followed by
the computer. In the computer the instruction-fetch mechanism
has priority over the operand-fetch mechanism. All told, the
memory bus gets requests from and assigns priority to eight differ-
ent channels,

Since memory can be accessed from multiple sources, and once
accessed it is on its own to complete its cycle, a busy condition
can exist. Here again, the memory bus tests for busy conditions
and delays the requesting unit until memory is ready to be inter-

rogated on data fetches. The return address is remembered and
the requesting unit receives the information when it becomes
available. To accomplish this, from the time information is re-
quested the receiving data register is in a reserved status.

Requests for stores and fetches can be processed at a 200 mpsec
rate and the time, if no busy or priority conditions exist, to return
the word to the requesting unit is 1.6 psec, a direct function of
the memory read-out time.

The Instruction Unit [Blaauw, 19591 i s a computer of its own.
It has its own instruction set, its own small memory for index word
storage, and its own arithmetic unit. During its operation as many
as six instructions can be at various stages of execution.

The Instruction Unit fetches the instruction words from mem-

Chapter 34 I The engineering design of the Stretch computer 427

ory, it steps the instruction counter, and performs the indexing of
instructions and the initiation of data fetches. After a preliminary
decoding of the class of instruction, it recognizes its own instruc-
tions and executes indexing instructions. On branches, conditional
or unconditional, the instruction unit executes these. In the case
of conditional branches, it makes the assumption that the branch
will not be successful.

This assumption and the availability of two full-word buffer
registers keep the flow of instruction to the computer continuous.
Therefore, the rate of instructions entering the instruction unit
is for all practical purposes independent of the memory cycle.

Since, for high speed instructions, half-word formats are used,
four of these at any one time can be in buffer storage. As soon

as the instruction unit starts processing an instruction, it is re-
moved from the buffer, thus making room for the next memory-
word access (Fig. 6). Incidentally, half-word instructions and
full-word instructions can be intermixed within the same word,
and therefore the latter can cross a word boundary. This permits
maximum packing of instructions in memory and also serves as
a facility for automatic program assemblers and compilers.

The adder path, index registers, and transfer bus to look-ahead
complete the instruction unit system (Fig. 6). It should be noted
that the index registers are part of the instruction-unit data path,
therefore permitting fast access (no long transmission lines) to an
index word. There are 16 index words available to the programmer.
The index registers, consisting of multi-aperture cores, are oper-

MEMORY OUT BUS - - D

LOOKAHEAD LOAD LINES *
\ y CHECKER IN BUS Y V

D

MEMORY ADDRESS BUS J.
D

Fig. 6. Instruction unit.

428 Part 5 I The PMS level Section 2 I Computers with one central prbcessor and multiple inputloutput processors

ated in a non-destructive fashion, since in a representative pro-
gram, the index word is used nine out of ten times without modi-
fying it. This permits fast operation under these conditions, and
additional time is only applied where modification is involved.

After processing through the instruction unit, the updated (in-
dexed) instruction enters a level of the Look-ahead (Fig. 5) . Besides
the instruction, all necessary information, its associated instruction
counter value, and certain tag information are also stored in the
same level. The operand, already requested by the instruction unit,
will enter this level directly and will be checked and error-
corrected while awaiting transfer to the arithmetic units for execu-
tion.

An interlocked counter mechanism in the look-ahead keeps its
four levels in step, preventing out-of-sequence execution of in-
structions, even if all information for a succeeding one is available,
before the previous instruction has been started.

The pre-accessing of operands by the look-ahead and of instruc-
tions by the instruction unit leads sometimes to embarrassing
positions, for which a fix-up routine must be provided. Consider
the program

(n) STORE Accumulator m
(n + 1) LOADR
(n + 2) A D D m

and assume instruction (n) is in look-ahead, waiting for execution.
If (n + 2) now enters the look-ahead, a reference to m cannot be
made, since the data stored in that position is subject to change
by the STORE instruction. The look-ahead must recognize this
and “forward” the result of instruction (n), when received, to the
level where (n + 2) is stored.

Another example is the case where the instruction unit assumed
that a conditional branch would not be executed. This instruction
is stored in look-ahead and, when it is recognized that the branch
was successful, all modifications of addressable registers made by
the instruction unit in the meantime must be restored. Look-ahead
in this case acts as a recovery memory for this information. A
similar condition exists when interrupts occur due to arithmetic
results. The look-ahead here again has the data stored pertaining
to registers which were modified erroneously in the meantime. The
restoring and recovery routines described break into the instruc-
tion unit processing, interrupting temporarily the flow of instruc-
tion and their indexing.

The arithmetic units described later are slaves to the look-
ahead, receiving not only operands and instruction codes but also
the start-execution signal. Conversely, the arithmetic units signal
to the look-ahead the termination of an operation and, in the case

of “To Memory” operations, place into the look-ahead the result
word for transfer to the proper memory position.

Arithmetic units

The design of the arithmetic units was established along lines
similar to the design of look-ahead and the instruction unit. Every
attempt was made to speed up the execution of arithmetic opera-
tions by multiplexing techniques and overlapping of the algo-
rithm, where mathematically permissible.

The arithmetic units, consisting of the Serial Unit and the
Parallel Unit, use the same arithmetic registers, namely a double-
length accumulator (A$) consisting of 128 bits and a double-length
operand register (C,D) consisting of 128 bits. The reason for the
use of the same arithmetic registers is the fact that at any time,
a shift from floating-point to variable-field-length operation (or vice
uersa) can be made by the program. Therefore, the result obtained
by a floating-point operation can serve as the starting operand for
a variable-field-length operation. The chief reason for the double-
length registers is the definition of maximum field length to be
64 bits. The field can start with any bit position, and therefore
can cross the word boundary.

The executions of floating-point mantissa operations and varia-
ble-field-length binary multiply and divide operations are per-
formed by the parallel unit, whereas the floating-point exponent
operation and the variable-field-length binary and decimal add-
type operations are executed by the serial unit. The square-root
operation and the binary-to-decimal conversion algorithm are
executed in unison by both units. Salient features of the two units
will now be described.

The serial arithmetic unit [Brooks et al., 19591 (Fig. 7) . The serial
arithmetic consists of a switch matrix which can extract 16 con-
secutive bits from A,B and C,D. These 16 bits then can be aligned
in such a way that the low-order bit of a field as specified by the in-
struction is at the right end of the field. This wrap-around circuit
then feeds into a carry-propagate adder or, in case of logical-con-
nect instructions, into the logic unit. At the adder output, a true
complement unit and a binary-to-decimal correction unit are used
for subtract and decimal operations. The inverse process of ex-
tracting is used to insert the processed byte back into the register
without disturbing any neighboring positions. Notice that in one
clock cycle, the information is extracted, the arithmetic is per-
formed and the result inserted back into the registers. In addition,
the arithmetic information is checked by parity checks on the
switch matrices and by duplication and comparison of the arith-
metic procedure in a duplicate unit.

Chapter 34 1 The engineering design of the Stretch computer 429

I
WRAP

AROUND
(8 OF 16)

FR LOOK-AHEAD
1 1 -

WRAP
AROUND
(8 OF 16)

KCUMULATORS

-+I

-
8 BIT TRUE /COM P -

PASS AROUND (8 BITS) T I

OPERAND REGISTERS

*I

TRUEKOMP 8 BIT
(8 BITS) PASS AROUND

TRUEICOMP

1

DECIMAL
CORRECT

WRITE IN

I 16-16 1
WRITE IN
MATRIX

I I

Fig. 7. Serial arithmetic unit.

Parallel arithmetic unit. The parallel arithmetic unit (Fig. 8) is
designed to execute floating-point operations with a maximum of
efficiency. Since both single- and double-precision arithmetic is
performed, the shifter and adder exist in a double-length format
of 96 bits. This insures almost the same performance for single-
and double-precision arithmetic. The adder is of a carry-propaga-
tion type with look-ahead over 4 bits at a time to reduce the delay
that normally results in a ripple-carry adder. This carry look-ahead
results in a delay time of 150 m p e c for 96-bit binary-number

additions. All additions and subtractions are made in one's com-
plement form with automatic end-around carry.

The shifter is capable of shifting up to 4 positions to the right
and up to 6 positions to the left. This shifter arrangement takes
care of the majority of shifting operations encountered under
normal operation. Where higher-order shifts are required, a suc-
cessive operation is set up between the parallel unit register and
the shifter.

To expedite the execution of the multiply instruction, 12 bits

430 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple input/output processors

I
3 BITS 3 BITS 3 BITS

UNIT REGISTER I 7
CARRY PROPAGATE

ADDER
100 BITS SHIFTER

I I I
ADDER 1

3 BITS

CSA 2 I
1 I I

s2 I
C1 c2

J. I 1.
CSA 3

I 1

SUM REG CARRY REG

Fig. 8. Floating-point arithmetic unit.

of the multiplier are handled within one cycle. This is accom-
plished by breaking the 12 bits into groups of three bits each. The
action is from right to left and consists of decoding each group
of three bits. By observing the lowest-order bit of the next higher
group, a decision is made as to what multiple of the multiplicand
one must add to the partial product. Since only even multiples
of the multiplicand are available, subtraction and addition of the
multiples can result. The following example will elaborate this
point: (MCD means multiplicand)

Groups

n + 4 n + 3 11 + 2 n + l

Multiplier, 12 bit group

xxo 011 110 101

n

010

Octal value

3 6 5 2

If two addition5 of multiples were permitted

4 x MCI) 6 x MCD 6 x MCD 2 x MCD
-1 x MCD -1 x MCD

Instead of subtracting 1 x ,MCD in n + 1, subtract 8 X MCD in n.

2 x MCD
-8 x MCD

6 x ,MCII 4 X MCD 6 x iMCD
-8 x MCD

Resulting decoding

4 x MCD -2x MCD 6 x MCD -6 x MCD

The four multiple multiplicand groups and the partial product of
the previous cycle are now fed into carry-save adders of the form,

Chapter 34 I The engineering design of the Stretch computer 431

Sum S = A W B W C
Carry C‘ = A B + AC + BC

There are four of these adders, two in parallel followed by two
more in series (Fig. 8). The output of Carry-Save Adder 4 then
results in a double-rank partial product, the product sum and the
product carry. For each cycle this is fed into Carry-Save Adder
2, and, during the last cycle, into the carry-propagate adder, for
accumulation of the carries. Since no propagation of carries is
required in the four cycles, where multiple multiplicands are
added, this operation is fast and is the main contributor to the
fast multiply-time of Stretch.

The divide scheme [Robertson, 19581 has a similarity to the
multiply scheme. Multiples of the divisor are used, namely,
3/2 x divisor, 3/4 x divisor and 1 x divisor. This, plus shifting
over strings of ones and zeros, results in the generation of the
required 48 quotient bits within thirteen machine cycles. Most
machines using a nonrestoring divide method require 48 cycles
for 48 quotient bits. The following example explains this technique.
This scheme depends on the use of normalized divisors:

DIVIDEND (DD) = 101000000000000
DIVISOR (DR) = 1100011
2’s COMP DR (DR) = 0011101
3/4 DR = 100101001

(a) Using skip ouer 1 /0 only:

101000000000000 DIVIDEND

1 101 101
Step 1: 0011101 ADD DR

Remainder negative, 1st quotient hit = 0; shift one position.
Leading 1 indicates that next quotient bit must be 1; Q,Q2
= 01

011010000 REMAINDER
Step 2: 1100011 ADD DR

100101 - 11

Overflow: Remainder positive and Q:$ = 1, leading zero indicates

Q4 = 0

1011100 REMAINDER
Step 3: 0011101 ADD DR

1llJ001

Negative remainder; Qn = 0; leading 1’s indicate QBQ7Q8 = I 1 1

Number of quotient bits per cycle:

Cycle 1: 01 = 2
Cycle 2: 10 = 2
Cycle 3: 0111 = 4

(b) The same problem uith hotli skip ozjer 1 /0 and 3 /4 - %3/2
complement:

101000000000000

11011010000
Step 1: 0011101

Same as before, QIQ2 = 01

100101001
11 11 1 1001

Step 2: Add 3/4 DR

This (by table look-up) indicates QRQ4QsQ6Q7Q8 = 100111

Quotient bits generated per cycle:

Cycle 1: 01 = 2
Cycle 2: 100111 = 6

In general, this method results in the generation of 3.7 quotient
bits per subtraction. While the mantissa operations of multiply
and divide are performed by the parallel unit, the serial arithmetic
unit executes the exponent arithmetic. Here again is a case where
overlap and simultaneity of operation is used to special advantage.

Checking. The operation of the computer is checked in its entirety
and correction codes are employed where data transfers from
memory and input-output units are involved. In particular, all
information sent to memory has a correction code associated with
it, which is checked for accuracy on its way from memory. If a
single error is indicated, then correction is made and the error
is recorded via a maintenance output device. Within the machine,
all arithmetic operations are checked, either by parity, duplica-
tion, or a “casting out three” process. These checks are overlapped
with the execution of the next instruction.

Hardware count. Figure 9 shows the percentage of transistors used
in the various sections of the machine. It becomes obvious that
the parallel unit and the instruction unit use the highest percent-
age of transistors. In case of the parallel unit this is due to the
extensive circuits for multiply and to the additional hardware to
achieve speed up of the divide scheme. In the instruction unit,
the controls consume the majority of the transistors, because of
the high multiplexed operation encountered.

Performance. The performance comparisons in Fig. 10 show the
increase in speed achieved, especially in floating-point operations,

432 Part 5 1 The PMS level

10,500

Section 2 1 Computers wi th one central processor and multiple input/output processors

6.0 2

UNIT

17,900
8,600

IO ,000

10,000
8,700

32,700
3,000

24,500

6,000

169,100

MEMORY CONTROLS

15.6 1
1-1/2

5.9 1

IO. 5 1 - 1/2
1

21 .o 2-1/2
1/2

14.5 1

3.5 1/2

100.0 18

INSTRUCTION U N I T

DATA PATH

CONTROLS

L O O K - A H E A D

DATA PATH

CONTROLS

A R l T H REGISTERS

S E R I A L A R I T H U N I T

DATA PATH
CONTROLS

FLOATING PT UNIT

DATA PATH

CONTROLS

~ _ _ _

CH ECKl NG

I N T E R R U P T SYSTEM

TOTAL

D O U B L E CARDS 4,025
S I N G L E CARDS 18,747
POWER 21 KW

NO. OF TRANSISTORS 1 % OF TOTAL 1 NO. OF F R A M E S

17,700
19,500

2
3-1/2

Fig. 9. Component count.

over the 704. It should be noted that for a large number of prob-
lems this particular increase in all arithmetic speeds is almost
proportional to the performance increase of the problem as a
whole, since the instruction execution-times are overlapped to a
great extent with the preparation and fetching of instructions.

Simulation of Stretch programs on the 704 proved a performance
of 100 x 704 speed in mesh-type calculations. Higher performance
figures are achieved where double- or triple-precision calculations
are required.

Chapter 34 I The engineering design of the Stretch computer 433

Circuits

Having reviewed the systems organization of Stretch, it is now
of interest to discuss briefly the components, circuits, and packag-
ing techniques used to implement the design.

The basic component used in Stretch is the high-speed drift
transistor which exists in both an NPN and a PNP version. This
transistor has a frequency cut-off of approximately 100 mc and

for high-speed operation must be kept out of saturation at all times.
This then explains why both the PNP and NPN version are used:
mainly to avoid the problem of level translation, which would be
required due to the potential difference of the base and the col-
lector. This difference is 6 volts, an optimum point for this device.

Figure 11 shows the basic circuit configuration. It consists of
a current source, represented by the -30 volt supply and resistor
R. The functional operation of the circuits consists of two possible

0 PER AT I ON

1. FLOATING POINT

EXPONENT RANGE
MANTISSA BITS
FLOATING ADD
FLOATING MPY
FLOATING DIV
LOADISTORE

2. BINARY VARIABLE

FIELD LENGTH ARITH

BIT RANGE
16 ADD/ LO AD/STOR E
BIT [MPY
FIELD DIVIDE

3. DECIMAL

AR ITH METI C

DIGIT RANGE

5
DIGITS

LOAD /STORE

4. MISCELLANEOUS

ERROR COR R ECTlO N
CHECK I NG
WORD SIZE

IBM
70 4

+_ 128
22
27
84 pSEC

204 pSEC
216 pSEC

24 pSEC

NO
NO
36 BITS

IBM
705

1 MEM CAPACITY
119 pSEC

799 pSEC
4828 pSEC

204 pSEC

NO
YES

STRETCH

2 2048
22
48

1 .O pSEC
1.8pSEC
7 . OpSEC
O.6pSEC

1 TO 64
2.0pSEC
IO .O pSEC
15.0 p S E C

1 TO 21
3 . 5 pSEC

40.0 pSEC
6 5 .0 pSEC

3.2 pSEC

YES
YES
64 BITS

Fig. 10. Comparison of Stretch and 7051704 operation times.

434 Part 5 1 The PMS level Section 2 I Computers with one central processor and multiple input/output processors

AN

TRUTH
TABLE

CIRCUIT
DIAGRAM

A N

I + I - I I - I L I

A hi --

OUTPUT
- 5 . 2 V

- 5.6V

- 6V

INPUT
+.5v

MIN- MAX -+ .4v

REF ov REF SIGNAL
V 0 LTAG ES

6.4V
/ILuLLL76.5V

CIRCUIT
RESPONSE

DELAY X 20MpSEC

OUTPUT

Fig. 11. Current switching circuits (+AND).

Chapter 34 I The engineering design of the Stretch computer 435

AN O P

SYMBOL

TRUTH TABLES

6

m

A

+ CIRCUIT
(A N)

CIRCUIT AN - + 30 -

OUTPUTS
INPUTS

A , B 8 X Z 2 2 Z E ~ : ~
MIN-MAX
SIGNAL VOLTAGES REF GND

ONLY

X INPUT
ONLY

- 6 . 0 V

y m - 6.4
6.5

(A L L OUTPUTS)

OUTPUT

DELAY= 20MpSEC
INPUT CIRCUIT RESPONSE

Fig. 12. Third-level circuit.

436 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple input/output processors

CIRCUIT

TRUTH TABLES

CIRCUIT
DIAGRAM

AN

ON

MIN- MAX
SIGNAL VOLTAGES

Eli - - - AND

a
A

442 i l 63.4:
A.

+6V

+ 6 V i1.21,

- 6 V

- 6 V

1 .

.3.5

d +6V

REF GN D REF GND

BEG OF
CHAIN

- .35

END OF
CHAIN (4)

A+

Fig. 13. Emitter-follower circuit.

Chapter 34 I The engineering design of the Stretch computer 437

paths represented by transistor A or C. Which path is chosen by
the current depends on the condition existing on base A. If point
A is positive with respect to ground by 0.4 volts, that particular
transistor is cut off, making the emitter of transistor C positive
with respect to the base and, therefore, making C conducting. The
current supplied by the current source (6 ma) will then flow
through transistor C to the load $. Output 6, then, is positive by
0.4 volts with respect to the -6 volt reference. This indicates at
@ the equivalent function impressed on A. At the same time, s
is negative with respect to the -6 volt power supply by 0.4 volt,
representing, therefore, the inverse of the function impressed on
A. Conversely if A is negative with respect to the ground reference,
transistor A is the conducting one, keeping emitter C negative with
respect to its base. The current flows through transistor A, making
@ positive with respect to -6 and @ negative with respect to -6.
Again, the output of @ reflects the function impressed on A,
whereas

If an additional transistor now is paralleled with A, it becomes
obvious that only if both bases A and B are positive will output

-

represents the inverse of the function.

@ be positive and $ negative. If any or none of the bases A and
B are positive, then @ will be negative and will be positive. In
other words, an AND function is obtained on output @.

This principle, which is reflected in all the circuits, is essen-
tially the principle of current switching or current steering.

Logical functions for the PNP circuits are, therefore, a +AND
or -OR. Two outputs from each circuit block are available: the
AND function and the inverse of the AND function.

A dual circuit exists for NPN transistors with input levels at
-6 volts and output levels at ground. This circuit will give the
+OR or -AND function.

A thorough investigation of the systems design showed that the
circuits described so far are versatile enough to be used throughout
the system. However, there are enough special cases (resulting
from the many data buses and registers throughout the machine)
that could use a distributor function or an overriding function.
This caused the design of a circuit which permitted great savings
in space and transistors by adding a third voltage level. Figure
12 shows the PNP version of the third-level circuit.

Fig. 14. The circuit package.

438 Part 5 I The PMS level Section 2 I Computers with one central processor and multiple inputloutput processors

If transistor X were eliminated, then transistors A and B in
conjunction with the reference transistor C would work normally
as a current switching circuit, in this case a +AND circuit. If
transistor X is added with the stipulation that the down level of
X is more negative than the lowest possible level of A or B, it
becomes apparent that when X is negative, the current will flow
through that branch of the circuit in preference to branch @ or
+, regardless of inputs A and B. Therefore, the output of @ and
@ will be negative, provided input X is negative. Output I l l is
the inverse of input X. If, however, X is positive, then the status
of A and B will determine the function @ and 5 implicitly. This
demonstrates the overriding function of input X.

Similarly, the NPN version (not shown) results in the OR
function of C+ if input X is negative and in a positive output at
@ and T, regardless of status A and B, if X is positive. Again
minimum and maximum signal swings are shown in Fig. 12.

The speed of the circuits described so far depends on the
number of inputs and the number of circuits driven from each
load. The response of the circuit is anywhere between 12 and 25
mpsec per logical step with 18 to 20 mpsec average. The number
of inputs allowable per circuit is eight. The number of driven
circuits is three. Additional circuits are needed to drive more than
three bases and where current switching circuits communicate
over long lines, termination networks must be added to avoid
reflections.

To improve the performance of the computer in certain critical
places, emitter-follower logic is used as shown in Fig. 13. These
circuits, having a gain less than one, after a number of stages
require the use of current switching circuits as level setters and
gain devices. Both AND and OR circuits are available for both
a ground-level and a -6-level input. Change from a -6-level
circuit to a ground-level circuit is obtained by applying the ap-
propriate power supply levels. Due to the variations in inputs and
driven loads, the circuits must be designed so that the load can
vary over a wide range. This resulted in instability which had to
be offset by the feedback capacitor C shown in the circuit.

All functions needed in the computer can be implemented by
the use of the aforementioned circuits, including flip-flop opera-
tion, which is obtained by tying a PNP current switch block and
an NPN current switch block together with proper feedback.

-

-

A circuit package using the smaller of the two printed circuit
boards shown in Fig. 14, called a single card, contains AND or
OR circuits. It should be mentioned that the printed wiring is
one-sided and that besides the components and transistors, a rail
is added which permits the shorting or addition of certain loads
depending on the use of the circuits. This rail then has the effect
of reducing the different types of circuit boards in the machine.
Twenty-four different boards are used and of these, two types
reflect approximately 70% of the total single card population.

Due to the large number of registers, adders, and shifters used
in the computer, it seems reasonable that functional packages
could be employed economically, because of wide usage. This
results in the high-density package also shown in Fig. 14, called

Packaging

The circuits described in the last paragraph are packaged in two
ways: Fig. 15. The back panel.

Chapter 34 1 The engineering design of the Stretch computer 439

a Double Card, which has 4 times the capacity of a single card
and which has wiring on both sides of the board. Furthermore,
components are double-stacked; and again, the rail is used to effect
circuit variations due to different applications. Eighteen double
card types are used in the system. Approximately 4,000 double
cards are used, housing 60% of the transistors. The rest of the
transistors are on approximately 18,000 single cards.

The cards, both single and double, are assembled in gates, and
two gates are assembled into a frame. Figure 15 shows the gate
back-panel wiring, using wire-wraps; and Figs. 16 and 17 the frame
construction, both in a closed and open version.

To achieve high performance, special emphasis must be placed
on keeping noise to a low level. This required the use of a plane

Fig. 17. The frame (extended).

which overlies the whole back panel, against which the intercircuit
wiring is laid. In addition, the power-supply distribution system
must be of such a low impedance that extraneous noise cannot
induce circuit malfunction. For this reason, a bus system, consist-
ing of laminated copper sheets, is used to distribute the power
to each row of card sockets. The wiring rules are such that single-
conductor wire is used up to a maximum of 24“, twisted pair to
a maximum of 36”, unterminated coax to a maximum of 60”, and
terminated coax to a maxirniim of 100 feet. The whole back-panel
construction and the application of single wire, twisted pair, or
coax are calculated by a computer program to minimize the noise
on each circuit node.

The two gates of a frame are a sliding pair with the power
supply mounted on the sliding portion. All connecting wires
between frames are coax and arrayed in layers which are formed
into a drape.

References

BlaaG59; BrooF57a, 59; RuchW58; DunwS.56; RobeJ58; RlosRliO;
BnchW57, 62; RrooF6O; CockJ59; CoddE,5iY, 62. Fig. 16. The frame (closed).

Chapter 35

PILOT, the NBS multicomputer system1

A. L. Leiner / W. A. Notz / J. L. Smith
A. Weinberger

Summary PILOT, the new NBS system, possesses both powerful external
control capabilities and versatile internal processing capabilities. It contains
three independently operating computers. The primary and secondary
computers each utilize only 16 basic types of instructions, thus providing
a simple code structure; but because so many variations of the formats
are possible, a wide variety of computing, data-processing, and informa-
tion-retrieval operations can be performed with these instructions. The
secondary computer is specially adapted for performing so-called “red-
tape” operations, and both the secondary and the primary computers, acting
co-operatively, can carry out special complex sorting or search operations.
The third computer in the system, called the format controller, is specially
adapted for performing editing, inspecting, and format modifying opera-
tions. The system is equipped to transfer information concurrently along
several input-output trunks, though only two are planned for the near
future. Using two such trunks, it is possible to maintain two continuous
streams of data simultaneously flowing between any two external units and
the internal memory, without interrupting the data-processing program.
The system can operate with a wide variety of input-output devices, both
digital and analog, either proximate or remotely located. The external
control capabilities of the system enable the machine to supervise this wide
family of external devices and, on an unscheduled basis, to interrupt or
redirect its overall program automatically, in order to assist or manage
them.

At the National Bureau of Standards (NBS) a new large-scale
digital system has been designed for carrying out a wide range
of experimental investigations that are of special importance to
the Government. The system can be utilized for investigating new
or stringent applications of these general types: (1) data-processing
applications, in which the system can be used for performing
accounting and information-retrieval operations for management
purposes; (2) mathematical applications, in which the system can
be used for performing mathematical calculations for scientific
purposes, including scientific data-reduction; (3) control applica-
tions, in which the system can be used for performing real-time
control and simulation operations, in conjunction with analog
computer facilities or in conjunction with other instrument instal-
lations, remotely located if necessary; and (4) network applications,

‘ P ~ o c . EJCC, 71-75 (1958).

in which the system can be used in conjunction with other digital
computer facilities, forming an interconnected communication
network in which all the machines can work together collabora-
tively on large-scale problems that are beyond the reach of any
single machine.

Because the system was designed for such varied uses (ranging
from automatic search and interpretation of Patent Office records
to real-time scheduling and control of commercial aircraft traffic),
the system is characterized by a variety of features not ordinarily
associated with a single installation, namely: a high computation
rate, highly flexible control facilities for communicating with the
outside world, and a wide repertoire of internal processing formats.
The system contains three independently programmed computers,
each of which is specially adapted for performing certain classes
of operations that frequently occur in large-scale data-processing
applications. These computers intercommunicate in a way that
permits all three of them to work together concurrently on a
common problem. The system thus provides a working model of
an integrated multicomputer network.

System organization

Exclusive of data-storage and peripheral equipment, the central
processing and control units of the over-all system contain ap-
proximately 7,000 vacuum tubes and 165,000 solid-state diodes.
The basic component for these units is a modified version of the
one megacycle package used in the NBS DYSEAC, which in turn
was evolved from the hardware used in NBS Electronic Automatic
Computer (SEAC). As a result of a more effective logical design
and faster memory, however, the new NBS system will run more
than 100 times faster than SEAC on programs involving only
fixed-point operations; for programs involving floating-point ma-
nipulations, the advantage exceeds 1,000. The arithmetic speed
of the new system derives in a large part from connecting a novel
type of parallel adder to a diode-capacitor memory capable of
providing one random access per microsecond.

The system contains seven major blocks, which are indicated
in Fig. 1, namely: (1) the primary computer, in the lower center

440

Chapter 35 1 PILOT, the NBS multicomputer system 441

INPUT-OUTPUT CONTROL

c

FORMAT INPUT-OUTPUT CONk1,R,RENT
CONTROLLER TRUNKS TR4NSFERS

I

Table 1 Arithmetic operation times

(including 4 random access times to last memory)

SECONDARY STORAGE

HIGH SPEED INTERNAL MEMORY
HIGH SPEED INTERNAL M E M W

68-817 WORDS.. .
CONCURRENT 16-BIT WORDS,

De14 60 STORAGE LOCATIONS ---------- --.I TRANSFERS . 32,768 TOTAL
ADDRESSIBLE STmAGE WORDS

Total time
(microseconds)

A VI
v)

ADDRESS D4T4 FOR 0

2 6 2 3 -

D
a 0
Y) PROGRIM 8 DAT4 FOR SECOND4RY

Operation

v

Minimum-
Average maximum

1

Fixed-point Addition, Subtraction, Comparison . .
Fixed-point Multiplication ,31 22-40
Fixed-point Division . , . , , . , , . , .73 . . .72-74
Floating-point Addition, Subtractiont , . . . 20 19-21
Floating-point Multiplication, . , . . . , . . ,37 28-46

t For shift of 4 bits.

7.5. 6-9

8

~

MANUAL,
DATA 4ND

DISPLAYS ~ ~ ~ ~ ~ ~ o ~ ! ~ ~ ~ , “ , s CONTROL SIGN4LS

4

of the figure, (2) the primary storage, upper center; (3) the second-
ary computer and the secondary storage, right; (4) the input-output
control, upper left; (5) the external storage units, upper far left;
(6) the external input-output units such as readers, printers, and
displays, lower far left; and (7) lower left, the external control
containing the special features that facilitate communication with
people and devices in the world outside the system which is
remotely located if necessary. Interchanges of information between
the system and the outside world can take place at any time, on

1
ARITHMETIC a PROGRAM PROGRAM ARITHMETIC 8

CONTROL UNIT FSUCESSING UNIT

TWO-ADDRESS BINARY,

PROCESSING UNIT CONTROL UNIT

BINARY a DECIMAL, THREE-ADDRESS
~~

.FIXED a FLOATING l $ ~ ~ ~ O ” * SYSTEM 16-811,
DIRECT INSTRUCTIONS EXPLICIT NEXT

POINTS,

FULLa HALFWJrnS sE%%~k?$xT 4ND mNTRDL SIGN4S INSTRUCTION

(I6 VARIETIES) 4 (16TYPES)
(16 BASIC TYPES)

a completely impromptu basis, at the instigation of either the
system or the external world, or both acting jointly.

The primary computer, a high-speed general-purpose com-
puter, contains both an arithmetic unit and a program control unit
of considerable versatility. This computer can carry out a variety
of high precision arithmetic and logical processing operations, in
either binary or decimal code and in a wide variety of word lengths
and formats. Its partner computer, the secondary computer, spe-
cializes in short-word operations, usually manipulations on address
numbers or other “red-tape” information, which it supplies auto-
matically as needed to the primary program. The third computer
of the system, called the format controller (see input-output con-
trol in Fig. l), is specially designed for carrying out editing,
inspecting, and format-modifying operations on data that are
flowing in or out of the internal memory via the peripheral external
units of the system. All three computers, and all the external units
of the system, share access privileges to the common high-speed
internal memory, which is linked to the input-output and external
storage units via independent trunks for effecting data-transfers.
Transfers of data can take place between the external units, the
memory units, and the computers concurrently without interrupt-
ing the progress of the computational program. Because of the
flexibility of the format controller, incoming data can be accepted

NBS PILOT ELECTRONIC DATA-PROCESSER

Fig. 1. Over-all block diagram for PILOT.

442 Part 5 I The PMS level Section 2 1 Computers with one central processor and multiple input/output processors

from a wide variety of external devices and in a wide variety of
formats.

format, the respective lefthand and righthand halves of each
double operand are processed simultaneously in a single instruc-
tion time, and the two independent half-word results are written
back in the corresponding halves of the full-length result location.

Functions of the major units

The specific functions of the major units can be described briefly
as follows:

Primary computer

Arithmetic and processing unit. Using a 64-bit number word with
algebraic sign, this unit carries out 7 different types of arithmetical
operations, 5 types of choice (branch) operations, and 2 types of
logical pattern-processing operations. See Table 2. Arithmetical
operations can be performed in any of 16 possible formats. For
example, arithmetic can be performed using either a pure binary
or a binary-coded decimal number code, and in both fixed-point
and floating-point notation. Fixed-point operations can also be
carried out in a special half-word format in which two independ-
ently addressable half-words are stored in a single full-word storage
location. These two half-words can be processed either separately,
as independent words, or concurrently in duplex format. In duplex

Table 2 Types of internal operations

Program control unit. The program control unit interprets and
regulates the sequencing of instructions in the program. It operates
with a 68-bit binary-coded 3-address instruction word. See Table
3. Each instruction word contains three 16-bit codes which specify
the addresses of each of two operands, alpha and beta, and usually
the address of the result of the operation, gamma, in the main
memory. The memory location of the next instruction word is
specified by a 16-bit address number contained in one of 16 possi-
ble base registers; a 4-bit code in the instruction word (d-digits)
specifies which one of the base registers contains the desired word.
Whenever a register is so used as a next-instruction address source,
its contents are automatically increased by unity. Choice instruc-
tions, used for program branching, from time to time may cause
a new alternative address number to be inserted in any one of
the base registers. This register is then used as the source of the
address number of the next instruction.

Primary computer
Name Abbreoiation

Secondary computer
Name Abbreviation

Arithmetic operations:
Add
Augment
Subtract
Multiply
Divide
Square-root
Shift

Nonnumerical processing operations:
Transplant Segment with Shift
Generate Boolean Functions

Choice operations:
Compare, Algebraic
Compare, Modulus
Compare, Equality
Check Scale
Compare Boolean Functions

A D
AG
SB
MP
DV

SH
SQ

Clear add
Hold add
Store positive
Transfer
Increase
Decrease

Logical Multiply

Compare, Zero
Compare, Righthand Bit
Compare, Lefthand Bit
Compare, Negative

Check Primary and Proceed
Check Primary and Wait
Regulate Primary Computer
Replace Primary Instruction
Secondary Take Input from Primary

TL
G B

CA
CM
CE
cs
CB

ca
ha
SP
tr
in
de

Im

CZ

cr
CI

cn

C P

rP
ri
si

cw

Control operations:
Transfer Between Storage Units TS
Regulate Secondary Computer RS

Leiner, Notz, Smith, Weinberger-PILOT

Chapter 35 1 PILOT, the NBS multicomputer system 443

Table 3 Contents of primary instruction word

Digits numbered 1 through 68

68-65 64-61 60-57 56-53 52-49 48-45 44 -41 40-37 36-33 32-29 28-25 24-21 20-17 16-13 12-9 8-5 4-1

Tags Address alpha Address beta Address gamma Next Code for Mon.
Instn. Operation Break

Point -
OOO? a- b- C- d- Param. Basic e-

Digits Digits Digits Digits eter Type Digits

Addresses alpha, beta, and gamma written in the instruction
word are subject to automatic modification if desired by writing
a 1-digit in a specified bit position. Such addresses are called
relative addresses. Each of the three addresses (a , /3, and y) in each
instruction word contains a 4-bit code group, called the a-, b-,
and c-digits respectively, in which any base register identification
number (0 through 15) may be written. When this is done, the
address number to which the computer actually refers is equal
to the sum (modulo 216) of the address number stored in the
designated base register plus an address-modification constant,
indicated in the remaining 12 bits of the 16-bit address segment
of the instruction word.

Primay storage units

Fast access memory. Because of budget limitations, the initial
installation of the system will contain only a relatively small
section of internal memory of the diode-capacitor type. This
diode-capacitor memory, originally developed at NBS in 1953, is
very fast; i.e., capable of providing one random access per micro-
second, but it has the disadvantage of relatively high cost per word
of storage. This type of memory is available in modules of 256
words subdivided as follows:

Numerical information
Algebraic signs and tags
Parity check digits

Total word length

64 bits
4 bits
4 bits

72 bits

The over-all system is designed to accommodate up to 32,768
internally-accessible full-words, which may be held in storage units
with access times ranging from 1 microsecond (psec) to 32 psec.
Thus the minimum fast access memory can be backed up with
a much larger and slower magnetic-core memory.

Inter-memory trunsfer trunk. Provision is made for transferring
blocks of information between the various internal storage units

in the system, concurrently with computation. The size of the
block transferred may range from a single word to the entire
contents of the memory, and the addresses between which the
information is transferred are specified by a single programmed
inter-memory transfer instruction. Automatic interlocks are pro-
vided to insure that all future references which the program may
make to any memory positions involved in the inter-memory
transfer operation are automatically made after the data have been
shifted to the new locations.

Secondary computer

Arithmetic and processing unit. The secondary computer is a
high-speed independently programmable general-purpose com-
puter that operates in conjunction with the primary computer and
can perform 16 distinct types of operations using 16-bit words.
These operations include 6 arithmetic-processing operations, 4
choice operations, 1 nonnumerical processing operation, and 5
operations that transfer digital information or control-signals be-
tween the primary and the secondary computers. See Table 2.
Operation times for the secondary computer average about 2 psec.

Both computers operate concurrently and can transfer infor-
mation back and forth between each other. One of the principal
functions of the secondary computer is to carry out so-called
“red-tape” operations, such as: (1) counting iterations, (2) syste-
matically modifying the addresses of the operands and instructions
referred to by the primary program, (3) monitoring the primary
program, and (4) various special tasks. Through the use of special
subroutines for the secondary computer, both computers acting
co-operatively can be made to carry out a wide variety of complex
operations without unduly complicating the writing of the primary
computer programs. Examples of such operations are: (1) special
types of sorting, (2) logarithmic search, (3) routines involving
cross-referencing, or items selected according to an attached code,
(4) error analyses, and (5) operations involving small numerical
fields.

444 Pari 5 1 The PMS level Section 2 I Computers with one central processor and multiple input/output processors

Secondary storage unit. Associated with the secondary computer
is the secondary storage unit which consists of 60 storage locations
containing 16-bit words. Sixteen of these locations can be used
as base registers by the primary computer and may be selected
by the primary computer according to the a-, b-, c-, and d-digits
in the primary instruction word. The contents of the registers
selected by the primary computer in this way are automatically
added to the address numbers specified in the primary computer
instruction word. The secondary storage unit is also capable of
being addressed directly by the primary computer. The fifteen
4-word blocks of the secondary storage are identified by 15 special
primary address numbers. Other addressable registers associated
with the secondary storage hold the address numbers of current
and next instruction words in the primary program.

Program control unit. The secondary computer program operates
with a 2-address instruction system, the addresses referring to
words in the secondary storage unit, including the base registers.
See Table 4. From time to time the primary instruction program
may order the insertion of a new instruction into the secondary
instruction register or may order the transfer of data in either
direction between the primary storage units and the secondary
storage unit. The secondary computer program may also cause data
to be transferred into the secondary storage unit from the primary
instruction register and can also cause information to be trans-
ferred into the primary instruction register from a location in the
main memory.

Using these facilities, the secondary computer can inspect each
instruction word in the primary program as it is selected from the
primary store and, acting upon specifications written into the
secondary program, can cause the primary instruction either to
be executed as written or to be replaced by a new instruction word
from a memory location determined by the secondary. Other types
of discrimination can be effected by the secondary that depend
upon the result of a primary operation, such as an overflow, jump,
etc. These features facilitate the use of interpretive programming
methods.

Table 4 Contents of secondary instruction word

Digits numbered 1 through 16

16 13 12 7 6 1

Operation code
(0-15) Address “g” Address “ h ”

Input-output control

Concurrent input-output trunks. The concurrent input-output
trunks have the function of controlling the transfer of information
in either direction between the internal memory and the external
storage units. All input-output transfers are initiated by a single
internally programmed instruction, and are carried out by the
trunk units with the aid of automatic interlocks similar to those
used in the inter-memory transfer trunk for preventing interfer-
ence with the progress of the computing program. The size of the
block of data that is transferred may range from a single word
to the entire contents of the memory and may be directed to any
addresses. Using two such trunks, it is possible to maintain two
continuous streams of data simultaneously flowing between the
internal memory and any two external storage units without
interrupting the progress of the computations.

Format controller. Data that are passing in and out of the internal
storage system via the input-output trunks are subject to further
concurrent processing by the format controller. The format con-
troller is an independent internally-programmed data-processing
unit specially designed for carrying out general-purpose editing,
inspecting, and format-modifying operations on incoming or out-
going data. Programs for the format controller are stored on
removable plugboards, and the primary computer program is able
to direct the format controller to select whichever particular
format program may be appropriate from among the small library
of format programs contained on the boards currently attached
to the machine. Among the typical kinds of programs that the
format controller can carry out are: (1) searching of magnetic tapes
for words bearing identifying addresses or other coded labels
specified by the internal program, with selective input or output
of data at these selected tape locations, (2) insertion of incoming
data for the internal storage units of the system into address
locations specified by the incoming data itself, (3) conversion and
rearrangement of data that are stored on external units in formats
not compatible with the formats used in the internal units; e.g.,
binary-decimal character conversion, adjustment of word-length
modules, etc.

External storage

External storage in the initial installation of the system will consist
mainly of magnetic tape units. Because of the flexibility of the
format controller, it will be possible to supplement these tape units
later with a wide variety of other types of external units without
making any significant changes in the existing equipment.

Chapter 35 I PILOT, the NBS multicomputer system 445

Input-output units

The system is designed to operate with a wide variety of input-
output devices, both digital and analog.

Input readers and printers. Flexowriter units and paper-tape read-
ers and punches will be available in the initial installation.
Punched card input readers and high-speed printers, along with
their auxiliary controls, may be attached to the format controller
in the manner indicated in the preceding paragraph.

Displays. Two types of displays are provided for: (1) pilot-light
display of data and control information in the various registers
and flip-flops throughout the system, in order to aid the rapid
diagnosis of equipment malfunctions of programming faults, and
(2) picture-tube display of real-time data stored in the internal
memory of the system. This kinematic diagram type of display
is very important when performing dynamic simulation operations
which require visual presentation of the simulated data in real-
time to the human operators.

External control

Manual-monitor control. The term “manual-monitor” was coined
at NBS several years ago to describe certain types of control
operations that are initiated either manually by the machine
operator or by the machine itself under conditions which are
specified by means of external switch settings. The former is
referred to as a manual operation and the latter is called a monitor
operation because the machine must monitor its internal program
to determine precisely when the operation should be performed.
The type of operation to be performed as well as the conditions
under which it is to be performed are specified by means of
external switch settings.

This feature provides for convenient communication between

the data-processor and the operator, and allows the operator to
monitor the progress of the program automatically, to insert new
data and instructions, and to withdraw intermediate results con-
veniently, without need for advance preparation of special pro-
grams. This is particularly useful in debugging programs and in
checking equipment malfunctions.

Monitor operations are performed by the machine whenever
the conditions specified by the external switch settings occur in
the course of the program; e.g., every time the program refers to
a new instruction, any time the program refers to an instruction
to which a special monitor breakpoint symbol (e-digits) is attached,
any time an arithmetic overflow occurs, etc. By pairing a particular
type of manual-monitor operation with a selected set of conditions,
a variety of special composite operations can be performed.

Remote controls. Manual-monitor operations can be specified and
initiated by external devices as well as by human operators. Since
all of the external switch settings control only d-c voltages, the
external devices can even be remote from the machine itself, and
from a distance, via ordinary electrical transmission lines, they can
exercise supervisory control over the internal program of the
machine. This makes it possible to harness together two or more
remotely located data-processing machines, and have them work
together co-operatively on a common task. Each member of such
an interconnected network of separate data processors is free at
any time to initiate and dispatch special control orders to any of
its partners in the system. As a consequence, the supervisory
control over the common task may be shared among the various
members of the system, and may be passed back and forth from
one machine to the other as the need arises.

References

LeinA57, 59

Section 3

Computers for multiprocessing
and parallel processing

The computers in this section are probably the most general
in the book. Although the general PMS model for a computer
in Chap. 3, page 65, characterizes these computers, the struc-
ture by Lehman (Chap. 37) most closely fits the model. The
Burroughs computers that are presented have multiple Pc ’s ;~
however, K’s are used for control of device K’s , rather than
Pio’s-perhaps a wise choice.

D825-a multiplecomputer system for command and control

The Burroughs D825 computer is discussed, together with other
stack processors, in Part 3, Sec. 5, page 257. Chapter 36
emphasizes the PMS structure and operating system charac-
teristics necessary in a multiprocessor system.

‘As does the B 8500, a successor to the D825; however, its successor, the
B 8501, IS designed with Pio’s.

Design of the B 5OOO system

This computer (Chap. 22) is discussed, together with other stack
processors, in Part 3, Sec. 5, page 257.

A survey of problems and preliminary results concerning
parallel processing and parallel processors

Chapter 37, by M. Lehman, provides a very good introduction
to the concepts of multiprogramming, multiprocessing, and
parallel processing. A specific multiprocessor computer struc-
ture is postulated to provide parallel processing. The processing
ability of the structure is analyzed at the instruction level. It
is significant that the paper is by an IBM scientist. IBM has
not been particularly advanced in the use of multiple arithmetic
processor computers.

446

Chapter 36

D825-a m ult i ple-corn puter system
for command and controll

James P. Anderson / Samuel A. Hoffman
Joseph Shifman / Robert 1. Williams

Introduction

The D825 Modular Data Processing System is the result of a
Burroughs study, initiated several years ago, of the data processing
requirements for command and control systems. The D825 has
been developed for operation in the military environment. The
initial system, constructed for the Naval Research Laboratory with
the designation AN/GYK-3(V), has been completed and tested.
This paper reviews the design criteria analysis and design rationale
that led to the system structure of the D825. The implementation
and operation of the system are also described. Of particular
interest is the role that developed for an operating system program
in coordinating the system components.

Functional requirements of command and control data processing

By “command and control system” is meant a system having the
capacity to monitor and direct all aspects of the operation of a
large man and machine complex. Until now, the term has been
applied exclusively to certain military complexes, but could as well
be applied to a fully integrated air traffic control system or even
to the operation of a large industrial complex. Operation of com-
mand and control systems is characterized by an enormous quan-
tity of diverse but interrelated tasks-generally arising in real
time-which are best performed by automatic data-processing
equipment, and are most effectively controlled in a fully integrated
central data processing facility. The data processing functions
alluded to are those typical of data processing, plus special func-
tions associated with servicing displays, responding to manual
insertion (through consoles) of data, and dealing with communica-
tions facilities. The design implications of these functions will be
considered here.

Aoailability criteria. The primary requirement of the data-proc-
essing facility, above all else, is availability. This requirement,
essentially a function of hardware reliability and maintainability,

‘AFIPS Proc. FJCC, vol. 22, pp. 86-96, 1962

is, to the user, simply the percentage of available, on-line, opera-
tion time during a given time period. Every system designer must
trade off the costs of designing for reliability against those incurred
by unavailability, but in no other application are the costs of
unavailability so high as those presented in command and control.
Not only is the requirement for hardware reliability greater than
that of commercial systems, but downtime for the complete system
for preventive maintenance cannot be permitted. Depending upon
the application, some greater or lesser portion of the complete
system must always be available for primary system functions, and
all of the system must be available most of the time.

The data processing facility may also be called upon, except
at the most critical times, to take part in exercising and evaluating
the operation of some parts of the system, or, in fact, in actual
simulation of system functions. During such exercises and simula-
tions, the system must maintain some (although perhaps partially
and temporarily degraded) real-life and real-time capability, and
must be able to return quickly to full operation. An implication
here, of profound significance in system design, is, again, the
requirement that most of the system be always available; there
must be no system elements (unsupported by alternates) perform-
ing functions so critical that failure at these points could compro-
mise the primary system functions.

Adaptability criteria. Another requirement, equally difficult to
achieve, is that the computer system must be able to analyze the
demands being made upon it at any given time, and determine
from this analysis the attention and emphasis that should be given
to the individual tasks of the problem mix presented. The working
configuration of the system must be completely adaptable so as
to accommodate the diverse problem mixes, and, moreover, must
respond quickly to important changes, such as might be indicated
by external alarms or the results of internal computations (exceed-
ing of certain thresholds, for example), or to changes in the hard-
ware configuration resulting from the failure of a system compo-
nent or from its intentional removal from the system. The system

447

448 Part 5 1 The PMS level Section 3 1 Computers for multiprocessing and parallel processing

must have the ability to be dynamically and automatically re-
structured to a working configuration that is responsive to the
problem-mix environment.

Expansibility criteria. The requirement of expansibility is not
unique to command and control, but is a desirable feature in any
application of data processing equipment. However, the need for
expansibility is more acute in command and control because of
the dependence of much of the efficacy of the system upon an
ability to meet the changing requirements brought on by the very
rapidly changing technology of warfare. Further, it must be possi-
ble to incorporate new functions in such a way that little or no
transitional downtime results in any hardware area.

Expansion should be possible without incurring the costs of
providing more capability than is needed at the time. This ability
of the system to grow to meet demands should apply not only to
the conventionally expansible areas of memory and 1 / 0 but to
computational devices, as well.

Programming criteria. Expansion of the data-processing facility
should require no reprogramming of old functions, and programs
for new functions should be easily incorporated into the overall
system. To achieve this capability, programs must be written in
a manner which is independent of system configuration or problem
mix, and should even be interchangeable between sites performing
like tasks in different geographic locales. Finally, because of the
large volume of routines that must be written for a command and
control system, it should be possible for many different people,
in different locations and of different areas of responsibility, to
write portions of programs, and for the programs to be subse-
quently linked together by a suitable operating system.

Concomitant with the latter requirement and with that of
configuration-independent programs is the desirability of orienting
system design and operation toward the use of a high-level pro-
cedure-oriented language. The language should have the features
of the usual algorithmic languages for scientific computations, but
should also include provisions for maintaining large files of data
sets which may, in fact, be ill-structured. It is also desirable that
the language reflect the special nature of the application; this is
especially true when the language is used to direct the storage
and retrieval of data.

Design rationale for the data-processing facility

The three requirements of availability, adaptability, and expansi-
bility were the motivating considerations in developing the D825
design. In arriving at the final systems design, several existing and

proposed schemes for the organization of data processing systems
were evaluated in light of the requirements listed above. Many
of the same conclusions regarding these and other schemes in the
use of computers in command and control were reached inde-
pendently in a more recent study conducted for the Department
of Defense by the Institute for Defense Analysis [Kroger et al.,
19611.

The single-computer system. The most obvious system scheme, and
the least acceptable for command and control, is the single-com-
puter system. This scheme fails to meet the availability require-
ment simply because the failure of any part-computer, memory,
or 1 / 0 control-disables the entire system. Such a system was not
given serious consideration.

Replicated single-computer systems. A system organization that had
been well known at the time these considerations were active
involves the duplication (or triplication, etc.) of single-computer
systems to obtain availability and greater processing rates. This
approach appears initially attractive, inasmuch as programs for
the application may be split among two or more independent
single-computer systems, using as many such systems as needed
to perform all of the required computation. Even the availability
requirement seems satisfied, since a redundant system may be kept
in idle reserve as backup for the main function.

On closer examination, however, it was perceived that such
a system had many disadvantages for command and control appli-
cations. Besides requiring considerable human effort to coordinate
the operation of the systems, and considerable waste of available
machine time, the replicated single computers were found to be
ineffective because of the highly interrelated way in which data
and programs are frequently used in command and control appli-
cations. Further, the steps necessary to have the redundant or
backup system take over the main function, should the need arise,
would prove too cumbersome, particularly in a time-critical ap-
plication where constant monitoring of events is required.

Partially shared memory schemes. It was seen that if the replicated
computer scheme were to be modified by the use of partially
shared memory, some important new capabilities would arise. A
partially shared memory can take several forms, but provides
principally for some shared storage and some storage privately
allotted to individual computers. The shared storage may be of
any kind-tapes, discs, or core-but frequently is core. Such a
system, by providing a direct path of communication between
computers, goes a long way toward satisfying the requirements
listed above.

Chapter 36 I D825-a multiple-computer system for command and control 449

The one advantage to be found in having some memory private
to each computer is that of data protection. This advantage van-
ishes when it is necessary to exchange data between computers,
for if a computer failure were to occur, the contents of the private
memory of that computer would be lost to the system. Further-
more, many tasks in the command and control application require
access to the same data. If, for example, it would be desirable to
permit some privately stored data to be made available to the fully
shared memory or to some other private memory, considerable
time would be lost in transferring the data. It is also clear that
a certain amount of utilization efficiency is lost, since some private
memory may be unused, while another computer may require
more memory than is directly available, and may be forced to
transfer other blocks of data back to bulk storage to make way
for the necessary storage. It might be added in passing that if
private 1/0 complements are considered, the same questions of
decreased overall availability and decreased efficiency arise.

Muster/sluve schemes. Another aspect of the partially shared
memory system is that of control. A number of such systems
employ a master/slave scheme to achieve control, a technique
wherein one computer, designated the master computer, coordi-
nates the work done by the others. The master computer might
be of a different character than the others, as in the PILOT system,
developed by the National Bureau of Standards [Leiner et al.,
19571, or it may be of the same basic design, differing only in its
prescribed role, as in the Thompson Ram0 Wooldridge TRW400
(AN/FSQ-27) [Porter, 19601. Such a scheme does recognize the
importance, for multicomputer systems, of the problem of coordi-
nating the processing effort; the master computer is an effective
means of accomplishing the coordination. However, there are
several difficulties in such a design. The loss of the master com-
puter would down the whole system, and the command and control
availability requirement could not, consequently, be met. If this
weakness is countered by providing the ability for the master
control function to be automatically switched to another processor,
there still remains an inherent inefficiency. If, for example, the
workload of the master computer becomes very large, the master
becomes a system bottleneck resulting in inefficient use of all other
system elements; and, on the other hand, if the workload fails to
keep the master busy, a waste of computing power results. The
conclusion is then reached that a master should be established only
when needed; this is what has been done in the design of the D825.

The totally modular scheme. As a result of these analyses, certain
implications became clear. The availability requirement dictated

a decentralization of the computing function-that is, a multi-
plicity of computing units. However, the nature of the problem
required that data be freely communicable among these several
computers. It was decided, therefore, that the memory system
would be completely shared by all processors. And, from the point
of view of availability and efficiency, it was also seen to be unde-
sirable to associate 1/0 with a particular computer; the 1/0
control was, therefore, also decoupled from the computers.

Furthermore, a system with several computers, totally shared
memory, and decoupled 1 / 0 seemed a perfect structure for satis-
fying the adaptability requirements of command and control. Such
a structure resulted in a flexibility of control which was a fine
match for the dynamic, highly variable, processing requirements
to be encountered.

The major problem remaining to realize the computational
potential represented by such a system was, of course, that of
coordinating the many system elements to behave, at any given
time, like a system specifically designed to handle the set of tasks
with which it was faced at that time. Because of the limitations
of previously available equipment, an operating system program
had always been identified with the equipment running the pro-
gram. However, in the proposed design, the entire memory was
to be directly accessible to all computer modules, and the operat-
ing system could, therefore, be decoupled from any specific com-
puter. The operation of the system could be coordinated by having
any processor in the complement run the operating system only
as the need arose. It became clear that the master computer had
actually become a program stored in totally shared memory, a
transformation which was also seen to offer enhanced program-
ming flexibility.

Up to this point, the need for identical computer modules had
not been established. The equality of responsibility among com-
puting units, which allowed each computer to perform as the
master when running the operating system, led finally to the design
specification of identical computer modules. These were freely
interconnected to a set of identical memory modules and a set
of identical 1/0 control modules, the latter, in turn, freely inter-
connected to a highly variable and diverse 1/0 device comple-
ment. It was clear that the complete modularity of system ele-
ments was an effective solution to the problem of expansibility,
inasmuch as expansion could be accomplished simply by adding
modules identical to those in the existing complement. It was also
clear that important advantages and economies resulting from the
manufacture, maintenance, and spare parts provisioning for iden-
tical modules also accrue to such a system. Perhaps the most
important result of a totally modular organization is that redun-

450 Part 5 I The PMS level Section 3 1 Computers for multiprocessing and parallel processing

dancy of the required complement of any module type, for greater
reliability, is easily achieved by incorporating as little as one
additional module of that type in the system. Furthermore, the
additional module of each type need not be idle; the system may
be looked upon as operating with active spares.

Thus, a design structure based upon complete modularity was
set. Two items remained to weld the various functional modules
into a coordinated system-a device to electronically interconnect
the modules, and an operating system program with the effect of
a master computer, to coordinate the activities of the modules into
fully integrated system operation.

In the D825, these two tasks are carried out by the switching
interlock and the Automatic Operating and Scheduling Program
(AOSP), respectively. Figure 1 shows how the various functional
modules are interconnected via the interlock in a matrix-like
fashion.

System implementation

Most important in the design implementation of the D825 were
studies toward practical realization of the switching interlock and
the AOSP. The computer, memory, and 1/0 control modules
permitted more conventional solutions, but were each to incor-
porate some unusual features, while many of the 1/0 devices were
selected from existing equipment. With the exception of the latter,
all of theses elements are discussed here briefly. (A summary of
D825 characteristics and specifications is included at the end of
the paper.)

Switching interlock. Having determined that only a completely
shared memory system would be adequate, it was necessary to find
some way to permit access to any memory by any processor, and,
in fact, to permit sharing of a memory module by two or more
processors or 1/0 control modules.

A function distributed physically through all of the modules
of a D825 system, but which has been designated in aggregate
the switching interlock, effects electronically each of the many
brief interconnections by which all information is transferred
among computer, memory, and 1/0 control modules. In addition
to the electronic switching function, the switching interlock has
the ability to detect and resolve conflicts such as occur when two
or more computer modules attempt access to the same memory
module.

The switching interlock consists functionally of a crosspoint
switch matrix which effects the actual switching of bus intercon-
nections, and a bus allocator which resolves all time conflicts
resulting from simultaneous requests for access to the same bus

or system module. Conflicting requests are queued up according
to the priority assigned to the requestors. Priorities are pre-
emptive in that the appearance of a higher priority request will
cause service of that request before service of a lower priority
request already in the queue. Analyses of queueing probabilities
have shown that queues longer than one are extremely unlikely.

The priority scheduling function is performed by the bus allo-
cator, essentially a set of logical matrices. The conflict matrix
detects the presence of conflicts in requests for interconnection.
The priority matrix resolves the priority of each request. The
logical product of the states of the conflict and priority matrices
determines the state of the queue matrix, which in turn governs
the setting of the crosspoint switch, unless the requested module
is busy.

The AOSP: an operating system program. The AOSP is an operating
system program stored in totally shared memory and therefore
available to any computer. The program is run only as needed
to exert control over the system. The AOSP includes its own
executive routine, an operating system for an operating system,
as it were, calling out additional routines, as required. The con-
figuration of the AOSP thus permits variation from application to
application, both in sequence and quantity of available routines
and in disposition of AOSP storage.

The AOSP operates effectively on two levels, one for system
control, the other for task processing.

The system control function embodies all that is necessary to
call system programs and associated data from some location in
the 1/0 complement, and to ready the programs for execution by
finding and allocating space in memory, and initiating the proc-
essing. Most of the system control function (as well as the task
processing function) consists of elaborate bookkeeping for: pro-
grams being run, programs that are active (that is, occupy memory
space), 1/0 commands being executed, other 1/0 commands
waiting, external data blocks to be received and decoded, and
activation of the appropriate programs to handle such external
data. It would be inappropriate here to discuss the myriad details
of the AOSP; some idea of its scope, however, can be obtained
from the following list of some of its major functions:

1 Configuration determination

2 Memory allocation

3 Scheduling

4

5 Reporting and logging

Program readying and end-of-job cleanup

Chapter 36 I D825-a multiple-computer system for command and control 451

Fig. 1. System organization, Burroughs D825 modular data processing system.

452 Part 5 I The PMS level Section 3 I Computers for multiprocessing and parallel processing

6 Diagnostics and confidence checking

7 External interrupt processing

The task processing function of the AOSP is to execute all
program 1/0 requests in order to centralize scheduling problems
and to protect the system from the possibility of data destruction
by ill-structured or conflicting programs.

AOSP response to interrupts. The AOSP function depends heavily
upon the comprehensive set of interrupts incorporated in the
D825. All interrupt conditions are transmitted to all computer
modules in the system, and each computer module can respond
to all interrupt conditions. However, to make it possible to dis-
tribute the responsibility for various interrupt conditions, both
system and local, each computer module has an interrupt mask
register that controls the setting of individual bits of the interrupt
register. The occurrence of any interrupt causes one of the system
computer modules to leave the program it has been running and
branch to the suitable AOSP entry, entering a control mode as it
branches. The control mode differs from the normal mode of
operation in that it locks out the response to some low-priority
interrupts (although recording them) and enables the execution
of some additional instructions reserved for AOSP use (such as
setting an interrupt mask register or memory protection registers,
or transmitting an 1/0 instruction to an 1/0 control module).

In responding to an interrupt, the AOSP transfers control to
the appropriate routine handling the condition designated by the
interrupt. When the interrupt condition has been satisfied, control
is returned to the original object program. Interrupts caused by
normal operating conditions include:

1

2

3 Real-time clock overflow

4 Array data absent

5 Computer-to-computer interrupts

6

16 different types of external requests

Completion of an 1/0 operation

Control mode entry (normal mode halt)

Interrupts related to abnormalities of either program or equipment
include:

1

2 Arithmetic overflow

3 Illegal instruction

Attempt by program to write out of bounds

4 Inability to access memory, or an internal parity error;
parity error on an 1 / 0 operation causes termination of that
operation with suitable indication to the AOSP

5 Primary power failure

6

7

Automatic restart after primary power failure

1/0 termination other than normal completion

While the reasons for including most of the interrupts listed above
are evident, a word of comment on some of them is in order.

The array-data-absent interrupt is initiated when a reference
is made to data that is not present in the memory. Since all array
references such as A[k] are made relative to the base (location
of the first element) of the array, it is necessary to obtain this
address and to index it by the value k. When the base of array
A is fetched, hardware sensing of a presence bit either allows the
operation to continue, or initiates the array-data-absent interrupt.
In this way, keeping track of data in use by interacting programs
can be simplified, as may the storage allocation problem.

The primary power failure interrupt is highest priority, and
always pre-emptive. This interrupt causes all computer and 1/0
control modules to terminate operations, and to store all volatile
information either in memory modules or in magnetic thin-film
registers. (The latter are integral elements of computer modules.)
This interrupt protects the system from transient power failure,
and is initiated when the primary power source voltage drops
below a predetermined limit.

The automatic restart after primary power failure interrupt is
provided so that the previous state of the system can be recon-
structed.

A description of how an external interrupt is handled might
clarify the general interrupt procedure. Upon the presence of an
external interrupt, the computer which has been assigned respon-
sibility to handle such interrupts automatically stores the contents
of those registers (such as the program counter) necessary to
subsequently reconstitute its state, enters the control mode, and
goes to a standard (hardware-determined) location where a branch
to the external request routine is located. This routine has the
responsibility of determining which external request line requires
servicing, and, after consulting a table of external devices (teletype
buffers, console keyboards, displays, etc.) associated with the
interrupt lines, the computer constructs and transmits an input
instruction to the requesting device for an initial message. The
computer then makes an entry in the table of the 1/0 complete
program (the program that handles 1/0 complete interrupts) to
activate the appropriate responding routine when the message is

Chapter 36 I D825-a multiple-computer system for command and control 453

read in. A check is then made for the occurrence of additional
external requests. Finally, the computer restores the saved register
contents and returns in normal mode to the interrupted program.

AOSP control of 1 / 0 activity. As mentioned above, control of all
1 / 0 activity is also within the province of the AOSP. Records are
kept on the condition and availability of each 1/0 device. The
locations of all files within the computer system, whether on
magnetic tape, drum, disc file, card, or represented as external
inputs, are also recorded. A request for input by file name is
evaluated, and, if the device associated with this name is readily
available, the action is initiated. If for any reason the request must
be deferred, it is placed in a program queue to await conditions
which permit its initiation. Typical conditions which would cause
deferral of an 1/0 operation include:

1

2

3

No available 1 / 0 control module or channel.

The device in which the file is located is presently in use.

The file does not exist in the system.

In the latter case, typically, a message would be typed out on the
supervisory printer, asking for the missing file.

The 1/0 complete interrupt signals the completion of each 1/0
operation. Along with this interrupt, an 1/0 result descriptor is
deposited in an AOSP table. The status relayed in this descriptor
indicates whether or not the operation was successful. If not
successful, what went wrong (such as a parity error, or tape break,
card jams, etc.) is indicated so that the AOSP may initiate the
appropriate action. If the operation was successful, any waiting
1/0 operations which can now proceed are initiated.

AOSP control of program scheduling. Scheduling in the D825 relies
upon a job table maintained by the AOSP. Each entry is identified
with a name, priority, precedence requirements, and equipment
requirements. Priority may be dynamic, depending upon time,
external requests, other programs, or a function of many variable
conditions. Each time the AOSP is called upon to select a program
to be run, whether as a result of the completion of a program or
of some other interrupt condition, the job table is evaluated. In
a real-time system, situations occur wherein there is no system
program to be run, and machine time is available for other uses.
This time could be used for auxiliary functions, such as confidence
routines.

The AOSP provides the capability for program segmentation
at the discretion of the programmer. Control macros embedded

in the program code inform the AOSP that parallel processing with
two or more computers is possible at a given point. In addition,
the programmer must specify where the branches indicated in this
manner will join following the parallel processing.

Computer module. The computer modules of the D825 system are
identical, general-purpose, arithmetic and control units. In deter-
mining the internal structure of the computer modules, two con-
siderations were uppermost. First, all programs and data had to
be arbitrarily relocatable to simplify the storage allocation func-
tion of the AOSP; secondly, programs would not be modified
during execution. The latter consideration was necessary to mini-
mize the amount of work required to pre-empt a program, since
all that would have to be saved to reinstate the interrupted pro-
gram at a later time would be the data for that program and the
register contents of the computer module running the program
at the time it was dumped.

The D825 computer modules employ a variable-length in-
struction format made up of quarter-word syllables. Zero-, one-,
two-, or three-address syllables, as required, can be associated with
each basic command syllable. An implicitly addressed accumulator
stack is used in conjunction with the arithmetic unit. Indexing of
all addresses in a command is provided, as well as arbitrarily deep
indirect addressing for data.

Each computer module includes a 128-position thin-film mem-
ory used for the stack, and also for many of the registers of the
machine, such as the program base register, data base register,
the index registers, limit registers, and the like.

The instruction complement of the D825 includes the usual
fixed-point, floating-point, logical, and partial-field commands
found in any reasonably large scientific data processor.

Memory module. The memory modules consist of independent
units storing 4096 words, each of 48 bits. Each unit has an individ-
ual power supply and all of the necessary electronics to control
the reading, writing, and transmission of data. The size of the
memory modules was established as a compromise between a
module size small enough to minimize conflicts wherein two or
more computer or 1/0 modules attempt access to the same mem-
ory module, and a size large enough to keep the cost of duplicated
power supplies and addressing logic within bounds. It might be
noted that for a larger modular processor system, these trade-offs
might indicate that memory modules of 8192 words would be more
suitable. Modules larger than this-of 16,384 or 32,768 words, for
example-would make construction of relatively small equipment
complements meeting the requirements set forth above quite

454 Pari 5 I The PMS level Section 3 I Computers for multiprocessing and parallel processing

difficult. The cost of smaller units of memory is offset by the
lessening of catastrophe in the event of failure of a module.

I /O control module. The 1/0 control module executes 1/0 opera-
tions defined and initiated by computer module action. In keeping
with the system objectives, 1/0 control modules are not assigned
to any particular computer module, but rather are treated in much
the same way as memory modules, with automatic resolution of
conflicting attempted accesses via the switching interlock function.
Once an 1/0 operation is initiated, it proceeds independently until
completion.

1/0 action is initiated by the execution of a transmit 1/0
instruction in one of the computer modules, which delivers an 1 / 0
descriptor word from the addressed memory location to an inactive
1/0 control module. The 1/0 descriptor is an instruction to the
1/0 control module that selects the device, determines the direc-
tion of data flow, the address of the first word, and the number
of words to be transferred.

Interposed between the 1/0 control modules and the physical
external devices is another crossbar switch designated the 1/0
exchange. This automatic exchange, similar in function to the
switching interlock, permits two-way data flow between any 1/0
control module and any 1/0 device in the system. It further
enhances the flexibility of the system by providing as many possible
external data transfer paths as there are 1/0 control modules.

Equipment complements. A D825 system can be assembled (or
expanded) by selection of appropriate modules in any combination
of: one to four computer modules, one to 16 memory modules,

Table 1 Specifications, D825 modular data processing system

Computer module:

Computer module, type:

Word length:

Index registers:
(in each computer module)

Magnetic thin-f i lm registers:
(in each computer module)

Real-time clock:
(in each computer module)

Binary add:

Binary multiply:

Floating-point add:

Floating-point multiply:

Logical AND:

Memory type:

Memory capacity:

1/0 exchanges per system:

1/0 control modules:

1/0 devices:

Access to 1/0 devices:

Transfer rate per 1/0 exchange:

1/0 device complement:

4, maximum complement

Digital, binary, parallel, solid-state

4 8 bi ts inc lud ing sign (8 characters, 6 bits
each) plus parity

15

128 words, 1 6 bi ts per word, 0.33.psec
read/write cycle t ime

1 0 msec resolution

1.67 psec (average)

36 .0 e e c (average)

7.0 psec (average)

34 .0 psec (average)

0 .33 psec

Homogeneous, modular, random-access,
linear-select, ferr i te-core

65,536 words (16 modules maximum, 4096
words each)

1 or 2

1 0 per exchange, maximum

6 4 per exchange, maximum

All 1/0 devices available to every 1/0 control
module in exchange

2,000,000 characters per second

All standard 1/0 types, including 67 kc mag-
netic tapes, magnetic drums and discs, card
and paper tape punches and readers, char.
acter and line printers, communications and
display equipment

one to ten 1/0 control modules, one or two 1/0 exchanges, and
one to 64 1/0 devices per 1/0 exchange in any combination
selected from: operating (or system status) consoles, magnetic tape
transports, magnetic drums, magnetic disc files, card punches and
readers, paper tape perforators and readers, supervisory printers,
high-speed line printers, selected data converters, special real-time
clocks, and intersystem data links.

Figure 2 is a photograph of some of the hardware of a com-
pleted D825 system. The equipment complement of this system
includes two computer modules, four memory modules (two per
cabinet), two 1/0 control modules (two per cabinet), one status
display console, two magnetic tape units, two magnetic drums, Fig. 2. Typical D825 equipment array.

Chapter 36 I D825-a multiple-computer system for command and control 455

a card reader, a card punch, a supervisory printer, and an electro-
static line printer.

D825 characteristics are summarized in Table 1.

Summary and conclusion

It is the belief of the authors that modular systems (in the sense
discussed above) are a natural solution to the problem of obtaining
greater computational capacity-more natural than simply to
build larger and faster machines. More specifically, the organiza-
tional structure of the D825 has been shown to be a suitable basis
for the data processing facility for command and control. Although
the investigation leading toward this structure proceeded as an
attack upon a number of diverse problems, it has become evident
that the requirements peculiar to this area of application are, in
effect, aspects of a single characteristic, which might be called
structural freedom. Furthermore, it is now clear that the most
unique characteristic of the structure realized-integrated opera-
tion of freely intercommunicating, totally modular elements-
provides the means for achieving structural freedom.

For example, one requirement is that some specified minimum
of data processing capability be always available, or that, under
any conditions of system degradation due to failure or mainte-
nance, the equipment remaining on line be sufficient to perform
primary system functions. In the D825, module failure results in
a reduction of the on-line equipment configuration but permits
normal operation to continue, perhaps at a reduced rate. The
individual modules are designed to be highly reliable and main-
tainable, but system availability is not derived solely from this
source, as is necessarily the case with more conventional systems.
The modular configuration permits operation, in effect, with active
spares, eliminating the need for total redundancy.

A second requirement is that the working configuration of the
system at a given moment be instantly reconstructable to new
forms more suited to a dynamically and unpredictably changing
work load. In the D825, all communication routes are public, all
modules are functionally decoupled, all assignments are scheduled
dynamically, and assignment patterns are totally fluid. The system
of interrupts and priorities controlled by the AOSP and the
switching interlock permits instant adaptation to any work load,
without destruction of interrupted programs.

The requirement for expansibility calls simply for adaptation
on a greater time scale. Since all D825 modules are functionally
decoupled, modules of any types may be added to the system
simply by plugging into the switching interlock or the 1/0 ex-
change. Expansion in all functional areas may be pursued far
beyond that possible with conventional systems.

It is clear, however, that the D825 system would have fallen
far short of the goals set for it if only the hardware had been
considered. The AOSP is as much a part of the D825 system
structure as is the actual hardware. The concept of a “floating”
AOSP as the force that molds the constituent modules of an
equipment complement into a system is an important notion
having an effect beyond the implementation of the D825. One
interesting by-product of the design effort for the D825 has, in
fact, been a change of perspective; it has become abundantly clear
that computers do not rim programs, but that programs control
computers.

References

AndeJ62; KrogM61; LeinA,57; PortREiO; ThomRH3

Chapter 37

A survey of problems and preliminary
results concerning parallel processing
and parallel processors1

M . Lehman

Summay After an introduction which discusses the significance of a trend
to the des@ of parallel processing systems, the paper describes some of
the results obtained to date in a project which aims to develop and evaluate
a unified hardware-software parallel processing computing system and the
techniques for its use.

normal circumstances, with all units operational, each could be
assigned a specific activity within an overall control program. As
a result of the multiplicity of units in such Multiprocessing Systems,
failure of any one would degrade, but not immobilize, the system,
since a supervisor program could re-assign activities and configure
the failed unit out of the system. Subsequently, it was recognized

1. M ultiprogramm ing, multiprocessing,
and parallel processing

A brief review of the literature, of which a partial listing is given
in the bibliography, reveals an active and growing interest in
multiprogramming, multiprocessing, and parallel processing.
These three terms distinguish three modes of usage and also serve
to indicate a certain historical development. We cannot here
attempt to trace this history in detail and so must rely on the
bibliography to credit the contributions from industrial, university,
and other research and development organizations.

 the^ emergence of autonomous input-output devices first sug-
gested [Gill, 19581 the time-sharing of the processing and periph-
eral units of a computing system among several jobs. Thus surplus
capability that could not be applied to the processing of the
leading job in a batch processing load, at any stage of the compu-
tation, could be usefully applied to successor jobs in the work load.
In particular, while any computation was held up for some 1/0
activity, the single main processor could be used for other compu-
tation. The necessary decision-taking, scheduling, and allocation
procedures were vested in a supervisor program, within which the
user-jobs were embedded, and the resultant mode of operation was
termed Multiprogrumming.

The use of computers in on-line control situations and for other
applications giving rise to ever-more stringent reliability and
availability specifications, resulted in the construction of systems
including two or more central processing units [Leiner et al., 1959;
Bright, 1964; Desmonde, 1964; McCullough et al., 19651. Under

'Proc. IEEE, vol. 54, no. 12, pp. 1889-1901, December, 1966

that such systems had advantages over a single processor system
in a more general environment, with each processor in the system
having a multiprogramming capability as well.

Finally, following from ideas first exploited in the Gamma 60
Computer [Dreyfus, 19581, there has come the realization that
multi-instruction counter systems can speed up computation, par-
ticularly of large problems, when these may be partitioned into
sections which are substantially independent of one another, and
which may therefore be executed concurrently-that is, in parallel.
When the several units of a multiprocessing system are utilized
to process, in parallel, independent sections of a job, we exploit
the macro-parallelism [Lehman, 19651 of the job, which is to be
distinguished from micro-parallelism [Lehman, 19651, the relative
independence of individual machine instructions, exploited in
look-ahead machines. This mode of operation is termed Purullel
Processing and, as in PL/I [IBM OS/360, PL/I Language Specifica-
tion, Form C28-6571, p. 741, the execution of any program string
is termed a Tusk. We note that parallel processing may, and
normally will, include multiprocessing activity.

2. The approach to parallel processing system design

In the previous section we indicated that the prime impetus for
the development of parallel processing systems arose from their
potential for high performance and reliability. These systems may
operate as pools of resources organized in symmetrical classes and
it is this property that promises High Auuilubility. They also
possess a great reserve of power which, when applied to a single
problem with the appropriate degree of parallelism, can yield high

456

Chapter 37 I A survey of problems and preliminary results concerning parallel processing and parallel processors 457

performance and fast turn around time. Surplus resources can be
applied to other jobs, so that the system is potentially efficient,
displaying a peak-load averaging effect and hence high utilization
of hardware [Corbato and Vyssotsky, 19651. The concept of sharing
in parallel processing systems and its related cost reduction is not,
however, limited to hardware. Perhaps even more significant is
the common use of data-sets maintained in a system library or
file, and even concurrent access during execution from a high-
speed store. This may represent considerable economy in storage
space and in processing time for 1/0 and internal memory.
hierarchy transfers. But above all [Corbato and Vyssotsky, 19651
it facilitates the sharing of ideas, experience, and results and a
cross fertilization among users, a prospect which from a long term
point of view represents perhaps the most significant potential of
large, library-oriented, multiprocessing systems. Finally, in this
brief summary of the basic advantages of parallel processing
systems, we refer to their intrinsic modularity, which may yield
an expandable system in which the only effect of expansion on
the user is improved performance.

Adequate performance of parallel processing systems is, how-
ever, predicated on an appropriately low level of overhead. Allo-
cation, scheduling, and supervisory' strategies, in particular, must
be simplified and the related procedures minimized to comprise
a small proportion of the total activity in the system. The system
design must be based on performance objectives that permit a user
to specify a time period and a tolerance within which he requires
and expects to receive results, and the cost for which these will
be obtained. In general the entire system must yield minimum
throughput time for the large job, adequate response time to the
terminal requests in conversational mode, guaranteed throughput
time for real-time tasks, and minimum cost processing for the
batch-processed small job. These needs require the development
of an executive and supervisory system integrated with the hard-
ware into a single, unified computing system. Finally, the tech-
niques and algorithms of classical computation, of problem analy-
sis, and of programming, must be modified and new, intrinsically
parallel procedures developed if full advantage is to be gained
from exploitation of these parallel systems.

Our studies to date represent but a small fraction of the ground
that will have to be covered if effective parallel processing systems
are to come into their own. It is, however, abundantly clear that
such systems will yield their potential only if the design is ap-
proached on a broad but unified front ranging from problem

' We differentiate intuitively between executive and supervisory activities.
The former are those whose costs should be chargeable to the individual
user directly, whereas the latter are absorbed in the system running costs.

analysis and usage techniques, through executive strategies and
operating systems, to logic design and technology. We therefore
present concepts and results from each of these areas, as obtained
during our preliminary investigation into the design and use of
parallel processing systems.

3. Language

3.1

The analysis of high level language requirements for parallel
processing has received considerable attention in the literature.
We may refer in particular to the paper by Conway [1963] which
discussed the concepts of Fork, Join, and Quit, and the recent
review by Dennis and Van Horn [1966].

Recognizing that programming languages should possess capa-
bilities that express the structure of the computational algorithm,
Schlaeppi [19??] has proposed augmentations to PL/I-like lan-
guages that portray the macro-parallelism in numerical algorithms.
These in turn have been reflected in proposals for machine-
language implementation. As examples we discuss Split, Terminate,
Assemble, Test and Set or Wait (interlock), Resume, Store-Test and
Branch, and External Execute instructions. We describe here only
the basic functional elements, from which machine instructions
for actual realization will be composed as suggested by practical
programming experience.

Parallelism in high level languages

3.2

Split provides the basic task-generating capability. It indicates that
in addition to continuing the execution of the present instruction
string in normal fashion a new task, or set of tasks, may be initi-
ated, execution starting at a specified address or set of addresses.
Such potential tasks will be queued to await pick-up by an appro-
priate processing unit.

Terminate causes cessation of activity on a task. The terminat-
ing unit will, of its own volition, access an appropriate queue to
obtain its next task. Alternatively, it may execute an executive
allocation-task to determine which of a number of task-queues is
to be accessed next according to the current urgency status of work
in the system.

Assemble permits the merging of several tasks. The first (n - 1)
tasks in an n-way parallel set belonging to a single job, reaching
the assemble instruction terminate. The nth task, however, will
proceed to execute the program string which constitutes the
continuation of all n tasks.

Machine level instructions for tasking

458 Part 5 1 The PMS level Section 3 I Computers for multiprocessing and parallel processing

Test and Set or Wait provides an interlock facility. Thus a
number of tasks all operating on a common data set may be
required to filter through certain sections of program or data, one
at a time. This may be achieved by an instruction related to the
S/360 test and set instruction [Falkoff et al., 19641, but causing
the task finding the specified location to be already set to go into
a wait state. System efficiency requires that processors do not idle,
so that the waiting task will generally be returned to queue and
the processor released for other work.

He.wme directs a processor or processors waiting as a result
of a test on a specified location, to proceed, or more generally,
that specified waiting tasks that have been returned to queue be
re-activated to await the spontaneous availability of an appropri-
ate processor.

Test and Branch Storage Location permits communication be-
tween parallel tasks based on tests analogous to the register tests
of uniprocessors, but associated with the contents of storage loca-
tions. This is desirable since processor registers are private to the
processor and inaccessible from outside.

External Execute is a special case of the general interaction
facility discussed in Section 4 that permits related tasks to influ-
ence one another. This can be achieved through the application
of instructions already discussed. It is, however, more efficient to
provide a new facility akin to the Interrupt concept. By applying
this Interaction function, a task may cause other specified tasks
to execute an instruction at a specified location, each on comple-
tion of its present instruction. Thus, for example, a number of
processors searching for a particular item in a partitioned list can
be caused to abandon the search when the item has been located
by one, while processors searching for other items, or otherwise
busy, will not be redirected.

4. Interaction

4.1 The interaction concept

An extension of the task interaction concept introduced in the
preceding section is fundamental to efficient parallel processing.
In the particular example cited, the interaction, in the form of
an external execute instruction, forms part of the computational
procedure. In fact, many other situations arise in which processing
for inter-task communication may be detached from problem
processing and be carried through concurrently in autonomous
units, thereby increasing system utilization.

We therefore propose to associate with each active unit in the
system an autonomous Interaction Controller. Groups of controllers

are linked by a special bus. This provides facilities whereby any
one unit may, at a given time, act as a command or signal source
with all other units potential recipients. By thus systemizing
inter-unit communication and making it a concurrent activity, we
both increase system utilization and remove a maze of intercon-
necting cables. Succeeding subsections describe some of the func-
tions that the controllers fulfill and, briefly, one hardware proposal
for their realization.

4.2 Interaction activities

In present-day systems there already exist activities of the type
to be classified as interaction. Thus, for example, in System/S6O
we find a CPU to Channel Halt I /O facility, channel interruptions
of processors, and timer interruptions. In extending the concept
we differentiate among three classes of interaction.

PROBLEM INTERACTION. These relate to logical dependencies
between tasks, and will generally require waits, forced branches,
or terminations. Search termination, previously discussed, is an
example of this type interaction, as are data and instruction-
sequence interlocks.

EXECUTIVE INTERACTION. This activity is concerned primarily
with the allocation of system resources. Consider, for example, the
problem of processing interrupts in a parallel processing system.
These will usually not need to interrupt a computing activity, but
may await the spontaneous availability of a unit at a Terminate,
a natural lx-eakp0int.l If an interrupt does become critical it should
not be applied to a specific physical unit. Instead the interruption
should be steered to that unit which, by virtue of the work it is
processing, may be classed as Most Interruptable. Selection of the
latter may be obtained ahead of time and is maintained by the
interaction system, on the basis of the relative urgency of tasks.

Another example of executive interaction concerns the constant
provision of queue status information to all active units. Besides
simplifying scheduling activity this may prevent units from access-
ing empty queues, reducing both storage and executive interfer-
ence. Similarly, units can be caused to access a previously empty
queue when an entry is made, obviating continuous testing of
queue status.

'This is possible in a parallel processing system since tasks are smaller than
jobs and since there are many processors. Furthermore, units operate
anonymously. That is, on picking up a task, a unit records the task identity
in an internal register and its own identity in a table associated with the
work queue. Other processors do not, therefore, know how tasks and
processors are matched at any time, since this is a matter of chance, and
determination would require an extensive and wasteful table search.

Chapter 37 I A survey of problems and preliminary results concerning parallel processing and parallel processors 459

The interaction system also supports other activities associated
with accounting, recording, and general system supervision.

SYSTEM INTERACTION. System interaction provides controls and
interlocks for operation and maintenance of the physical system.
It includes, for example, interchange of information between
active units about the validity of storage map entries, storage
protection control, queue interlocks, checks and counts of unit
availability, the initiation of routine and emergency diagnostic and
maintenance activity, and the isolation of malfunctioning units.

SUMMARY. The preceding paragraphs have indicated some of the
many applications of an interaction controller. The common
property which, for practicality, has been used to identify poten-
tial interaction activities is that they should be autonomous rela-
tive to the main computational stream and that their execution
should not require access to storage.

4.3 The interaction controller

4.3.1. The basic system hardware architecture. It is not intended
to give a full description of an interaction controller in the present
paper. We shall, however, outline its basic structure, indicate its
mode of operation, and list some of the proposed interaction
instructions, termed Directiues.

As a first step we introduce, in Fig. 1, a diagrammatic descrip-
tion of an overall representative hardware system. This consists
of central processors (Pi) with local storage (LSi), 1/0 processors
(SCi), storage modules (Si), a requestor-storage queue (Qi), and a
communication system functionally equivalent to a crossbar
switch. iln 1/0 area, including a bulk-store, files, channels (Ch),
devices, device control units (Cu), and interconnection networks,
is indicated in less detailed fashion.

4.3.2. lnteraction controllers. Interaction controllers (IC) are
associated with all central and 1/0 processors, and communicate
with each other over a special bus. Similarly localized interaction
systems may provide a facility for certain classes of 1/0 units or
devices to interact amongst themselves.

To be economically feasible, the Interaction Controller must
be simple. Figure 2 illustrates a structure which includes about
two hundred and fifty bits of storage, of which about half are
organized in registers. The remainder are used as status bits or
appear in the controller-processor interface. Control is obtained
from a read-only store, whose capacity depends on the size of the
directive repertoire (an interaction directive being analogous to

a processor instruction) and the number of interaction functions
it is required to implement.

Controller connection to the ten-bit wide interaction bus is by
means of OR gates. When an interaction is occurring, one and
only one controller will be in command of the bus. Figure 3
illustrates the sequence of events required to implement an inter-
action.

The controller required by its associated processor to initiate
an activity will await availability of the bus, indicated by an ALL
ZERO state, and will then attempt to seize control by transmitting
a unique identifying four-out-of-eight code. Should more than one
controller attempt to seize the bus at the same time, a conflict
resolution procedure is initiated. This is based on the simultaneous
transmission by all requesting controllers of a second, two byte,
identifying code. Each byte consists of one or more ones followed
by all zeros. A simple comparison by each controller of its trans-

-

Fig. 1. A representative system hardware configuration.

460 Part 5 I The PMS level

+
t+-

Section 3 I Computers for multiprocessing and parallel processing

~~ ~ _ _ ~ ~ _ ~ ~ ..
Task ident Seizure code

Registers
~ ~ ~ ~ ~ ~ - _ _ _

Status bits Processor or channel
interface

- I

--
- I

Job ident
7 - v

Interlock id. reg.

~~ ~

- .-I

F,

Interaction bus

Fig. 2. The interaction controller.

mitted signals with the state of the bus, identifies to itself that
controller having the most ones in each byte, since it will have
found a match on both comparisons. This enables it to seize the
bus and to switch to the command state. All remaining controllers
remain in the listening state.

The controller in command of the bus then transmits signals
which select recipients for the directives which are to follow.
Other controllers ignore all further communications until the next
selection signal appears.

4.4 Interaction directives

A signal designating the interaction function required by a proc-
essor is transmitted across the processor/controller interface, as
the result of the execution of some processor instruction. The
processor will then generally continue its execution sequence
unless or until it is required to pass on a second interaction func-
tion before a previously issued function has been completed. Upon
receipt of the interaction command, and after successful seizure
of the bus as described, the command controller may initiate

Interaction required a7 Bus free ?

Seize bus i
Conflict? &L

E r n i t order or question

Fig. 3. The interaction sequence.

execution of the interaction by transmitting a sequence of one or
more directives to the selected units. A basic set of directives is
listed in Table 1.

The Compare directives are most frequently used to seize the
bus and to select a subset of the controllers for the receipt of
subsequent directives. The remaining units ignore further direc-
tives until alerted by an Attention signal or until Free Bus provides
the release that permits waiting controllers to attempt to seize
the bus. Receive provides for transmittal of data between control-
lers; for example, transmission of a machine instruction to a se-
lected set of controllers, followed by the directive Interact. Thus
this sequence could realize the basic interaction function. External
Execute is, however, considered so fundamental to efficient exploi-
tation of a parallel processing system that we include it as an

Table 1

Send and Compare
Compare
Received

Set Status Bits
Interact

External Execute
Attention
Free Bus

Chapter 37 1 A survey of problems and preliminary results concerning parallel processing and parallel processors 461

explicit directive. Status bits that may be set or reset by appropri-
ate directives, provide data on the status of various systems queues,
on the interruptability of given processors, on Wait status, and
so on.

5. Storage communication

The fact that interest in large parallel processing systems is in-
creasing rapidly as technology enters into the integrated or mono-
lithic era is no coincidence. Such systems will not, in fact, be
practical for general purpose application until miniaturization
reaches the stage where the large amount of hardware required
can be assembled in compact fashion. This need is most apparent
when one considers communication between the high-speed store
and the various classes of processors, which may collectively be
termed Requestors. Already in presently available systems, the
transmission delay between storage and requestors is of the same
order of magnitude as the storage cycle time; and cycle times are
still decreasing.

Formulation of a hardware model as in Fig. 1 led to the imme-
diate conclusion that feasibility of the interconnection of large
numbers of units had first to be established. Many possible systems
were considered, and preliminary studies concluded that the
crossbar switch was the most appropriate system for early study
in view of its regular structure, simplicity, and basic modularity.
More particularly, monolithic crossbar modules are visualized
which it will be possible to interconnect to provide networks of
any required dimensions. Alternatively, or additionally, other
interconnections of these modules can provide highly available,
multi-level trunking systems.

In addition to the switch proper, the crossbar network requires
a selection and control mechanism. It is moreover appropriate to
locate the queues, which store all but one of a group of conflicting
requests, within the switching area. A switch complex, as in Fig.
4, has been designed for a system configuration including twenty-
four requestors, thirty-two memory modules, thirty-two data plus
four parity bit words, and sixteen plus two parity bit addresses.

The result of this design study shows that the size and com-
plexity of such a switch is not excessive for a large scale system.
In its simplest form and using standard high-performance logical
devices, with a fan-in of four, a fan-out of ten and a four-way OR
capability, its use leads to a worst case delay of some seven logical
levels in the control and queue decision circuits and two levels
in each direction of the switch. The switch uses between two and
three times as many circuits as a central processor such as the
model 75 of System/36O. While this, in itself, represents a consid-

erable amount of hardware, it is still an order of magnitude less
than the hardware found in the units that the switch is intercon-
necting. Moreover, its regular structure and simple, repetitive
logic suggest ultimate economical realization using monolithic
circuit techniques.

6. Usage

6.1 The executive system

The basic properties outlined in Sec. 2 give parallel processing
systems the potential to overcome many of the ills and shortcom-
ings that presently beset computer systems. For maximum effec-
tiveness, the system must be library- or file-oriented. It can, how-
ever, be exploited efficiently only if the overhead resulting from
executive control and supervisory activity does not strangle the
system. More particularly, the gains from the sharing of resources
and any peak averaging effect must exceed any additional over-
head due to resource allocation procedures, conflict resolutions,
and other processing activity arising from the concurrent operation
of many units. Thus a unified and integrated design approach is
required in which software and hardware, operating system and
processing units, lose their separate identities and merge into one

End of
storage 1 1 Storage
cycle, select,

To other reqL
SConneri ' switching sec

From other decoders I:- Decoder, To other scanners

Request
signal,,

I 181

tors and other
)n inputs

.ccept signal, I

Decision
section

i Crossbor
switch

signal,

Fig. 4. The centralized crossbar switch.

462 Part 5 I The PMS level Section 3 I Computers for multiprocessing and parallel processing

overall complex, for which allocation and scheduling procedures,
for example, are as basic and as critical as arithmetic operations.

Equally significant to the successful exploitation of parallel
processing potential are the problems of data management, man-
machine interactions; and, most generally, problem preparation
and usage of the system. We restrict the present discussion to brief
comments on programming techniques for task generation and on
the development of algorithms possessing macro-parallelism. In
particular we indicate that multi-instruction-counter systems can
be profitably applied to the solution of the large problems whose
computing requirements tax the speed capability and storage of
the largest computer and the patience of their users. In the fol-
lowing section we evaluate these proposals by quoting some per-
formance measurements obtained from an executing simulator.

6.2 Programmed task generation

Study of the usage of parallel processing systems for the rapid
solution of large real-time problems involves two aspects. On the
one hand we must consider the development of algorithms dis-
playing an appropriate form of macro-parallelism. On the other
hand programming techniques must be developed for efficient
exploitation in terms of both problem- and machine-oriented
instructions, such as those discussed in Sec. 4.

It is appropriate to discuss programmed task generation first.
For simplicity we consider a job segment that requires n executions
of a procedure I. The procedure will itself include modification
of index registers or other changes that distinguish the individual
tasks. We assume that on completion of all n tasks, a new proce-
dure J should be initiated. Moreover, should processing power be
available at a time when n executions of I have been initiated but
not all n completed, we assume that an independent procedure
K , belonging to the same job, may be initiated. In the simplest
case K will be a terminate instruction which releases the processor,
and makes it available to process other work as determined from
the work-queue complex.

A Z O
B = O
c=o

ST IF N - B 5 1 THEN GO TO IN Suppress split if nth task
being initiated

A = A + l
IF A 2 P THEN GO TO IN Split if less than p proces-

sors allocated

SPLIT TO ST
B = B + 1
IF B > N THEN GO TO FIN IN If all n I-tasks started,

proceed with K

CALL I PROCEDURE
C = C + l
IF C < N THEN GO TO IN If all n I-tasks completed,

proceed with J

CALL J PROCEDURE
FIN CALL K PROCEDURE

Execution of split and terminate instructions involves executive
overheads, so that these instructions should not be used indiscrim-
inately. Within a system in which a maximum of p processors are
available to a job, it is pointless to partition a job, at any one time,
into more than p tasks. It is, however, undesirable to guarantee
a user that p processors, or even more than one processor, will
execute his program. A simple task generation scheme that makes
as many entries in the task queue as there are potentially concur-
rent parts of the algorithm (for example, from a loop containing
a split instruction) is inefficient when that number is much larger
than the number of processors that happen to be available. The
technique also leads to very large queues. An alternative, termed
Onion Peeling by us, puts the instruction sequence containing the
split at the head of procedure I and ends each execution of the
procedure with a terminate. This restricts the queue length for
this job segment to one but it otherwise is as inefficient as the
previous method.

A Modilfied Onion Peeling scheme (MOP) restricts the split and
terminate overhead to at most one morel than the number of
processors actually applied to the segment. It also ensures that
processing is completed as quickly and as efficiently as possible
with the number of processors that become available to the job
segment. Thus if during execution no further processors are freed,
the n tasks are executed sequentially with only one split and no
terminate. If, on the other hand, some other number of processors
is used for execution, the procedure is speeded up accordingly.
The maximum number p of processors that may be applied to the
job may be limited by the number of processors in the system and
available, or by executive edict.

The basic scheme was illustrated by the above program, in
which the first expressions following the ZEROing of counters
ensures that no unnecessary splits are queued.

'This is not quite accurate. The simple MOP algorithm presented here
does not explicitly interlock the split seqnence. There is therefore a possi-
bility that unnecessary task-calls may be queued during the execution of
the split which is to generate the nth task. The probability of this is,
however, small, while the degradation arising from an interlock could be
significant, and the algorithm in the form given appears more economical.

Chapter 37 1 A survey of problems and preliminary results concerning parallel processing and parallel processors 463

6.3 Macro-parallelism

Commonly used numerical algorithms, data processing procedures,
and computer programs are generally sequential in nature. The
reason for this is largely historical, a consequence of the fact that
the Mechanisms, human, mechanical, and electronic, used in
developing and executing these procedures have been incapable
of significant parallel activity, other perhaps than the simultane-
ous, coordinated use of many humans. The advent of parallel
processing systems thus calls for the modification of accepted
techniques to expose any inherent parallelism. The resultant pro-
cedures must then be further adapted to make parallel tasks of
such a magnitude that the overhead involved in their generation
becomes insignificant. But the ultimate benefit from parallel execu-
tion will be obtained only by going back to the problems them-
selves. These must be analyzed anew. Algorithms must be devel-
oped that make it possible to exploit the parallel executing capa-
bility, by introducing into the mathematical and program model
parallelism that ultimately reflects the parallelism of the physical
system or phenomena being studied. In this need to return to
fundamentals, the situation is somewhat analogous to the early
days of electronic computing, when attempts at commercial ap-
plication were largely frustrated until it was realized that wide-
spread application required the development of new techniques,
rather than the adaptation and mechanization of existing proce-
dures.

At the present time, however, our direct activity in problem
analysis has concentrated mainly on the adaptation of existing
numerical techniques for parallel processing, for problems in
which the basic macro-parallelism was self-evident. These include,
for example, linear algebra and the solution of elliptic partial
differential equations. In these areas the extent and nature of the
parallelism had previously led to proposals for vector processing
systems such as Solomon [Slotnick et al., 1962; Gregory and
McReynolds, 19631 and Vamp [Senzig and Smith, 19651. Other
areas in which the parallelism is self-evident hut where vector
processors prove less effective are those in which the algorithms
model distinct physical activities such as in file processing and
Monte Carlo techniques. For all significant problems investigated
[Schlaeppi, 19??] it was possible to establish the existence of
parallel tasks of such a length that tasking overheads could be
expected to be negligible.

Other classes of problems have been studied, both in terms of
the extension of existing algorithms and the development of new
ones. In particular we refer to the extraction of polynomial roots
[Shedler and Lehman, 19661, solution of equations [Shedler,

19661, and the solution of linear differential equations [Niever-
gelt, 19641, [Miranker and Liniger, 19671. These various studies,
not all directly related to the present project, were more mathe-
matical in nature, and to the best of our knowledge, no attempt
has yet been made to develop efficient parallel computer programs.
Thus, while numerical methods are beginning to emerge which
enable the exploitation of macro-parallelism in the solution of
time-limited problems, and from which it appears that significant
reductions may be obtained in throughput times, much work
remains to be done on re-programming the problems themselves.

7. Simulation

7.1

It has been our experience with simulation that its principal
function as a design tool is to focus attention on features that
require investigation and explanation. Many results, qualitative
and quantitative, that are obtained during simulation experiments
may also be obtained analytically. It is, however, the insight and
understanding gained from the design of simulation experiments
and the analysis of their results that draws attention to specific
details and difficulties. The undeniable value of simulation in
development and design is therefore quite different from that in
system evaluation, where meaningful performance figures may be
obtained when the work load is well defined.

Simulation as a design tool

7.2 The executing simulator

In the present study simulation was seen as fulfilling a number
of additional functions. In particular it made available a usable
working model of a parallel processing system. This would give
potential users the incentive to undertake actual programming and
to gain limited operational experience. An executing simulator was
also required for the investigation of what is commonly regarded
as the most immediate question in parallel processing, the extent
of performance degradation due to storage-access interference and
executive (queue-access) interference. Such an executing simulator
is now operational and its use is discussed in the next section. We
note parenthetically that a limitation of this type simulator is its
speed. For the evaluation of total system performance over any
length of time, particularly when using a computer itself much
slower than the simulated system, only gross, nonexecuting, sim-
ulation is reasonable [Katz, 19661.

The system presently modeled in the executing simulator in-
cludes the processors, switch, and Storage Modules of Fig. 1. The
storage modules are accessed through a fully interleaved address

464 Part 5 I The PMS level Section 3 I Computers for multiprocessing and parallel processing

structure, though it is clear that in any realization interleaving
will be partial, both to sustain high availability and to decrease
storage interference between independent jobs. The individual
processors have a System/36O-like structure [Blaauw and Brooks,
19641 and execute an augmented subset of S/36O machine lan-
guage. The nonstandard instructions added to the repertoire in-
clude the functions discussed in Section 4. The local store LSi,
to be used also as an instruction buffer, is however not included
in the model for which the interference results are quoted in the
next section. The simulator configuration is parameterized so that,
for example, the numbers of storage modules and processors,
instruction execution times (in storage cycles), and the nature of
statistics gathered and printed may be selected for each run. The
program itself is modular, and both system features and measure-
ment facilities may be expanded or modified as required.

7.3 Simulator experiments

7.3.1 Kernels. Simulation experiments fist concentrated on an
investigation of storage interference arising in the execution of
typical kernels from numerical analysis. The results indicated that
under the limited condition of the experiments and for a storage
module-to-processor ratio of two, interference would degrade
performance by less than twenty percent, dropping to some five
percent for storage module-to-processor ratio of eight. Addition
of a local processor store and its use as an instruction buffer
effectively eliminated interference, as expected, indicating that
it had been substantially due to instruction-fetch interference.

These results were considered to have been generated under
conditions too restrictive to permit generalization. In particular
each set referred only to concurrent executions of a single loop.
Thus more recent experiments have included many runs of a
matrix-multiply subroutine and the solution of an electrical net-
work problem using an appropriately modified version of the
Jacobi variant of the Gauss-Seidel solution of a set of linear alge-
braic equations.

7.3.2 The matrix multiplication. The Matrix Multiply program
was written in two versions. A classical sequential program ex-
cluding all the special instructions provided the standard on which
measurement of the parallelism overhead and interference could
be based. The second, parallel, program used the onion peeling
rather than the MOP algorithm described in Sec. 7.2. The product
matrix was partitioned by rows, with the computation of each
comprising one task. The experiments were performed for square
matrices of dimensions thirty-nine and forty with from one to
sixteen processors and sixteen to sixty-four storage modules. Two

sizes of matrices were used to isolate the effect of commensurate
periodicities of array mapping with the address structure of the
store, which demonstratively had significant influence on the
results.

Instruction execution times for the most frequently executed
instructions used in the experiment are given in Table 2.

These times exclude the instruction fetch time (one instruction
for each fetch), since these are overlapped unless storage conflict
occurs, when a request must be queued. The arithmetic operations
may also include a data fetch (RX instructions) in which case a
further store access time is required.

In the absence of an internal instruction buffer, processors
executing the same program string interfere with each other
continuously during instruction fetches. To minimize this effect
for loops that are short relative to the width of the interleaving,
it is profitable to unwind such loops by repetition so that the
resultant string stretches as far as possible across the interleaved
store. The program was unwound in this way. We note, however,
that it is in fact better [Rosenfeld, 19651 to repeat the loop,
appropriately modified, several times across the interleaved store,
directing successive processors to successive, hut unconnected,
loops. This can decrease interference by as much as twenty percent
over the previous case.

Some results of the simulation are given in Table 3 and plotted
in Figs. 5 and 6.

We note that running time (col. 4) is defined as the interval
between the start of the first processor on its first task and the
completion, by the last processor to finish, of its final task. Since
an onion peel technique has been used for the splitting, there is
an interval (of order 70 storage cycles) between the start of suc-
cessive tasks. There is also an initial interval (87 memory cycles)
in which the first processor initializes the program. Finally, the
finish of processors is staggered and, in particular, for the sixteen-
processor case, eight processors are assigned two tasks (rows) in
succession, and eight, three tasks. The former processors will, of

Table 2

Instruction Execution time in storage cycles

Fixed Point Addition 0.4
Floating Point Addition 0.5
Floating Point Multiplication 1 .o
Floating Point Division 2.0
Split 25.0
Terminate 25.0
New Task Fetch (Part of Terminate) 25.0

Chapter 37 I A survey of problems and preliminary results concerning parallel processing and parallel processors 465

"3 m

400K-
I

- 5 3 0 0 K -

g 200K-

m m

rn -
100K-

Table 3 Results of the matrix multiply simulation

Parallel processor
progrom

program
8 Uniprocessor

(40x40) " (4 0 1 40)
N,, = 6 4

16 tosks
x \: 40tasks

1 2 3 4 5 6 7 8 9 10 11

No. of Total Storage interference Exec. NO. of Storage
No. of storage Matrix Run proc. intel$ storage utilization
proc. mods. dim. time time Time % % accesses % Notes

1
1
2
4
8

16
16
16
16

64
64
64
64
64
64
32
16
64

40
40
40
40
40
40
40
40
39

427
429
216
109
56
35
38
47
33

427
429
432
436
445
46 1
507
639
428

1.02
0.21
1.77
5.79

14.4
30.3
75.9

207 .O
26.1

.2 NA
0.05 NA
0.4 0.33
1.3 0.39
3.3 0.68
7 .O 0.76

17.7 0.88
48.2 0.64

6.5 N V

459K
460K
460K
460K
460K
460K
460K
460K
427K

1.69 Sequential program
1.68 Interference between
3.3 instruction & data fetches
6.6

13.0
25.0
45.4
72.1
26.9

Note: All times in thousands of storage cycles.
NA-Not Applicable
NV-Not Available

Acc. x # Proc.
% Storage Utilization = Roc. time x # Mods.

Col. 9 x Col. I . . - -
Col. 5 x Col. 2

course, terminate considerably earlier than the latter. Thus, as
indicated by the corresponding entry in column four, the particu-
lar mode of partitioning is not optimum if the shortest execution
time is to be obtained. From a system efficiency point of view,
however, and in actual operation with other jobs and tasks in the
system, it is of no consequence since processor idling does not
actually occur. New tasks, perhaps arising from quite different jobs,
are initiated, according to some scheduling strategy, whenever a
processor becomes spontaneously available.

Fig. 5. Execution time for matrix multiply.

Time
(4Ox40)x(40x 40) +.

N,, =64

4 2 0 K I

E \ 3 0 K

Total delay due t o
storage interference '""LNP 1 0 K 5

Number of processors

Fig. 6. Total processor time and interference in matrix multiply modules.

In addition to run time, we define a total processor time (col.
5). This represents the sum total of time that individual processors
were active in the program and is therefore a reflection of total
processor running cost. Storage interference (cols. 6, 7) measures
the total time that processors were inactive due to attempts to
initiate simultaneous accesses to the same storage module. It
occurs also when only a single processor is applied, when it repre-
sents a conflict between a data fetch and an attempt by the overlap
circuit to initiate an instruction fetch from the same module.

466 Part 5 I The PMS level Section 3 1 Computers for multiprocessing and parallel processing

STORAGE
KILOCYCLES II""

$400
350

2 300

/ / 16 STORAGE MODULES

INNER LOOP SIZE I I

--2 EOUnTlONS
---A--- 3 EOUATIONS

4 EQUATIONS I d :
l , i 5 EOUATIONS -.-)(-.-

I I '

40
30
20

Fig. 7. Total processor and throughput times in electrical network
analysis-16 storage modules.

Executive interference (col. 8) represents processor hold-ups due
to the simultaneous attempts by two or more processors to access
the system work-queues. These interferences are of course repre-
sentative of a whole class of effects that can lead to performance
degradation in parallel processing systems.

In Table 3 interference has been related to the number of
interleaved storage modules and to the number of processors. In
an actual system it is of course a complex function of the number
of storage modules, of the degree of address interleaving, of the
relationship between active jobs and the degree of program and
data sharing, and of the total system utilization of storage. In
optimizing a design, the numbers of processors and storage mod-
ules and the addressing scheme must be fixed subject to constraints
related to cost, total storage capacity, the capacity of available
storage modules, the degree of availability desired, and the ex-
pected nature of the work load. Processor utilization of storage
alone is not very significant, since a critical factor is the 1/0
storage activity present, the degree of storage utilization required

to get program and data into the high-speed store and to output
results. We include utilization figures for these executions in Table
3, to aid in analysis of the system behavior but not for evaluation
purposes.

7.3.3 The electrical network analysis problem. This problem
represents the solution of a set of simultaneous linear equations,
described by a sparse coefficient matrix. The technique used for
its solution on the executing simulator essentially comprises a
relaxation procedure. Extensive runs have been made using a
specific thirty-six node network, yielding twenty-six equations with
up to four terms in each equation.

From the wealth of results obtained we present representative
sets that indicate some general trends related to the characteristics
and performance of the parallel processing system. Available space
will not permit, however, detailed analysis in the present paper,
nor does it permit a discussion of the equally interesting results
obtained concerning speed of convergence, in particular, and other

STORAGE
KILOCYCLES

32 STORAGE MODULES
600
550

INNER LOOP SIZE - 2 EQUATIONS
---e--- 3 EQUATIONS
- ----- 4 EOUATIONS
_.-x-.- 5 EWATIONS 8 350

300

W

I-
z
3
E

P

NUMBER OF PROCESSORS

Fig. 8. Total processor and throughput times in electrical network
analysis-32 storage modules.

Chapter 37 I A survey of problems and preliminary results concerning parallel processing and parallel processors 467

STORAGE
KILOCYCLES

6 4

f 500 550L

n. 250
8 200

100

64 STORAGE MODULES

INNER LOOP SIZE
f 2 EWATIONS

----A---- 3 EQUATIONS
-..+..- 4 EQUATIONS

5 EOUATIONS

I 2 3 4 5 6 7 8 9 1011 1213141516
NUMBER OF PROCESSORS

Fig. 9. Total processor and throughput times in electrical network
analysis-@ storage modules.

effects which must be understood within the framework of a
numerical analysis of the relaxation solutions.

Figures 7 , 8 , and 9 present the basic performance data, through-
put time, and total processor time, for a total of one hundred and
forty-four cases. The variables are the number of processors in the
system (12 cases), the size of the inner loop as represented by the
number of currents (from 2 to 5) evaluated in the loop, and the
number of interleaved storage modules (16, 32, 64).

These curves clearly indicate the reduction in throughput time
to be obtained from the use of parallel processing, the consequent
increase in processor cost due to interferences of various sorts, the
resultant effect of diminishing returns, and the actual increase in
throughput time, when too many processors chase too few equa-
tions and generally get seriously “into each other’s way.”

For the smaller inner loops and when interference between
processors is low, total processor times vary somewhat erratically.
The causes for this are related to the relaxation pattern and the
rate of convergence in each case. In fact there appears strong

circumstantial evidence that an ad hoc procedure, which does not
guarantee sequential evaluation of the equations, improves per-
formance. This point, however, requires further study.

Figure 10 reproduces some of the results of the previous three
figures for the case of a five-equation inner loop. Table 4 lists these
same results as a percentage of the time using one processor and
compares them with the reciprocal of the number of processors.

Figure 11 indicates storage interference and parallel processing
overheads as a function of the number of processors, with storage
modularity again a parameter and an inner loop again comprising

STORAGE
KILOCYCLES

5 EQUATIONS
260 IN A LOOP

-
w

+
240-

a 220-
- -

9 200-
0 -

180-

-I 160-

e 140-

n -

$ -

-
120

100

-
-
-

-0- 16 STORAGE MODULES
-+A-- 32 STORAGE MODULES

64 STORAGE MODULES

$ I- 6 0 1

40 501
20

NUMBER OF PROCESSORS

Fig. 10. Total processor and throughput times in electrical network
analysis with number of storage modules as a parameter.

468 Part 5 1 The PMS level Section 3 I Computers for multiprocessing and parallel processing

Table 4
using one processor, with a five equation inner loop

Run time for resistor network system relative to the run time

Relatiae time 100
Number of 16 Storage 32 Storage 64 Storage
processors modules modules modules No. of processors

1
2

4
6

7

8

9

10
11
1 2

1 4

1 6

100%
5 2 . 8

29 .5

2 2 . 4

2 0 . 9

1 9 . 2

1 7 . 8

1 7 . 6

1 6 . 8

17 .5

1 7 . 3

17 .7

1 0 0 %

5 1 . 2

2 7 . 9

2 0 . 3

17 .9

1 6 . 8

1 5 . 2

14 .5

13 .9

1 3 . 9

1 3 . 2

13 .7

1 0 0 %

51 .2

2 7 . 1

1 9 . 5

1 7 . 1

1 5 . 8

1 4 . 2

1 3 . 7

1 2 . 9

1 3 . 0

11 .7

11 .7

100%
5 0 . 0

2 5 . 0

1 6 . 7

1 4 . 3

1 2 . 5

1 1 . 1

1 0 . 0

9 . 1

8 . 3

7 . 2

6 . 3

the evaluation of five currents. Storage interference has previously
been defined. The parallel processing overhead represents as a
percentage the excess of total number of storage cycles required
for execution, excluding storage interference cycles, when more
than one processor is used, relative to the number of cycles re-
quired by a one-processor execution.

%

" T 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
NUMBER OF PROCESSORS

Fig. 11. Storage and executive interference.

20 3 IO 0

F

I 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
NUMBER OF PROCESSORS

Fig. 12. Storage utilization and cost /performance factors.

Actual counts during execution show that in general some
sixty-seven percent of store access are instruction fetches in this
program and some thirty-three percent are data fetches. Thus
incorporation of a substantial instruction buffer in each processor
clearly reduces all interference by an order of magnitude, since
of the four ways in which a storage interference can occur, only
one-a data fetch conflicting with a data fetch-remains in the
inner loop. Moreover, these measurements refer to a processor in
which arithmetic speeds, as in Table 2, are of the order of magni-
tude of a memory cycle time, which implies a somewhat powerful
processor. Thus in every sense the interference figures are worst
case results which, with the performance curves to which they
relate, support the view that storage interference is not a serious
obstacle to parallel processing.

The four contours drawn on these curves represent lines of
constant storage module-to-processor ratio. They slope slightly
upward due to the statistical Marbles and Boxes [Rosenfeld, 19651
effect previously referred to.

Figure 12 presents two sets of data, based on the five-equation
line loop. The upper family of curves relates to storage utilization.
The reservations made at the end of Sec. 7.3.2, with reference to
the significance of utilization figures, also apply. The second family
of curves represents a first attempt at estimating the relative
quality of processing, that is, some function of a cost/performance

Chapter 37 1 A survey of problems and preliminary results concerning parallel processing and parallel processors 469

factor. Such a factor is intuitive and environment-sensitive, de-
pending on the relative concern for speed and for costs of various
sorts. For the present data we have chosen to display a function:

’ = throughput time x total processor time

where K is a constant, throughput time a measure of the speed
of computation, and total processor time a measure of the cost.

K

8. Conclusion

I11 this paper we have presented some thoughts on parallel process-
ing. In particular we have chosen to survey the topic by including
an extensive bibliography and some of the results of our work in
this area. The discussion has had to be brief, but our intention
has been to convey the picture of the potential that parallel
processing systems offer for the future development of computing.

The key to successful exploitation lies in a new, unified, and
scientific approach to the entire problem of the design and usage
of computing systems. The development of large, integrated sys-
tems raises many problems, but there can be no doubt that eco-
nomic solutions to these will be found. Their development should
comprise a significant part of the computer system architectural
design effort of the next few years.

Any ultimate evaluation of a parallel processing system within
a working environment depends on actual operating experience.
This in turn requires the existence of a system and the interest
of users. Only when usable systems become available will the
concept of parallel processing in integrated systems be accurately
evaluated.

References

BlaaGM; BrigH64; ConwM63; CorbF65; DennJ66; DesmW64; DreyP58;
FalkA64; GillS58; GregJ63; KatzJ66; LehmM65; LeinA5Q; McCuJ65;
MiraW67; NievJ64; RoseJ65; SchlII??; ShedGGBa, b; SlotD62; SmitR64;
PL/I Language Specification, FormC28-6571

Bibliography

,411eM63; AmdaC62; AndeJ63, 6.5; .%rdeB66; BaldF62; BIaa664; Brig€Ifi4:
BuchW62; BussB63; CoddE62; ComfW65; ConwM63; CorbF62, 65;
CritA6:); DaleRB5; DennJ65, 66; DesmW64: DijkE65; DreyPJX; ErnsH63;
EstrGW, 63; EwinR64; FalkA64; ForgJ65; FranJ57; GillS58; 61asE65;
GregJ63; HellH61, 66; KatzJ66; KinsH64; KnutD66; LehmM6Xa, 6311, 65;
LeinA59; LourN59; MarcM63; McCaJ62; McCnJ65; MeadR63; MillW63;
MiraW67; NievJ64; OssaJ65; PennJ62; RoseJ65; SchlH??; SeehRB3; SenzDB5;
ShedC66a, 6611; SlotD62; SmitR64; SquiJ63; StraC59; VyssV65; WirtN66;
IBM OS/.360 PL/Z Language Specijication, Form C 28-6571; Proc. IFIP1062.
“Symposium on Multi-Programming” 1963.

Section 4

Network computers and computer
networks

The RW-400 and the CDC 6600 are actually computer networks
by our definition of a computer (Chap. 2, page 17). Yet because
of the restrictions on the quantity and location of the compo-
nents in these structures, we still consider them to be com-
puters. On the other hand, two or more computers which are
separated physically, yet connected, constitute a computer
network. Computer networks will appear in the future; it is
important to understand the basis for them.

The RW-400-a new polymorphic data system

Chapter 38 presents the RW-400 (also called the AN/FSQ-27),
a later version of the Ramo-Wooldridge RW-40 originally de-
signed in 1959. The diagram (page 478) gives an indication
of the relationship and names of the components. The PMS
structure in Fig. 1 has more configuration details. A t least six
RW-400’s were built for military command and control applica-
tions (although the number of computers of a type in existence
has little to do with a machine’s worth or ability).

The RW-40 ISP as given in Appendix 1 of Chap. 38 is a
good example of a processor with a two-address instruction set.
The ISP does not have index registers; it has a small state
consisting of the accumulator (A), a limited extended accumu-
lator (B), the program counter (P), and about 6 state bits. The
Pc is limited by its ability to address directly only a 1,024-word
Mp. The ISP is undoubtedly sufficient for solving the kinds of
problems encountered by the computer and compares favorably
with Whirlwind and the IBM 1800.

The RW-40 introduced multiple parts for reliability [Roth-
man, 19591. Multiple C’s (or Mp-Pc and Mp-Pio) are provided
for redundancy and capacity. However, the S(’Centra1 Ex-
change) which provides communication among the C’s may not
have redundant parts. The multiple-computer concept can be
viewed as the forerunner to our present computer networks,
in which the central switching element is the Telephone Ex-
change. Over a longer time span, the RW-400 may be most
significant as a pioneer. However, the whole system, with the
exception of the small Mp’s, is nicely designed. The problem
of low speed T(typewriter, display)’s is handled well by trans-
ferring data from Mp-Pc to Ms(drum) for concurrent and

independent T and P activity. Similar solutions are common
for managing T activity by using an M, local to particular T’s,
and local C’s.

The structure should be compared with the CDC 6600 (Chap.
39) and the network examples in Chap. 40.

The CDC 6400, 6500, 6600, 6416, and 7600

The CDC 6600 development began in 1960, using high-speed
transistors and discrete components of the second generation.
The first 6600 was delivered in September, 1964. Subsequent
compatible successors included the 6400, in April, 1966, which
was implemented as a conventional Pc(a single shared arith-
metic function unit instead of the 10 D’s); the 6500 in October,
1967, which uses two 6400 Pc’s; and the 6416 in 1966, which
has only peripheral and control processors. The first 7600,
which is nearly compatible, was delivered in 1969. The dual
processor 6700, consisting of two 6600 Pc’s was introduced
in October, 1969. Subsequent modifications to the series in
1969 included the extension to 20 peripheral and control
processors with 24 channels. CDC also marketed a 6400 with
a smaller number of peripheral and control processors (e.g.,
6415-7 with 7). Reducing the maximum PCP number to 7
also reduced the overall purchase cost by approximately $56,000
per processor.

The computer organization, technology, and construction
are described in Chap. 39. ISP descriptions for both the Pc and
Pc (‘Peripheral and Control Processors/PCP) are given in Ap-
pendices 1 and 2 of Chap. 39.

To obtain the very high logic speeds, the components are
placed close together. The logic cards use a cordwood-type
construction. The logic is direct-coupled transistor logic, with
5 nanoseconds propagation time and a clock of 25 nano-
seconds. The fundamental minor cycle is 100 nanoseconds and
the major cycle is 1,000 nanoseconds, also the memory cycle
time. Since the component density is high (about 500,000
transistors in the 6600), the logic is cooled by conduction to
a plate with Freon circulating through it.

This series is interesting from many aspects. It has remained
the fastest operational computer for many years. Its large

470

Section 4 1 Network computers and computer networks 471

Mp-Pc'

Mp- P i 0

K-Ms drum; 0 - 17 rns;

1 ! [I6 ~ s / w . 8192 w 1

K-T(I . . ines , cards , paper t a p e) -

K-T (' Mas t e r Con so I e) -
. . . .

.-- 7

M ' P e r i p h e r a l

B u f f e r : drum:

w 1
S-

M ' D i s p l a y

R u f f e r : drum;

[8l9? w]
P c (2 a d d r e s s / i n s t r u c t i o n ; Wps (- 3 4) ! t e c h n o l o q y : t r a n s i s t o r : descendants:RW-400, AN/FSQ 2 7)

Wp(core1 10 u s / w : 1024 w; (2 6 , 2 p a r i t y) b/w)

K (' P e r i p h e r a 1 B u f f e r)

K('D isp1ay R u f f e r)

Fig. 1. RW-40 (Polymorphic) PMS diagram.

component count almost implies i t cannot exist as an opera- PMS structure
tional entity. Thus i t is a tribute to an organization, and the
project leader-designer Seymour Cray, that a large number
exist. There are sufficiently high data bandwidths within the
system so that it remains balanced for most job mixes (an
uncommon feature in large C's). I t has high performance
Ms.disks and T.displays to avoid bottlenecks. The Pc's ISP is
a nice variation of the general-registers processor and allows
for very efficient encoding of programs. The Pc is nicely multi-
programmed and can be switched from job to job more quickly
than any other computer. Ten smaller C's control the main
Pc and allow it to spend time on useful (billable) work rather
than its own administration. The independent multiple data
operators in the 6600 increase the speed by at least 2y2 times
over a 6400 which has a shared D. Finally, it realizes the 10 C's
in a unique, interesting, and efficient manner. Not many com-
puter systems can claim half as many innovations.

A simplified PMS structure of the C('6400, '6600) is given in
Fig. 2. Here we see the C(io; # 1 : l O) each of which can access
the central computer (Cc) primary memory (Mp). Figure 2 shows

CC

Fig. 2. CDC 6600 PMS diagram (simplified).

472 Part 5 I The PMS level Section 4 I Network computers and computer networks

why we consider the 6600 to be fundamentally a network. Each
Cio (actually a general-purpose, 12-bit C) can easily serve the
specialized Pi0 function for Cc. The Mp of Cc is an Ms for a Cio,
of course. By having a powerful Cio, more complex input-output
tasks can be handled without Cc intervention. These tasks can
include data-type conversion, error recovery, etc. The K’s which
are connected to a Cio can also be less complex. Figure 2 has
about the same information as Thorton’s Fig. 1 block diagram
(Chap. 39).

A detailed PMS diagram for the C(’6400, ‘6416, ‘6500, and
‘6600) is given in Fig. 3. The interesting structural aspects can
be seen from this diagram. The four configurations, 6400 -
6600, are included just by considering the pertinent parts of
the structure. That is, a 6416 has no large Pc; a 6400 has a sin-
gle straightforward Pc; a 6500 has two Pc’s; and the 6600 has
a single powerful Pc. The 6600 Pc has 10 D’s, so that several
parts of a single instruction stream can be interpreted in paral-
lel. A 6600 Pc also has considerable M.buffer to hold instruc-
tions so that Pc need not wait for Mp fetches.

The implementation of the 10 Cio’s can be seen from the
PMS diagram (Fig. 3). Here, only one physical processor is used
on a time-shared basis. Each 0.1 ps a new logical P is processed
by the physical P. The 10 Mp’s are phased so that a new access
occurs each 0.1 ps. The 10 Mp’s are always busy. Thus the i.rate
is 10 x 12 b/ps or 120 megabits/s. This process of shifting
a new Pc state into position each 0.1 ps has been likened to
a barrel by CDC. A diagram of the process is shown in Fig. 4.

The T’s, K’s, and M’s are not given, although it should be
mentioned that the following units are rather unique: a K for
the management of 64 telegraph lines to be connected to a
Cio; an Ms(disk) with four simultaneous access ports, each at
1.68 megacharls data transfer rate, and a capacity of 168
megachar; an Ms(magnetic tape) with a K(# 1:4) and S to allow
simultaneous transfers to 4 Ms; the T (display) for monitoring
the system’s operation; K’s to other C’s and Ms’s; and con-
ventional T(card reader, punch, line printer, etc.).

ISP

The ISP description of the Pc is given in Appendix 1, Chap. 39.
The Pc has a very clean, straightforward scientific-calculation-
oriented ISP. We can consider it a variation on the general-
register structure because the Pc state has three sets of general
registers. Their use is explained both in Chap. 39 and its Ap-
pendix 1. This structure assumes that a program consists of
several read accesses to a large array(s), a large number of
operations on these accessed elements, followed by occasional

write accesses to store results. We would agree that this is a
valid assumption for scientific programs (e.g., look at a FOR-
TRAN arithmetic statement), and it is probably valid for most
other programs as well.

Cc has provisions for multiprogramming in the form of a
protection and relocation address. The mapping is given in the
ISP description for both Mp and Ms(’Extended Core Storage-
/ ECS).

Appendix 2, Chap. 39, has an ISP description of the PCP.
Appendix 2 includes a figure which shows the instruction de-
coding and execution as well. The 6600 PCP is about the same
as the early CDC 160. The PCP has an 18-bit A register because
it has to process addresses for the large Cc.

One interesting aspect of the 6600 which we question is the
lack of communication among all components at the ISP (pro-
gramming) level. When Pc stops, it has no way of explicitly
informing any other components. There are no interprocessor
interrupts. An io device cannot interrupt a Pio, nor can Pio’s
communicate with one another except by polling. The state
switching for Pc is, however, elegant, since a Pi0 can request
Pc to stop a job, store Mps, and resume a new task in one
instruction. (The t.save + t.restore - 2 ps.)

The operating system

The Cio’s functions are data transmission between a peripheral
device and the large Cc via the Cio’s Mp with some data trans-
formation or conversions: complete task management, includ-
ing initiation, termination, and error handling; and manage-
ment of Pc. The Cio’s perform in about the same manner as
the C(’Attached Support Processor) in the N(’360 ASP) (Chap.
40, page 506). The operating-system software is managed by
a single fixed Cio. The remaining nine Cio’s are free, and as
io tasks arise in the system, the Cio’s assign themselves to
particular tasks, carry out the tasks, and then free themselves
to take on other tasks. The operating-system software resides
in Mp(Pc) (that is, Cc) accessible to all Cio’s and includes:

1 The variables which determine the state of a particular
job, e.g., data pointers to Ms(disk, ‘ECS), running time,
a list of jobs to do, etc.

2 Programs for the Cio’s
a Parts of the operating system used by the Cio re-

sponsible for the system management
b IO management programs (or programs to get the

task management program from Ms) which the Cio’s
use

Section 4 1 Network computers and computer networks 473

M('Barre1; working; IO w; 5 1 b/w; 0.1 ps/w)

Mp(#O:Y)'- S"-Pc3 (bO:9)-Stm-S #1.12

T('Dead Start Console)- I
K-L(l vs/w; I2 b/w)-

i v 4 1 [fixedjrK-STT(bl :2; CRT; display)-

Mp4 (#0:31)-S6-

l l LT (key board) -
'Read Pyramid; buffer:
12 b/w: M(workinq:

(1+2+3+4+5): 12 b/w): ! \ .2 p/w)
7 7

S(4 K: I6 Ms)-Ms" (#0:15)

1 CB L(#2,3,4: to:'Extended Core Coupler)
J

c9

'Mp(core; 1.0 ps/w; 4096 w; 12 b/w)
ZS(time multiplex: . I ps/w; 12 b/w)

3Pc('Peripheral and Control Processor; #0:9; time multiplex:.l p5/w: 1 address/instruction:

12 b/w; MpsC'Program Counter, Accumulator) 1 ,2 wlinstruction)

4Mp(core: 1 .O ps/w; 4096 w: (5 x 12) b/w)

'S(time multiplex: 0.1 ps/w: 60 b/w)
'Ms('Extended Core Storage/ECS; 3.2 ps/w; (125952 / 8) w: (8 x (60, I parity)) b/w)
7See Chapter 39 for operation.
*Only present i n CDC 6500
'No C('Centra1)in CDC 6416: CDC h500 and CDC 6400 do not have K('Scoreboard), separate D's,
and M('lnstruction Stack).
Pc('6600; 15, 30 b/instruction: techno1ogy:transistor: - 1964: data: si,bv,w,sf,d

D('Shift)
D('Boo1ean)
D (# I : 2: ~lncrement)

D ('Branch)

D('Add; 0 .3 ps)

O('Long Add)
D(#1:2: Multiply; 1 p s)

D('Divide: 2.9 ~ s)

I p s (f 1 ip flop: -16 w)-S('Swi tchboard)
i
I
I

M .worki ng

.- .-

Fig. 3. CDC 6400, 6416, 6500, and 6600 PMS diagram.

474 Part 5 1 The PMS level

I 2 3 4 5 6 7 IO I I 12

Section 4 I Network computers and computer networks

0 I 2 3 4 5 6

CENTRAL
MEMORY

(60)

7 1 0 1 1 1 2 1 3 1 4

10 MEMORIES, 4096 WORDS EACH, 12-BIT

t t l

1121 1 L 1121 *

1 REAL TIME

,121

EXTERNAL EWIPMENT

Fig. 4. CDC 6600 peripheral and control processors. (Courtesy of Control Data Corporation.)

Section 4 I Network computers and computer networks 475

yps f l i p f l o p : 27.5 ns/w: -S D('Long Add)

D (' Increment)

D (Pop" I a t i on Count)

D('Boolean)

- 11; 16 w; 60 b/w

- S K M.workinq: i n s t r u c t i o n D (' S h i f t) - c 12 w : 60 b/w

1 - - - - - - - - - - - -1

i n t e r p r e t e r D('Normal ize)

M ' I n s t r u c t i o n Stack: D (' F l o a t i n q Add)

f l i p f l o D : 27.5 ns/w; D (' F l o a t i n q M u l t i p l y) I D (' F l o a t i nq D iv ide)

In a typical system, one might expect to find the following
assignment of PCP's to be:

1 Operating-system execution, including scheduling and
management of Cc and all Cio's

Display of job status data on T(display) 2

3 Ms(disk) transfer management

4

5 L(# 1:3; to:C.satellite)

6 Ms(magnetic tape)

7 T(64 Teletypes)

8

9 Free

10 Free

T(printers, card reader, card punch)

Free to be used with Ms(disk) and Ms(magnetic tape)

CDC 7600
The CDC 7600 system is an upward compatible member of the
CDC 6000 series. Although the main Pc in the 7600 is compati-
ble with the main Pc of the 6600, instructions have been added
for controlling the io section and for communicating between
Large Core Memories/LCM and Small Core Memory/SCM. It is
expected to compute at an average rate of four to six times
a C('6600).

The PMS structure (Fig. 5) is substantially different from that
of the 6600. The C('7600 Peripheral Processing UnitIPPU),
unlike the C(l6600 Peripheral and Control Processor)'s, has a
loose coupling with the main C. The PPU's are under control
of the main C when transferring words into SCM via K('Input-
Output Section). The 15 C('PPU)'s have 8 input/output chan-
nels. These channels, which can run concurrently, provide the
link between C('PPU) and peripheral Ms's and T's. Some of the
PPU's are located in the same physical space as the Pc.

Ms(#0:7)'

Mp(#0:31)"-S3TFJc5

S -t(M.buffer: core to core transfers1 T I

Basic N (' C D C 7600)

Fig. 5. CDC 7600 computer PMS diagram.

476 Part 5 1 The PMS level

The 7600 Pc can be interrupted by a clock, the PPU’s, and
trap condition within the Pc. A breakpoint address, BPA, can
be set up within Pc such that, on the program reaching BPA,
a trap is initiated. This interruption scheme is in contrast to
that of the 6600, which could not be interrupted or trapped.
The 7600 interrupt may be a reaction to the lack of intercom-
munication in the 6600.

Conclusions

Although the 6600 was somewhat behind its announced delivery
schedule and represented a significant drain on the financial
resources of CDC, it is now clear that it is a successful product.

Section 4 1 Network computers and computer networks

There have been instances of very large computers not being
carried to completion either for financial or technical reasons.
The 6600 seems to be the first large computer to achieve these
marks of success. Here we are interested in the 6600 because
it has held the “world’s largest computer” title for so long.

Computer-network examples

In Chap. 40, we present examples of seven computer networks.
There is a dearth of both computer networks and of papers on
computer networks.

This chapter takes examples from papers and from knowl-
edge of several existing or proposed networks.

Chapter 38

The RW-400-a new polymorphic
data system1

R. E. Porter

Summary The RW-400 Data System, based upon modularly constructed,
independently operating and flexibly connected components, is the logically
evolved snccessor to conventional computer designs. It provides the means
by which information processing requirements can be met with equipment
capable of producing timely results at a cost commensurate with problem
economic value. System obsolescence is minimized by the expandahility in
numbers and types of processing modules. Real time reliability is assured
by component duplication at minimum cost and by the advanced design
techniques employed in the system’s manufacture. Man-machine commu-
nication facilities are program controlled for maximum flexibility. Parallel
processing and parallel information handling modules increase the system’s
speed and adaptability when handling complex computing workloads. This
polymorphic design truly represents an extension of man’s intellect through
electronics.

The RW-400 Data System is a new design concept. It was devel-
oped to meet the increasing demand for information processing
equipment with adaptability, real-time reliability and power to
cope with continuously-changing information handling require-
ments. It is a polymorphic system including a variety of function-
ally-independent modules. These are interconnectable through a
program-controlled electronic switching center. Many pairs of
modules may be independently connected, disconnected, and re-
connected, in microseconds if need be, to meet continuously-
varying processing requirements. The system can assume whatever
configuration is needed to handle problems of the moment. Hence
it is best characterized by the term “polymorphic”-having many
shapes.

Rapid, program-controlled switching of many pairs of func-
tionally-independent modules permits nondisruptive system ex-
pandability, operating reliability, simultaneous multi-problem
processing capability, and man-machine intercommunication
feasibility. These are only partially found in computers of conven-
tional design.

Computer users have been forced heretofore to match problems
to computer limitations. Problem changes posed serious reorien-
tation and reprogramming difficulties. Changes from one computer

‘Datumnution, vol. 6, no. 1, pp. 8-14, January/Fehruary, 1960.

to another model, due to growth in applications, often resulted
in large expenditures of time and money. During maintenance or
malfunction of a conventional computer its entire processing
capacity is shut down. Real time processing reliability cannot be
maintained on an around-the-clock basis. The conventional ma-
chine must process its problems serially. This serious limitation
is only partially alleviated by time-sharing or computing-ele-
ment-doubling designs. The high cost-per-hour of conventional
computer operation rules out direct man-machine intercommuni-
cation during other than emergency situations.

The radically-new polymorphic design concept of the RW-400
Data System was evolved by Ramo-Wooldridge engineers to pro-
vide a practical solution to those information processing problems
now inadequately handled by conventional computer designs. The
RW-400 is a powerful new tool in the field of intellectronics-the
extension of man’s intellect by electronics.

System description

The RW-400 Data System contains an optional number and variety
of functionally-independent modules. These communicate via a
central electronic switching exchange. Each module is designed,
within practical economic and functional limits, to maximize
system adaptability over a wide range of problem types and sizes.
This new design embodies the latest proven electronic design
techniques, assuring high processing speeds and high equipment
reliability. The RW-400’s modularity assures reliable, round-the-
clock processing of information with controllable computing ca-
pacity degradation during module maintenance or malfunction.
Practical man-machine intercommunication is achieved in the
RW-400 system by use of program-controlled information display
and interrogation consoles.

Figure 1 shows the over-all system design. Modules of various
types communicate through a central exchange switching center.
Computing and buffering modules provide control for the system.
These modules are self-controlled and make possible completely
independent processing of two or more problems. One of the
computer modules may be designated the master computer and

477

478 Part 5 I The PMS level Section 4 I Network computers and computer networks

DISPLAY

CONTROLLING

I COMPUTING

BUFFERING I
4

SWITCHING CENTER

I. I

I-

I I I
AUXILIARY STORAGE INPUT OUTPUT

Fig. 1. The RW-400 data system.

in this role initiates and monitors actions of the entire system. An
alert-interrupt network is provided to allow coordinated system
action. Therefore, the system as applied to given information
processing problems may change on a short range (microsecond)
basis, thus providing, through programming, a self-organizing
aspect to the system. In addition, the system may change through
the years as the applications change. The most efficient and eco-
nomical complement of equipment is applied to the problem at
all times.

An RW-400 system is built around an expandable Central
Exchange (CX) to which a number of primary modules may be
attached. These are: Computer Modules (CM); self-instructed
Buffer Modules (BM); Magnetic Tape Modules (TM); Magnetic
Drum Modules (DM); Peripheral Buffer Modules (PB); and
console communication Display Buffer Modules (DB). How many
modules are put together in a system is entirely a function of
system application. In addition to primary system modules,
punched card, punched tape, high speed printing and control
console devices are available. These handle nominal system in-

put/output requirements. Additional man-machine communica-
tion devices such as interrogation, display and control consoles,
may be included in the system as problem requirements dictate.
A Tape Adapter (TA) module is available to provide compatibility
with magnetic tape of other computers. Information generated at
Flexowriter inquiry and recording stations may be directly re-
ceived by the system via the Peripheral Buffer Module. This latter
module also buffers the receipt of TWX and punched tape infor-
mation.

The way in which a particular RW-400 Data System functions
depends on the number and type of each module included. It may
initially be composed of the minimum number and variety of
modules needed to do a small problem or the initial part of some
large but yet-to-be-defined problem. Such a system would work
much like a conventional computer. It would probably include
a buffer module and thus have a parallel data handling capability
not found in the conventional design at a comparable price. The
initial system installation may then be augmented by the timely
addition of modules.

Chapter 38 1 The RW-400-a new polymorphic data system 479

A buffer module (BM) has the capability to control its acquisi-
tion and dissemination of information independently. The buffer
provides a computer module with parallel data handling capability
without complicating the problem processing program with the
conventional intermixture of arithmetic and housekeeping in-
structions. Information previously generated by the processing
program may be appropriately disposed of within the system while
processing continues. Data needed at a subsequent time in the
processing may be retrieved from system storage in advance of
need while processing progresses. The simultaneity of these oper-
ations not only materially increases over-all processing speed but
also increases the practical utility of the less costly types of in-
ternal system storage such as a magnetic tape.

The computer (CM) or buffer (BM) modules, when acting in
a controlling capacity, may initiate connection to an information
storage or handling module during that part of the processing
program when the two can work profitably in unison. The pair
of modules thus interconnected neither affect nor are affected by
other modules. Logical interlocks prevent unwanted cross talk
among modules. An intermodule communication system lets con-
trolling modules signal status or alert other such modules of their
need to communicate. The decision by a module receiving an alert
signal to permit interruption or to proceed is optional with
that module. The optional interrupt feature is that needed to
make the often-discussed but seldom-used program interrupt
capability both useful and practical. Programs may thus permit
interruptions only at convenient points in the processing
sequence.

Modules may be assigned, under program control, to work
together on a problem in proportion to its needs. As soon as a
module’s function is complete for a given problem, that module
may be released for reassignment to some other task. The system
is thus self-controlled to match processing capacity to each prob-
lem for the time necessary to do the job. Full system capacity may
be brought to bear upon a very large problem when needed. This
capacity may be apportioned among a number of smaller problems
for simultaneous processing, program compilation, program
checkout, module maintenance etc., when it is not needed for
maximum system effort.

From the preceding system description, it is apparent that such
equipment can be expanded from a modest initial installation into
a very powerful and comprehensive information processing cen-
ter as requirements warrant. More specific descriptions of prin-
cipal system modules follow to give the reader a better feel
for how this system might perform his information processing
work.

The functional modules

The key to appreciative understanding of the power of the RW-400
lies in knowledge of intermodule connection. It is appropriate to
describe the Central Exchange (CX) unit first, then follow with
descriptions of the various modules.

The central exchange

The Central Exchange performs the vital function of intercon-
necting a pair of modules whenever requested to do so by either
a computer or a buffer module. Since internal programmed control
is only possible within a computer or a buffer module, one of the
interconnected pair of modules must be either a computer or a
buffer. The time in which any connection may be made or broken
is about 65 microseconds. An exchange has basic capacity to
connect any of 16 computer or buffer modules to any of 64 auxili-
ary function modules. There is nothing sacred about the number
16 since it is possible to extend the CX module’s interconnection
matrix through design modification when need arises. The CX is
an expandable, program-controlled, electronic switching center
capable of connecting or disconnecting any available pair of
modules in roughly the time of one computer instruction execu-
tion. Figure 2 illustrates the permissible module interconnections
within the Central Exchange.

Every intersection on the illustration represents a possible
connection between modules. The “x-ed” intersections indicate
typical connections in force at any point in time. The control logic
of the CX module’s connection table prevents more than one
interconnection on any horizontal (controlling) or vertical (con-
trolled) data path representation on the diagram. When connec-
tion is requested of the Central Exchange while one of the re-
quired modules is already carrying out a previous assignment, the
requesting module can be programmed to sense this condition and
wait until connection can be made without interference. Should
waiting be undesirable, the requesting module can go on about
its business and check back later to see when the desired connec-
tion can be made. There is an implication here, of course, that
knowing the kind of a system he is dealing with, a programmer
requests connections in advance of need whenever possible.

Provision for master-slave control is included via an Assignment
Matrix established within the CX module by a computer module
previously assigned to master status. Such a provision is necessary
to preclude inadvertent connection requests from unchecked
programs or malfunctioning control modules from affecting sets
of modules simultaneously processing another problem. Connection
requests are therefore essentially filtered through both an assign-
ment and an interconnection validity matrix prior to being acted

480 Part 5 I The PMS level Section 4 1 Network computers and computer networks

TM

Fig. 2. The Central Exchange connection matrix.

upon by the Central Exchange. The computer module manually
assigned to master status is the only one permitted to cause the
interconnection of a pair of modules which does not include itself.

The computer module (See Fig. 3)

The Computer Module (CM) is a self-sufficient, general purpose,
two-address, parallel word, fixed point, random access computer.
Its internal magnetic core memory has a capacity of 1024 words.
A computer word consists of 26 information bits and 2 parity bits.
Each parity bit is associated with the 13-bit half word transferred
in parallel via the Central Exchange to other system modules. The
instruction repertoire of the CM consists of 38 primary instructions
whose various modes effectively result in over 300 different oper-
ations. Of the 39 available CM-400 instructions, 24 may be classi-
fied as “arithmetic” and 10 as “program control” or “sequence
determining” instructions. Five additional instructions may be

classified as “external” or “input/output” instructions. All but
three of the 24 arithmetic instructions fit into a symmetric scheme
of classification wherein there are seven basic operations, each
having three distinct modes. The seven basic operations are-add,
subtract, absolute subtract, multiply, divide, square root and insert.
The three modes are-Replace, Hold and Store. If we let the
capital letter “G” identify the first operand, “H” identify the
second operand, an “’” signify an arbitrary operation, the sym-
bol “+” indicate replace, and “A” the word in the accumulator,
then the three modes may be characterized as:

Replace: H ’ G + H, A
Hold: H G+ A
Store: A G+ H, A

The three remaining arithmetic operations are Add Accumulate
wherein the contents of H and G are added to the Accumulator;

Chapter 38 1 The RW-400-a new polymorphic data system 481

Multiply Accumulate wherein the contents of H are multiplied
by G and added to A; and Transmit where the contents of G are
stored in H.

The ten program control instructions are Store, Store Double
Length Accumulator, Load Accumulator, Insert Mask in the
S Register, Stop, Link Jump, Compare Jump, Tally Jump, Test
Jump and a Multi-purpose Shift.

The five external instructions are those which cause data to
be transmitted to or received from a device external to the com-
puter. Each command is multi-purpose in nature and hence equiv-
alent to several conventional external instructions. The commands
are-Command Output, Data Input, Conditional Data Input, Data
Output and Character Transfer. A comprehensive discussion of the
variation of each of these commands is not pertinent to this article.

*

Suffice it to say that commands are available for carrying out a
wide variety of intermodule data communication.

The interrupt capability of a Computer Module is a logical
generalization of the “trapping” feature found on several conven-
tional computers. It permits the automatic interruption of a pro-
gram, at the option of the program, when the computer module
receives an “alert” that a condition requiring attention has arisen.
It can be used to warn the program when an error of some type
has occurred, minimize unproductive computer waiting time while
another module completes its task, eliminate many programmed
status test instructions and provide a convenient means of sub-
jecting one computer module to the control of another. Program
control of interruptions within a CM-400 is accomplished through
the sense register S. This register may be filled with an interrupt

J I
CONTROL

LOGIC 1 L
OP ADDRESS ADDRESS

INSTRUCTION REGISTER

INPUT LINES b
MAGNETIC

CORE
STORAGE

CENTRAL
EXCHANGE

I - r J t l OUTPUT LINES

TXCHANGE RFGISTFR c.

L- CONTROL PANEL

INTERRUPT
SENSING ACCUMULATOR
REGISTER

ACCUMULATOR
EXTENSION

I
I

ALERT CONDITIONS

Fig. 3. The CM-400 Computer Module.

482 Part 5 I The PMS level Section 4 1 Network computers and computer networks

RW-400 analysis console.

mask by means of the Insert S instruction. A bit by bit correspond-
ence exists between the S register and the interrupt register and
the interrupt register I to which the alert lines are connected. A
Test Jump instruction can be used to examine the coincidence
between these registers of an alert signal in a bit position corre-
sponding to a one in the S register mask. If an alert is received
by the computer during the execution of an instruction, control
will be transferred to memory location “0” at the end of the
instruction if, and only if, (a) the sense bit corresponding to the
alert is a “one,” (b) the master sense bit is a “one,” and (c) the in-
struction was not an “Insert s.’’ The master sense bit in the S reg-
ister may be programmed to permit the interrupt to take place
according to the interrupt mask or to inhibit interrupt until the
program can conveniently cope with it. All instructions being
executed at the time an interrupt condition occurs are completed
before the interruption is allowed to take place.

Figure 3 schematically illustrates the Computer Module’s pri-
mary registers and the interconnecting information paths.

Typical two-address addition and subtraction times are ap-
proximately 35 microseconds including memory access time. Mul-
tiplication takes about 80 microseconds, and division and square
root about 130 and 170 microseconds respectively.

Before attempting to draw a comparison between a CM and
a deluxe conventional computer the reader should bear in mind

the trade offs in features versus cost; parallel processing versus
sequential processing; independent information handling versus
program complicating “housekeeping”; and real time system reli-
ability versus periodic inoperability. The only valid comparison
is that between the RW-400 Data System and a conventional
computer applied to the same task. The contribution to the
RW-400 system made by the Buffer Modules can be better assessed
by the reader after the following description has been considered.

The buffer module

A Buffer Module consists of two independent logical buffer units,
each having 1024 words of random access magnetic core storage
and a number of internal registers used in performing its functions
when in the self-controlling mode. A Buffer Module may be con-
nected to a Computer Module so that the Buffer’s core storage is
accessible to the computer as an extension of the computer’s own
storage. A Buffer may also serve as an intermediary device between
a computer and another module, such as a tape or drum, to
minimize time conventionally lost in data transfers. The Buffer
is capable of recognizing and executing certain instructions stored
in its own memory. It can therefore be left to perform data han-
dling functions on its own while computer modules are otherwise
occupied.

A Buffer Module may be connected to a Computer Module
and the buffer 1024 word storage used as an indirectly addressed
extension of the computer’s own working storage. When the ad-
dress 1023 (all ones) appears in the operand field of a computer
instruction to be executed, the computer is signalled that the
operand refers to some cell in buffer storage. The computer then
uses the number in the buffer read register R (or in the case of
a few instructions, the buffer write register W) as the effective
address designated by the operand field of the instruction. Ex-
tended addressing may be used in either the first or second operand
field of the instruction or in both operand fields. If extended
addressing is used in only one operand field, the effective address
designated by that field is the number in register R. A “1” is
automatically added to the contents of the R register after the
instruction is executed. If extended addressing is used in both
operand fields of an instruction, the effective address of the first
operand is the number in register R and the effective address of
the second operand is one more than the number in register R.
A “2” is automatically added to the contents of register R after
the execution of this type of instruction. The R (or W) register
may be preset to any desired initial condition by means of the
computer’s Command Output instruction. All the commands being
executed by the computer must be stored within the computer

Chapter 38 1 The RW-400-a new polymorphic data system 483

module’s storage and may not be in buffer cells addressed by the
computer at execution time. The extended addressing and buffer
register indexing may be used to materially simplify repetitive data
acquisition operations.

The primary function of a Buffer Module is not, however, that
of an auxiliary computer storage unit. The drum and tape modules
more aptly serve this function in the RW-400 system. A Buffer
Module is capable of operating autonomously and of controlling
other modules such as Tape Modules, Drum Modules, Peripheral
Buffers, Display Buffers, Printers or Plotters. This capability en-
ables the Buffer Modules in a system to perform routine tape
searching and data transferral tasks thereby freeing the Computer
Modules to do more computing. In its “self-instruction” mode, the
buffer executes its own internally stored program in much the same
fashion as a computer. The memory of a Buffer Module will
therefore be occupied by its own control programs as well as blocks
of data which it is holding for transmission to other units. The
buffer is used to acquire information from the relatively slower
auxiliary storage and communication modules while the computer
proceeds at high speed. Blocks of information retrieved in advance
of computer need by the buffer may then be rapidly transferred
to the computer’s own storage or operated upon as they stand in
the buffer via the indirect addressing capability of the computer.
Another feature of the buffer is its switching capability. Each
Buffer Module is composed of two buffer units tied together. A
unit function switching feature permits the employment of the
two units together in an alternating mode of operation. Continuous
information transfer from tape to computer, for example, may be
accomplished without stopping the tape unit. A switching in-
struction executed simultaneously by both units of a Buffer Module
causes whatever devices were connected to the first unit to be
connected to the second and vice versa.

Now that the functional controlling modules and the module
interconnection concept have been discussed, the more conven-
tional auxiliary storage modules available with the system may be
described to round out the processing capability of the system.

The tape modules

A Tape Module consists of an altered Ampex FR-300 tape transport
plus the necessary power supplies and control circuitry to effect
information reading, writing and control. One inch mylar tape is
used. Information is written on 16 channels-two of which are
clock channels. The remaining 14 channels consist of 13 informa-
tion bits plus parity. The information reading or recording rate
is 15,000 computer words per second. Data may be recorded on
tape in variable blocks up to a maximum of 1024 words per block

(the size of the storage available to hold the data in a sending
or receiving module). Each block is preceded by a block identi-
fication which permits selective tape information searching by a
Buffer Module. Single blocks imbedded in a tape file of other
blocks can be overwritten. A two-stack head permits automatic
verification of each block as it is written. Readback parity errors
are automatically detected during the writing process. Thus drop-
out areas may be determined while the data is still available in
a computer or buffer for recording elsewhere.

A description of the RW-400’s tape handling capability would
not be complete without mentioning the Tape Adapter (TA)
module. This is a self-contained unit capable of performing the
reading and writing of magnetic tapes in a format acceptable to
the IBM 704 and 709 systems. The TA consists of an Ampex FR-300
half-inch digital tape transport, including dual gap head and servo
control system; reading, writing and control circuits; and a module
housing with its own blower and power supply.

RW-400 Buffer Module.

484 Part 5 I The PMS level Section 4 I Network computers and computer networks

The drum module

The Drum Module (DM) contains a magnetic drum with storage
capacity of 8192 words. It may be connected to either a Computer
or a Buffer Module through the Central Exchange. Average access
time to the first word position on the drum is 8y2 milliseconds.
Successive words are transmitted at the rate of 60,000 computer
words per second. The Drum Module is conventionally used as
an intermediate item storage device to minimize tape handling
time.

Special system communication modules

The external data and man-machine communication of the
RW-400 Data System are handled via drum buffer modules. A wide
variety of asynchronously operated equipment is speed matched
and program controlled through the features designed into these
special system communication modules.

The Peripheral Buffer (PB) provides input/output buffers for
communication between Computer or Buffer Modules and rela-
tively slow speed external devices such as Flexowriters, Plotters,
Punched Tape Handlers, Teletype Lines and Keyboard Operated
Equipment. The Peripheral Buffer stores its information in four
pairs of bands which operate alternately as circulating registers.
Each band contains eight input and eight output buffers for a total
of 32 input buffers and 32 output buffers in each Peripheral Buffer
Module. Each buffer is a drum band sector 64 computer words
long. Conventionally one input and one output buffer sector are
connected to each external device (such as a Flexowriter) to permit
two-way communication between the external device and the
RW-400 system.

The display buffer

A Display Buffer (DB) acts as a recirculating storage for the
cathode ray tube display units in a Display Console. Information
to be displayed is sent to the DB band associated with a particular
display tube via the Central Exchange. The Display Buffer sends
only status information back to other system modules upon request.
The information displayed on any tube is controlled by the bit
pattern sent to the Display Buffer. The display pattern is regener-
ated 30 times per second to minimize image fading and flicker.
The preceding explanation of the Display Buffer has little meaning
to a reader unfamiliar with the features of the Display Console
itself. This console is therefore described in more detail in the
following paragraphs.

Display consoles

Display Consoles can give a problem “analyst” or “monitor” a
visual picture of the status or results of any information being

handled by the RW-400 system. In addition to the actual Cathode
Ray Tube, numerical indicator, signal lamp and typewriter infor-
mation outputs, several types of keyboard activated system control
and parameter entry facilities are provided on the console. The
total man-machine communication facility represented by each
console is designed to be primarily a function of the computer
control programs initiated by the analyst via his console.

A set of Display Control Keys generate messages which are
recorded on a Peripheral Buffer sector for later interpretation and
display generation by a computer program. A set of Process Step
Keys are provided the analyst so that he can initiate prepro-
grammed system processing variations. Associated with the Process
Step Keys is an overlay or “program card’ which permits the
assignment of a variety of meanings to the set of Process Step Keys.
Insertion of the overlay by the analyst gives him a unique label
for each Process Step Key and automatically cues the controlling
computer to assign the corresponding set of programs to each key
message. A Data Entry Keyboard is provided on the console so
that the analyst can enter control parameters when asked to do
so via the display devices.

A Joystick Lever affords the console operator a means of con-
trolling the position of cross hair markers on the cathode ray
display tubes. Associated with the joystick are control keys which
may be used to send a message to the controlling computer speci-
fying the coordinates of the cross hairs. Control programs may be
written, for example, to act upon this information to reorient the
display with respect to the area selected by the cross hair position.

A Light Gun is also provided as a means of selecting any point
on the cathode ray tube displays. The gun emits a small beam
of light. With the beam centered on a given point on the cathode
ray display tube, pressing the trigger results in the automatic
generation of a message to the Peripheral Buffer specifying the
address in the Display Buffer containing the coordinates of the
selected point.

A set of Status and Error lights are contained on the Display
Console to provide the console operator with over-all knowledge
of the system and thus minimize conflicting control requests and
intermodule interference. For example, a Peripheral Buffer may
not be ready to accept a console key message until after certain
previously requested control actions have been completed. The
Status Lights indicate this condition to the console operator so
that he may act accordingly.

The printer module

The Printer Module (PR) is basically a 160 column, 900 line per
minute Anelex type printer. It receives information from either
a Computer or a Buffer module via the Central Exchange. Indi-

Chapter 38 1 The RW-400-a new polymorphic data system 485

vidual characters to be printed are represented by a 6-bit code
and are transmitted four to a computer word. Zero suppression,
line completion and information block end codes are included for
format control. A plugboard is provided for flexibility in columnar
data arrangement. Paper feed is controlled by means of a loop
of 7-channel punched paper tape. Control of the printing operation
has been arranged so that the connected control module may send
line headings from one set of memory locations, stop sending
information while going to a different part of the memory, and
then proceed to send data from this new set of memory locations
to complete a line of print.

The punched card modules

The RW-400 Data System may be equipped with a high speed
punched card reading module (CR) and an IBM card punch. The

CR communicates with Computer or Buffer modules via the
Central Exchange. It is capable of reading 80 column punched
cards at the rate of 2,500 cards per minute. The card punch is
connected to the system through the Peripheral Buffer Module
(PB) since it is a relatively low speed device. Emphasis has not
been placed on directly connected punched card equipment since
the sources of large volumes of punched cards usually convert this
data into magnetic tape form which may be more rapidly handled
using the Tape Adapter Module (TA).

References
RothS59; Westc6O

486 Part 5 I The PMS level Section 4 1 Network computers and computer networks

APPENDIX 1 RW 40 ISP DESCRIPTION

Appendix I

RW-40 I5P D e s c r i p t i o n

The descr io t ion does not include Innut-Output i n s t r u c t i o n s , i n t e r r u p t s nnri communication i i i th t h e other c o m u t e r s or processors.
The descr ip t ion was taken from the Preliminaru Yanual o f 1n.formation on the RCI-40 and i s vo doubt -hanged i n f i n a l machines.

P c S t a t e

k 2 6 : I >
B<26: I >

AB[O:l]<26:1>:= A B

P<IO:l>

ov

SR<20:1>

P a r i t y e r r o r

Program e r r o r

Run

Mp S t a t e

M[1:1022]<26:1>

?c Console S ta te

C J k 8 : I >

Control,oanel ,tes t

Fxternal S t a t e f o r I O and Other Computers

Tape-read

Ex terna l Jddress/EA<lO: I >

M EO: IO23 1 4 6 : 1 >
I &ond<l9: I >

I O ,Se 1 e c t 0 : 1 >
lOJata<l3: I >

Ins t ruc t ion Format

i n s t r u c t i o n / i Q 6 : l >

f / o p d : l > := iQ6 :21>

g<IO:l> := i Q O : l l >

j 6 : l > := g 6 : 1 >

h<10:1> := i < I O : l >

Operand Calculation Process

GQ6:1$:= (GI; nex t

(g = 17778) iEx te rna lJdd ress t ExternalJddress + I)

G ' Q 6 : 1 > := ((4 = 0) - 0;
(0 < g < 1777) +M[qlQ6:l>;

(g = 1777) - M[External,AddressIQ6:1>)

H Q 6 : 1 > := (H I ; nex t

(h = 1777) -tExternal,Address +External-Address + I)

H ' (2 6 : b := ((h = 0) - 0;

(o<k 1777) - id[h]<26:1>

(g = 1777) + H[External,Address]<26: I >)

Arithmetic r e g i s t e r

extension t o A

Ar i thmet ic r e p i s t e r (double)

Proaram Counter

Overflow ,for ar i thmet ic s h i f t s , +, -, and /
Sense Register
for M~ and t rans fer t o o ther c o m u t e r s

undefined command or incorrec t seouence o f I O commands

M p repis tern n and 708.7 are tnnccess ih le

conditional .im switches

communication ind ica tor

tune search f lag

r e g i s t e r associated ?e t o address another module

ex tra memow being accessed by Fxternal Address r e g i s t e r
i n t e r r u n t conditions t o P c

1 o f 8 I O devices can be se lec ted
I O device Drrta

func t ion or OD code b i t s

f i r s t address
t e s t s e l e c t i o n parameter

second ac'dress

f i r s t onerani'

second operand

Chapter 38 1 The RW-400-a new polymorphic data system 487

Irs tmcLion In te rpr , e ta&icq ~ ' Y C J C ~ ~ S

R u n - (i n s t r u c t i o n < - M [P] : P <- P + 1 ; n e x t !etch

1nst ruc t ion"execut ion) eTecu :c

Trst,ructior S e t nn? Tnsiructior .?'kecu?iPr nroePss

I n s t r u c t ion-execu t i o n := (

Transmi t

A ~ ; t i t m e t i c i l l s complemencl
Replace Add

Hold Add

S t o r e Add

Replace S u b t r a c t

Hold S u b t r a c t

S t o r e S u b t r a c t

Replace Abso lu te S u b t r a c t

Hold Abso lu te S u b t r a c t

S t o r e Abso lu te S u b t r a c t

Replace M u l t i p l y

Hold M u l t i p l y

S t o r e M u l t i p l y

ReDlace D i v i d e

Hold D i v i d e

Store D i v i d e

Replace Square Root

H o l d Square Root

S t o r e Square Root

Accumulate Add

Accumulate M u l t i o l y

(:= op = 27) -> (H + G) :

(:= op = 0) + (Ov,A + H + G : n e x t H ' , - A) ;

(: = op = I) + (Ov,A t H + G) :

(: = op = 2) + (Dv,A + A + G ; n e x t H ' + A) :

(: = op = 3) + (Ov,A i - H - G : n e x t H ' .-A):

(: = op = 4) -,(Ov,A + H - G) :

(: = op = 5) + (flv,A - A - G : n e x t H ' + A) ;

(: = op = 6) ->(A + a b s (H) - abs(G): n e x t H ' + A) :

(:= op = 7) -> (A ,abs(H) - a b s (G)) :

(: = op = IO) -> (A - a b s (A) - a b s (G) : n e x t H ' + A) :

(: = op = 1 1) + (AR < - H x G : n e x t H ' < -A) :

(: = o p = 1 2) -> (A6 1. H x C):

(: = op = 1 3) -) (AB < - A x G : n e x t H ' < -A) :

(: = o p = 1 4) - > ((H r G) - > O v + I ;

(H < G) + (

A,E <-H/G: n e x t H ' + A)) :

(: = op = 1 5) -) ((H Z G) '0" - I ;
(H < G) --i (A,B t H / G)) :

(:= = 16) + ((A c) -jnv + 1;

(A < G) + (

A,E (- A / G : n e x t H ' , -A)) :

(: = op = 17) -) (A , -sqrt(H+G): nex t H' t A) :

(: = op = 2 0) - , (A - s q r t (H + G)) :

(: = op = 2 1) . i (A . -sqr t (A+G) : nex t H ' < - A) :

(: = op = 2 5) --> (A .-OvoA + H + C) ;

(:= op = 26) + (A i-flvOA + H x G) :

488 Part 5 I The PMS level Section 4 I Network computers and computer networks

(g<10:7> # 0) - (

A - ((g<IO> + I s o n d ; 7 g<IO> - 17??777?7) h

(96’ + SR; 7 g 8 > + 177777777) A

(g& + 1 0 W e l e c t o l O d a t a ; 7 s<b - I????????) A

(g q ’ + CJS; i g c / > - 177777777)); next

(gQ> @ T e s t) - (P - h)) ;
The T e s t condition is a se lec ted b i t of A , or o ther Pc or I O b i t s .

Test := ((j = 0) - 0 ;

(i I j i 32) -A<j \ . ;

(j = 33) - (O V ; Ov - 0) ;

(j = 34) - (P a r i t y e r r o r ; P a r i t y e r r o r - 0) ;

(j = 35) - (Control-panel t e s t ; Control,panel-test - 0) ;

(j = 36) -, (Tape-read; Tape-read + 0) ;

(j = 37) - (Prog ramgr ro r ; Program-error + 0))

L i n k Jump (:= op = 32) - ((g # 0) + (P + h ; G 4 O : l : + P);

(g = 0) - (P + h)) ;

T a l l y Jump (:= op = 33) - ((G = 7 0) - (P c h) ;

(G = 0) - ;
(G > O) - (G I - G - 1 ; P - h) ;

(G < 0) - (G - G + 1)) ;

Compare Jump (:= op = 37) - (A < G) + P + h ;

Load A (:= op = 34) - (A - Oogoh);

I n s e r t S (:= op = 35) - (S - (A A (OOgOh)) v (S A 7 (b g o h))) ;

Store AB (:= op = 36) (G * 8; H - A ;

(g = 0) A (h = 0) + (A + 8 ; B + A))

) end Instruction,executior

Chapter 39

Parallel operation in the Control Data
66001

James E . Thornton

History

In the summer of 1960, Control Data began a project which
culminated October, 1964 in the delivery of the first 6600 Com-
puter. In 1960 it was apparent that brute force circuit perform-
ance and parallel operation were the two main approaches to

more critical system control operations in the separate processors.
The central processor operates from the central memory with
relocating register and file protection for each program in central
memory.

periDheral control processors
any advanced computer.

This paper presents some of the considerations having to do
with the parallel operations in the 6600. A most important and
fortunate event coincided with the beginning of the 6600 project.
This was the appearance of the high-speed silicon transistor, which
survived early difficulties to become the basis for a nice jump in
circuit performance.

System organization

The computing system envisioned in that project, and now called
the 6600, paid special attention to two kinds of use, the very large

the large problem, a high-speed floating point central processor
with access to a large central memory was obvious. Not so obvious,
but important to the 6600 system idea, was the isolation of this
central arithmetic from any peripheral activity.

It was from this general line of reasoning that the idea of a
multiplicity of peripheral processors was formed (Fig. 1). Ten such
peripheral processors have access to the central memory on one
side and the peripheral channels on the other. The executive
control of the system is always in one of these peripheral proces-
sors, with the others operating on assigned peripheral or control
tasks. All ten processors have access to twelve input-output chan-
nels and may “change hands,” monitor channel activity, and
perform other related jobs. These processors have access to central
memory, and may pursue independent transfers to and from this
memory.

Each of the ten peripheral processors contains its own memory
for program and buffer areas, thereby isolating and protecting the

‘AFIPS Proc. FJCC, pt. 2 vol. 26, pp. 3340, 1964.

scientific problem and the time sharing of smaller problems. For

The peripheral and control processors are housed in one chassis
of the main frame. Each processor contains 4096 memory words
of 12 bits length. There are 12- and 24-bit instruction formats to
provide for direct, indirect, and relative addressing. Instructions
provide logical, addition, subtraction, shift, and conditional
branching. Instructions also provide single word or block transfers
to and from any of twelve peripheral channels, and single word
or block transfers to and from central memory. Central memory
words of 60 bits length are assembled from five consecutive pe-
ripheral words. Each processor has instructions to interrupt the
central processor and to monitor the central program address.

To get this much processing power with reasonable economy
and space, a time-sharing design was adopted (Fig. 2). This design
contains a register “barrel” around which is moving the dynamic
information for all ten processors. Such things as program address,
accumulator contents, and other pieces of information totalling
52 bits are shifted around the barrel. Each complete trip around
requires one major cycle or one thousand nanoseconds. A “slot”
in the barrel contains adders, assembly networks, distribution
network, and interconnections to perform one step of any periph-
eral instruction. The time to perform this step or, in other words,
the time through the slot, is one minor cycle or one hundred
nanoseconds. Each of the ten processors, therefore, is allowed one
minor cycle of every ten to perform one of its steps. A peripheral
instruction may require one or more of these steps, depending on
the kind of instruction.

In effect, the single arithmetic and the single distribution and
assembly network are made to appear as ten. Only the memories
are kept truly independent. Incidentally, the memory read-write
cycle time is equal to one complete trip around the barrel, or one
thousand nanoseconds.

489

490 Part 5 1 The PMS level

4096 WORD
CORE MEMORY -

PERIPHERAL

PROCESSOR
a CONTROL

Section 4 I Network computers and computer networks

4096 WORD 4096 WORD 405'6 WORD
COREMEMORY - - CORE MEMORY - CORE MEMORY

PERIPH ERAL PER1 PH ERAL PERIPHERAL

PROCESSOR PROCESSOR PROCESSOR
a CONTROL a CONTROL a CONTROL

c
4096 WORD

CORE MEMORY *
PERIPHERAL

PROCESSOR
a CONTROL

CORE MEMORY

UKl CENTRAL MEMORY * 4096 WORD
COREMEMORY

PERIPHERAL *n 6600 CENTRAL MEMORY 4 PROCESSOR

6600 CENTRAL PROCESSOR
a CONTROL

PHERIPHERAL
a CONTROL I PROCESSOR

CORE MEMORY CORE MEMORY

a CONTROL
PROCESSOR

a CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL '?- PROCESSOR
a CONTROL

4096 WORD

PERIPHERAL

PROCESSOR
a CONTROL

Fig. 1. Control Data 6600.

PROCESSOR PROCESSOR
REGISTERS MEMORI ES

1

cc
PROCESSOR TIME-SHARED PROCESSOR - REGISTERS INSTRUCTION MEMORI ES

CONTROL

t
L

CENTRAL
MEMORY

(60)

WRITE PYRAMID

CENTRAL
MEMORY I- (60)

o I 2 3 4 5 6 7 1 0 1 1 12 1 3 1 4

EXTERNAL EQUIPMENT I
Fig. 2. 6600 peripheral and control processors.

Chapter 39 I Parallel operation in the Control Data 6600 491

Input-output channels are bi-directional, 12-bit paths. One
12-bit word may move in one direction every major cycle, or 1000
nanoseconds, on each channel. Therefore, a maximum burst rate
of 120 million bits per second is possible using all ten peripheral
processors. A sustained rate of about 50 million bits per second
can be maintained in a practical operating system. Each channel
may service several peripheral devices and may interface to other
systems, such as satellite computers.

Peripheral and control processors access central memory
through an assembly network and a dis-assembly network. Since
five peripheral memory references are required to make up one
central memory word, a natural assembly network of five levels
is used. This allows five references to be “nested” in each network
during any major cycle. The central memory is organized in
independent banks with the ability to transfer central words every
minor cycle. The peripheral processors, therefore, introduce at
most about 2% interference at the central memory address control.

PERIPHERAL A N D

C O N T R O L PROCESSORS

12 INPUT

OUTPUT C H A N N E L S

UPPER
BOUNDARY

LOWER
BOUNDARY

A single real time clock, continuously running, is available to
all peripheral processors.

Central processor

The 6600 central processor may be considered the high-speed
arithmetic unit of the system (Fig. 3) . Its program, operands, and
results are held in the central memory. It has no connection to
the peripheral processors except through memory and except for
two single controls. These are the exchange jump, which starts
or interrupts the central processor from a peripheral processor,
and the central program address which can be monitored by a
peripheral processor.

A key description of the 6600 central processor, as you will
see in later discussion, is “parallel by function.” This means that
a number of arithmetic functions may be performed concurrently.
To this end, there are ten functional units within the central

CENTRAL PROCESSOR

24
OPERATING

Fig. 3. Block diagram of 6600.

492 Part 5 I The PMS level Section 4 1 Network computers and computer networks

processor. These are the two increment units, floating add unit,
fixed add unit, shift unit, two multiply units, divide unit, boolean
unit, and branch unit. In a general way, each of these units is a
three address unit. As an example, the floating add unit obtains
two 60-bit operands from the central registers and produces a
60-bit result which is returned to a register. Information to and
from these units is held in the central registers, of which there
are twenty-four. Eight of these are considered index registers, are
of 18 bits length, and one of which always contains zero. Eight
are considered address registers, are of 18 bits length, and serve
to address the five read central memory trunks and the two store
central memory trunks. Eight are considered floating point regis-
ters, are of 60 bits length, and are the only central registers to
access central memory during a central program.

In a sense, just as the whole central processor is hidden behind
central memory from the peripheral processors, so, too, the ten
functional units are hidden behind the central registers from
central memory. As a consequence, a considerable instruction
efficiency is obtained and an interesting form of concurrency is
feasible and practical. The fact that a small number of bits can
give meaningful definition to any function makes it possible to
develop forms of operand and unit reservations needed for a
general scheme of concurrent arithmetic.

Instructions are organized in two formats, a 15-bit format and
a 30-bit format, and may be mixed in an instruction word (Fig.
4). As an example, a 15-bit instruction may call for an ADD,

f rn I h

OPERATION
CODE

60 BITS
0

RESULT
REG

(I of 8)

4
151 OPERAND

REG.
(I of 8)

2nd C

_J

RAND
REG

(I of 8)

Fig. 4. Fifteen-bit instruction format.

designated by the f and m octal digits, from registers designated
by the i and k octal digits, the result going to the register desig-
nated by the i octal digit. In this example, the addresses of the
three-address, floating add unit are only three bits in length, each
address referring to one of the eight floating point registers. The
30-bit format follows this same form but substitutes for the k octal
digit an %bit constant K which serves as one of the input oper-
ands. These two formats provide a highly efficient control of
concurrent operations.

As a background, consider the essential difference between a
general purpose device and a special device in which high speeds
are required. The des iper of the special device can generally
improve on the traditional general purpose device by introducing
some form of concurrency. For example, some activities of a
housekeeping nature may be performed separate from the main
sequence of operations in separate hardware. The total time to
complete a job is then optimized to the main sequence and excludes
the housekeeping. The two categories operate concurrently.

It would be, of course, most attractive to provide in a general
purpose device some generalized scheme to do the same kind of
thing. The organization of the 6600 central processor provides just
this kind of scheme. With a multiplicity of functional units, and
of operand registers and with a simple and highly efficient address-
ing system, a generalized queue and reservation scheme is practi-
cal. This is called the scoreboard.

The scoreboard maintains a running file of each central register,
of each functional unit, and of each of the three operand trunks
to and from each unit. Typically, the scoreboard file is made up
of two-, three-, and four-bit quantities identifying the nature of
register and unit usage. As each new instruction is brought up,
the conditions at the instant of issuance are set into the scoreboard.
A snapshot is taken, so to speak, of the pertinent conditions. If
no waiting is required, the execution of the instruction is begun
immediately under control of the unit itself. If waiting is required
(for example, an input operand may not yet be available in the
central registers), the scoreboard controls the delay, and when
released, allows the unit to begin its execution. Most important,
this activity is accomplished in the scoreboard and the functional
unit, and does not necessarily limit later instructions from being
brought up and issued.

In this manner, it is possible to issue a series of instructions,
some related, some not, until no functional units are left free or
until a specific register i b to be assigned more than one result. With
just- those two restrictions on issuing (unit free and no double
result), several independent chains of instructions may proceed
concurrently. Instructions may issue every minor cycle in the

Chapter 39 I Parallel operation in the Control Data 6600 493

absence of the two restraints. The instruction executions, in com-
parison, range from three minor cycles for fixed add, 10 minor
cycles for floating multiply, to 29 minor cycles for floating divide.

To provide a relatively continuous source of instructions, one
buffer register of 60 bits is located at the bottom of an instruction
stack capable of holding 32 instructions (Fig. 5) . Instruction words
from memory enter the bottom register of the stack pushing up
the old instruction words. In straight line programs, only the
bottom two registers are in use, the bottom being refilled as quickly
as memory conflicts allow. In programs which branch back to an
instruction in the upper stack registers, no refills are allowed after
the branch, thereby holding the program loop completely in the
stack. As a result, memory access or memory conflicts are no longer
involved, and a considerable speed increase can be had.

Five memory trunks are provided from memory into the central
processor to five of the floating point registers (Fig. 6). One address
register is assigned to each trunk (and therefore to the floating
point register). Any instruction calling for address register result
implicitly initiates a memory reference on that trunk. These in-
structions are handled through the scoreboard and therefore tend
to overlap memory access with arithmetic. For example, a new
memory word to be loaded in a floating point register can be
brought in from memory but may not enter the register until all

previous uses of that register are completed. The central registers,
therefore, provide all of the data to the ten functional units, and
receive all of the unit results. No storage is maintained in any unit.

Central memory is organized in 32 banks of 4096 words. Con-
secutive addresses call for a different bank; therefore, adjacent
addresses in one bank are in reality separated by 32. Addresses
may be issued every 100 nanoseconds. A typical central memory
information transfer rate is about 250 million bits per second.

As mentioned before, the functional units are hidden behind
the registers. Although the units might appear to increase hard-
ware duplication, a pleasant fact emerges from this design. Each
unit may be trimmed to perform its function without regard to
others. Speed increases are had from this simplified design.

As an example of special functional unit design, the floating
multiply accomplishes the coefficient multiplication in nine minor
cycles plus one minor cycle to put away the result for a total of
10 minor cycles, or 1000 nanoseconds. The multiply uses layers
of carry save adders grouped in two halves. Each half concurrently
forms a partial product, and the two partial products finally merge
while the long carries propagate. Although this is a fairly large
complex of circuits, the resulting device was sufficiently smaller
than originally planned to allow two multiply units to be included
in the final design.

INSTRUCTION
STACK

8 60417
WORDS

I BUFFER REGISTER I
FROM CENTRAL MEMORY ’ I

4

Fig. 5. 6600 instruction stack operation.

494 Part 5 I The PMS level Section 4 1 Network computers and computer networks

OPERANDS

(60-BlT)

(UP TO 8 WORDS

Fig. 6. Central processor operating registers.

To sum up the characteristics of the central processor, remem-
ber that the broadbrush description is “concurrent operation.” In
other words, any program operating within the central processor
utilizes some of the available concurrency. The program need not
be written in a particular way, although centainly some optimiza-
tion can be done. The specific method of accomplishing this
concurrency involves issuing as many instructions as possible while
handling most of the conflicts during execution. Some of the essen-
tial requirements for such a scheme include:

1 Many functional units

2 Units with three address properties

3 Many transient registers with many trunks to and from
the units

4 A simple and efficient instruction set

Construction

Circuits in the 6600 computing system use all-transistor logic (Fig.
7). The silicon transistor operates in saturation when switched
“on” and averages about five nanoseconds of stage delay. Logic
circuits are constructed in a cordwood plug-in module of about
2y2 inches by 21/, inches by 0.8 inch. An average of about 50
transistors are contained in these modules.

Memory circuits are constructed in a plug-in module of about
six inches by six inches by 2% inches (Fig. 8). Each memory module
contains a coincident current memory of 4096 12-bit words. All
read-write drive circuits and bit drive circuits plus address trans-
lation are contained in the module. One such module is used for
each peripheral processor, and five modules make up one bank
of central memory.

Logic modules and memory modules are held in upright hinged
chassis in an X shaped cabinet (Fig. 9). Interconnections between
modules on the chassis are made with twisted pair transmission

Chapter 39 I Parallel operation in the Control Data 6600 495

Fig. 7. 6600 printed circuit module.

lines. Interconnections hetween chassis are made with coaxial
cables.

Both maintenance and operation are accomplished at a pro-
grammed display console (Fig. 10). More than one of these consoles
may be included in a system if desired. Dead start facilities bring

. '

Fig. 8. 6600 memory module.

Fig. 9. 6600 main frame section.

Fig. 10. 6600 display console.

496 Part 5 I The PMS level Section 4 1 Network computers and computer networks

the ten peripheral processors to a condition which allows infor-
mation to enter from any chosen peripheral device. Such loads
normally bring in an operating system which provides a highly
sophisticated capability for multiple users, maintenance, and so
on.

The 6600 Computer has taken advantage of certain technology
advances, but more particularly, logic organization advances

which now appear to be quite successful. Control Data is exploring
advances in technology upward within the same compatible
structure, and identical technology downward, also within the
same compatible structure.

References

AllaRM; ClayB64

Chapter 39 I Parallel operation in the Control Data 6600 497

APPENDIX 1
CENTRAL PROCESSOR ISP DESCRIPTION

CDC 6400, 6500, 6600

Appendix I

C O C 6400, 6500, 6600 Centra l Processor ISP Descr ip t i on

Pc S ta te

P<17:0>

x[0:7]<59:0>

A[O:7]i l7 :0>

B[Ol<l7:0> := 0

E[I : 7]<17 : O>

Run

E M 4 7 : O>

Address gut,of,range,rnode := EM<I 2>

O p e r a n d g u t a f ,rangeurnode := EM<13>

lndef i n i teaperandurnode := EM<14>
The above descr ip t ion i s incomplete i n tha
an alarm condi t ion occurs "and" the mode i s a one,

the above

Mp Sta te

MP [O :7777778 169:O>

Ms [0 :2015232 1 6 9 :0>

RA<I 7 : O>

FL<I 7:0>

R A E C S B 9 : 3 6 >

FLECK59 : 36>

Addressau t df -range

Memoru Mannina Process

Program counter
Main ari thmetic r e g i s t e r s . XL1:5], are i m p l i c i t l y loaded from

X[6:71 are i m p l i c i t l y stored i n Mp when A[l :5] are loaded.
Mp when A [6 : 7] are Zoaded.

as index r e g i s t e r s .
B r e g i s t e r s are general a r i t h v e t i c r e g i s t e r s , and can be used

1 i f in terpre t ing ins t ruc t ions , not under program contro l .

Ex i t mode b i t s

mode's alarm allow condi t ions t o t rap Pc a t M p [R A] . Trapping occurs i f

main core memory of 218 w, (256 kwJ
ECS/Extended Core Storage Program can only t rans fer data between

reference for re locat ion) address r e g i s t e r t o map a logical M p '

f i e l d length - the bounds r e g i s t e r which l i m i t s a program's

reference o r re locat ion r e g i s t e r f o r Ms (Extended Core Storage)

f i e l d length f o r ECS

a b i t denoting a s t a t e when memory mapping i s inval id

Mp and Ms.

i n t o physical Mp

access t o a range of Mp'

Program cannot he executed i n Ms.

. / / "

This process maps or re locates a log ica l program, a t locat ion Mp', and Ms' , into physical Mp and M S .

Mp'[X] := ((X < FL) i M p [X + RAl); logical Mp'
(X 5 FL) +(Run + O ; AddressYoutdfurange - 1))

Ms'[X] := ((X < FLECS) +Ms[Xl+ RAECSI); logical Ms '
(X 2 FLECS) + (Run +O; Address-out-of-range - 1))

Ezchange juq storage a l locat ion map a t locot ion, n wi th in Wp:
The fol lowing Mp" array is reserved when Pc s t a t e i s s tored, and switched t o another job .
a Peripheral and Control Processor enacts the operation:

The exchange i n s t r u c t i o n i n
iMp"+ Mp; Mp t Mp").

Mp"[n]<53 :0>

Mp"[n+1]<53:0> := RAoA[l loB[I l

Mp"[n+2]<53 :0> := FLoA[2]oB[2]

Mp"[n+3]<53 : 0> := EMoA[3]oB[3]

Mp"[n+4] := RAECSoA[4]oB[4]

Mp"[n+5] := FLECSoA[5]oB[5]

Mp"[n+6]<35 .0> : = A [6]oB[61

Mp"[n+71<35 :0> := A [7 l O B [71
Hp"[n+lO 'n+I781:= X[O:7]

:= PoA[0300000008

8 '

498 Part 5 1 The PMS level Section 4 I Network computers and computer networks

Ins t ruc t ion Format

i n s t r u c t i o n Q 9 : 0 >

frnd:O> := i n s t r u c t i o n Q 9 : 2 4 >

frni <8 :O> := fmoi

i Q : O > := i n s t r u c t i o n Q 3 : 2 1 >

j Q : O > := i n s t r u c t i o n Q 0 : l b

k Q : O> := i n s t r u c t i o n < l 7 : 1 5 >

j k d : O > := j o k

K<17:0> := i n s t r u c t ion<l7:0>

l o n g - i n s t r u c t i o n := ((f m < log) v
(50 I f m < 53) v
(60 s f m < 63) v
(70 i f m < 7 3))

s h o r t J n s t r u c t i o n := l o n g i n s t r u c t i o n

although 30 b i t s , most i n s t ruc t ions are 15 b i t s ; see

operation code or funct ion

extended op code

spec i f i e s a reg i s t e r or an extension t o op code

spec i f i e s a r e g i s t e r

spec i f i e s a reg i s t e r

a s h i f t constant 16 b i t s)

an 18 b i t address s i z e constant

30 b i t i n s t ruc t ion

Ins t ruc t ion In t e rpre ta t ion Process

15 b i t i n s t ruc t ion

Ins t ruc t ion In t e rpre ta t ion Process
A 15 b i t (s h o r t) or 30 b i t (l ong) in s t ruc t ion i s fetched from M p ' - [P] q x 1 5 f 15 - 1 : p x 1 9 where p = 3, 2, 1, or 0.
b i t i n s t ruc t ion cannot be stored across word boundaries (or i n 2 , Mp' l oca t ions) .

A 30

a pointer t o 15 b i t quarter word which has ins t ruc t ion P<l>4
Run + (i n s t r u c t i o n Q 9 : 1 5 > +Mp'[P]<(p x 15 + 1 4) : (p x 1 5) r ; n e x t Fetch

p t p - I ; n e x t

(p = 0) A I o n g J n s t r u c t i o n +Run t o ;
(p # 0) A l o n g - i n s t r u c t i o n -' (

i n s t r u c t i o n < l 4 : 0 > t M p ' [P I < (p X 15 + 1 4) : (p X 15)>:

p t p - I) ; n e x t

Ins t ruc t ion ,execut ion ; nex t execute

(p = 0) - (p - 3 ; P t P + I))

Ins t ruc t ion Set and Ins t ruc t ion Execution Process

F d . t p p j [A l i R oeeurs. If (i Z 61 2 store is made t o Mo'[A[ill. The descr ip t ion does not describe Address-but,of,range ease,
il,hz.c% is treated l i k e a nu l l operation.

etches or s tores betueen Mp' and X [i] occur by loading or s toring reg i s t e r s Alii. If 10 < i C 61 a f e t c h from

~ n s t r u c t i o n ~ e x e c u t i o n := (

Set A [i] / S A

 SA^ ~j + K" (f m = 50) - (A [i] c A [j] + K; n e x t F e t c h d t o r e) ;

 SA^ ~j + K" (f m = 5 1) - (A [i 1 t B [j] + K; n e x t F e t c h d t o r e) ;

 SA^ x j + ~ 1 1 (fm = 5 2) + (A [i I t X [j l < 1 7 : 0 > + K; n e x t F e t c h s t o r e) ;

 SA^ x j + Bk" (f m = 53) + (A [i 1 + x [j] d 7 : n > + B [k] : n e x t Fetch,Store);

 SA^ ~j + Bk" (f m = 54) + (A [i] t A [j] + B[k]; n e x t Fe tch-Store) ;

 SA^ - Bkl' (fm = 5 5) + (A [i] t A [j] - B [k] ; n e x t F e t c h d t o r e) ;

" S A i B j + Bk" (frn = 56) + (A [i] t B [j] + B [k] ; n e x t Fetch,Store);

" S A i B j - Bk" (fm = 57) + (A [i] t B [j j - E[k]: nex t F e t c h J t o r e) ;

Fetch-Store := (

(0 < i < 6) + (X [i l t M p ' [A [i l l) ;

(i 2 6) + (M p ' [h [i] c X [i]))

Operations on B and X

Set B [i VSBi

" S B i A j + K" (frn = 60) 3 (E[i] + A[j l + K);

process t o get operand i n X or store operand from X uhen A
i s wri t t en

Chapter 39 I Parallel operation in the Control Data 6600 499

" S B i B j + K" (fm = 61) 4 (B [i l + B [j l + K) ;

" S B i X j + K" (fm = 62) --f (B [i l t X [j 1 < 1 7 : b + K) ;

" S B i X j + Bk" (fm = 63) + (B [i] + X [j] < l 7 : L b + B [k l) ;

" S B i A j + Bk" (fm = 64) + (B [i l + A [j l + BCkl) ;

" S B i A j - Ek" (fm = 6 5) + (BCi l - A [j l - BCkl) ;

"SB i B j + Bk" (f m = 66) + (B [i l + B [j l + B L k l) ;

" s B i B j - Bk" (fm = 67) + (B c i l + B [j l - B [k l) ;

Set X[il/SXi
" S X i A j + K" (fm = 70) 4 (x[11 + sign,extend(A[j

" S X i B j + K" (fm = 71) --f (x[11 + sign,extend(B[j

" S X i X j + K" (f m = 72) -f (X[i l sign,extend(X[j]

" S X i X j + Bk" (fm = 73) --f (X[il t sign,extend(X[j

" S X i A j + Bk" (fm = 74) + (X[i l + sign,extend(A[j

" S X i A j - Bk" (fm = 75) + (X[i l + s i g n g x t e n d (A [j

" S X i B j + Bk" (fm = 76) + (X[i] c s i g n & x t e n d (B [j

" S X i B j - Bk" (f m = 77) + (X[i] c s i g n & x t e n d (B [j

Miscellaneous program controZ
"PSI (:= f m = 0) + (Run t 0) ;

"NO" (:= f m = 46) + ;

d~unp uncond i t iowl

program stop
no operation; pass

"JP B i + K" (:= frn = 02) + (P + Sy i] + K; p + 3) : jump

Jwnp on X [j] conditions
"ZR X j K" (:= f m i = 030) + ((X [j] = 0) + (P t K ; p ~ 3)) ;

"NZ X j K" (:= f m i = 031) + ((X [j l # 0) + (P c K ; p ~ 3)) ;

"PL X j K" (:= fmi = 032) --f ((X c j] z 0) --f (P t K; p t3));
"PIG X j K" (:= frni = 033) + ((X [j] < 0) + (P + K ; p t 3)) ;

"IR X j K" (:= f m i = 034) + (

zero

non zero

P I U S 011 position
negUtiUe

out of range constant t e s t s

((Y [j - M 5 : 4 e + 3 7 7 7) ~ (X [j l%9:48>. 40nO)) + P + K ; P - 3) ;

"OR X j K" (:= f m i = 035) + (

(X [j l 6 9 : 4 8 % 3 7 7 7) V (XCj169:48>=4000)+ (P + K ; p + 3) I ;
i n d e f i n i t e form constant t e s t s "DF X j K" (:= f m i = 036) + (

(X L j 1 6 9 : 4 8 h l 7 7 7) V (XCj I89 :48>-6000) + (P + K ; p + 3)) ;

" I D X j K" (:= f m i = 037) + (

(X C j l B 9 : 4 8 h l 7 7 7) V (X [j 1 8 9 : 4 8 X 6 0 0 0) - (P + K ; p t 3)) ;
Jwnp on B [i 1. B l j] comparison

"EQ B i B j K" (:- frn = 04) + ((B [i] = B [j]) + (P t K ; p c 3)) ; equal

"NE B i B j K" (:= f m = 05) +((BE:] # B [j 1) +rP - K ; P - 3)) ; not equaZ

"GE B i B j K" (:= frn = 06) + ((B [i l 2 B [j l) + (P + K; p + 3)) ; greater than or @qua2

"LT B i B j K" (:= fm = 07) + ((B C i l < B C j 1) + (P +K; P ~ 3)) ; l e s s than

"RJ K" (:= frni = 010) + (return jump
Subroutine c a l l

M [K I B ~ : ~ P + 0 4 ~ r n o ~ o (~ + ~) m o o o o o ~ ; nex t

(P t K + 1 ; p ~ 3)) ;

"REC B j + K" (:= f m i = 011) + (
Peading (RECl and w r i t i n g (WECi Mp wi th Extended Core Storage, subjec;ed t o bounds checks, and Ma', M p ' mapping

read extended core

500 Part 5 I The PMS level Section 4 I Network computers and computer networks

M p ' [A [n l : A [o] + B [j l + K - i] t M s ' [X [O] : X [O I + B [j] + K - 1 1) ;

"WC B j + K" (:= f m i = 012) + (write extended core
M s ' [X [O I : X [O] + B [j l + K - I 1 - M p ' C A [O l : A [O l + B [j l + K - 1 1) ;

Fixed Point Arithmetic and Logical operations using X
" I X i X j + X k " I : = f m = 35) + (X [i l t X [j l + X [k l) ;

" I X i X j - X k " (:= f m = 37) - (X [i l t X C j 1 - V [k l) ;

"rxi X k " (:= f m = 4 7) i (X [i l c s u r n ~ n o d u l o ~ 2 (X [k l) ;

" R X i X j " (:= f m = 10) - (X [i l + x [j l) ;
" B X i X j 2: X k " (: = f m = 1 1) i (X [i l t X [i l + X [j l h X [k I) ; 8
" B X i X j + X k " (: = f m = 12) - (X C i l t X [J] V X [k l) ;

" R X i X j - X k " (:= f m = 1 3) i (X [i l t X [J I @ X [k l) ;

" B X i - X k " f : = f m = 1 4) i (X C I] -7 X [k l) ;

8

" R X i - X k i. X j " (:= f m = l 5) i (X [i I t X [j l A 7 X [k l) ;

" B X i - Y k + X j " (:= f m = 1 6) i (X [i] t X [j] v I X [k]) ;

" B X i = X k - X j " (:= f m = 1 7) - (X [i] t X c j] @ - X [k]) ;

" L X i j k " (:= f m = 20) i (X [i l t X C i l x Z J k { r o t a t e)) ;

" A X i j k " (: = f m = 21) + (X [i] c X [i] / 2 j k) ;

"I X i B j X k " (:= fm = 22) i (

,R[j]<17> i X [i] t X [k l x EBCj1<55:0> (r o t a t e) ;

R [j] < 1 7 > + X [i l c X C k 1 / Z7 B[jl<lo:">) ;
" A X i B j X k " (: = fm = 23) + (

+ [j] < 1 7 > i X [i] c X [k] / 2 B [j 1 < l o : o > :

B [j] < 1 7 > i X [i] t X [k] x Z1 B[j1<5:"> { r o t a t e]) ;

" M X i j k " (: = f m = 4 3) i (
X [i] < 5 9 : 5 9 - j k + l > + 2 j k - 1 ;

(j k = n) i X [i l ' -0) ;

integer sum

integer difference
count the number of b i t s in X [k]

transmit
logical product
logical s m

logical difference
transmit complement
logical product and complement
logical sun and complement
logical difference and complement

arithmetic right shift
left shift nominally

arithmetic right shift nominally

form mask

Floating Point Arithmetic using X
Onlu the least significant (7.0) part of arithmetic is stored in Floating DP operations.

" F X i X j + X k " (:= f m = 30) + (X [i l t X [j l + X [k l { s f)) ;

" F X i X j - X k " (:= f m = 3 1) + (X [i l t X [j l - X [k l { s f)) ;

" n x i X j + X k " i:= fm = 3 2) + (X i i l t X [j l + X C k l (l s . d f 1) ; floating dP Sum

"nx i X j - Y k " (:= f m = 3 3) i (X [i l t X [j l - X [k l { l s . d f)) ; floating dP difference
" R X i X j + X k " i:= f m = 34) i (

floating sum

floating difference

X C i l c r o u n d (X C j 1) + r o u n d (X [k l) (s f)) ;
round floating difference " R X i X j - X k " (:= f m = 3 5) i (

X [i] c r o u n d (X [j]) - r o u n d (X [k l) { s f)) ;

" F X i X j :': X k " (: = f m = 40) i (X[i] t X [j] x X [k] [s f)) ;

" R X i X j :': X k " (: = f m = 4 1) + (round floating product

floating product

X [i] + X [j] x X [k] [s f) ; next X [i l t r o u n d (X C i 1) { s f)) ;

" D X i X j * X k " (: = f m = 4 2) i (X [i] t X [j l x X [k] [l s . d f l) ; floating dp product
" F X i X j / X k " (: = f m = 4 4) i (X [i] + X [j] / X [k l { s f)) ;

" R X ~ x j / X k " f : = f m = 4 5) + (X [i] t r o u n d (X [j] / X [k]) [s f)) ; round floating divide

f bating divide

normalize " N X i R j X k " (: = f m = 2 4) + (

X [i] t n o r m a l i z e (X [k l) (s f) ;

R [j] c normalize,exponent(X[kl) (s f]) ;

Chapter 39 1 Parallel operation in the Control Data 6600 501

" Z X i B j Xk" (:= fm = 2 5) i L round and normaZize
x [i] c round(X[k]) [s f] ; next

X [i 1 c normal i z e (x [i l) (s f) ;

B[j] t normal ize,exponent (X[i 1) (s f)) ;

"UX i BJ Xk' (:= f m = 26) 3 (B [j] cX[k]<58:48> (s i] ; unpack

X [i] tX [k]<59,47:0> { s i)) ;

" P X i B j Xk" (:= f m = 27) + (X[k1<58:4b t BCj l (s i) ; pack
X[k]<59,47:rD c X [i l { s i))

end Instmctionusxecution)

502 Part 5 I The PMS level Section 4 I Network computers and computer networks

APPENDIX 2
PERIPHERAL AND CONTROL PROCESSORS,
PCP, ISP DESCRIPTION

CDC 6400, 6500, 6600, AND 6416

Appendix 2

C D C 6400, 6500. 6600, and 6416
Peripheral and Control Processors/PCP, ISP Description

Pc State

A<17: O> a c c m l a t o r
P<l I : o> Progrm Address Counter

E.5, S ta t e

M[0:40951<11:0> 4
M index[0:631<11:C’:= M[O:63]<11:D soecial arrau i n PE reserved for index reg i s t e r

C(’Centra1) S ta t e

CPuP<17: E.

CPM[O:77777781<59:O>

the main Pc i n s t ruc t ion address counter

the Mp o.f main C

I O Regis ters f o r C i ‘PCPI

C,OATA[O:63]<Il:O>
C,ACTC 0 : 633
LFLG[O:631 denotes a , fu l l (or emptgl b u f f e r a t the K

C,FCN[0:631 <I I :o>

data b u f f e r s a t peripheral K ‘ s

a b i t t o denote ip 1 of the 64 K ’ s i s ac t i ve

function or in s t ruc t ion reg i s t e r a t a s p e c i f i c K

Ins t ruc t ion Format
Ins[0: 1]<I 1 : Cb i n s t ruc t ion

2 w i n s t r u c t i o n : def ined i n terms of op codes, see Table, page 50; long-i nstruct i on
short,instruction := 7 long,instruction 1 ZL i n s t ruc t ion

K5:D := lns[0]<11:6> f unc t ion o r op code
dc5:D := Ins[0]<5:O>

m ~ 1 1 : 0 > := Ins[l] address Dart
drKl7:0> := d m

i < l l LO> := I n a l l]<I 1 :0> i n d i r e c t b i t
d,sign<l I :O> := (

-7d<5> - OOd :
d<5> +l d)

md<lI:O> := (

(d = 0) -tn:

(d # 0) + m + M[dl)

Ef fec t i ve Address Calculation Process
z := ((F<5:9 = 3) -id.

(F<5:9 = 4) + i;
(F<5:p = 5) --f rnd)

Instruct ion In t eq j re ta t ion Process

Run + (l n s [O l cMLP1; P t P + 1 : next f e t c h
Iongoinstruction + (InsCIl +MEPI; P t P + I) : next

lnst ruct ion,execution) execute

Chapter 39 I Parallel operation in the Control Data 6600 503

SCN i(
A t A M) ;

Implementation
The I O x 5 2 b i t s i n the barre l for t h e I O PC? IS? inc lude:

LDN + (
A t d) ;

A[0:9]<17:0,

P[O:9]<Il :o,

Temporary ffardware r e g i s t e r s (not i n the ISPl

Q[O:3l<ll :0>

K [O : 91<5 : O>

T [O : 9 1<2 : O>

LMC 4 (
A+A@dm) ;

accumulators

i n s t r u c t i o n address counters

PSN +;
null

low order 6 bits o f an i n s t r u c t i m or address data

six b i t s hold the operation code. The 3 b i t s specif? the
t r i p count or s t a t e of an i n s t r u c t i o n ' s in terpre ta t ion .

Instruction execut ion := (F = XsY8

8 00

PSN --1;

nu 7 7

SHN i A+Ax2L i g r

X' 8

00

I O

20

30

40

50

60

70

06

PJN + (
7 A 4 7 > + (

07

MJN - (
A<17> + (

LJM i (
Pi- md);

RJM + (
MCmd] t P ;
P c m d + l) ;

LMN + (
A(-A@d) ;

LPN - (
A c A A d) ;

~

SEN -,(
AcA-d) ;

LCN + (
A +-d) ;

A D N i (
A<- A+d) ;

LPC + (
AtAAdm) :

PSN + ; EXN + (
CPYPA) ;

ADC i (
A<-A+dm) ;

RPN + (
A-CP-P);

SED -> (1 A00 + (-7 I

SBI + (7 RAI + (401 + (

SBM i(
bcA-M[z])

d
CWD -> (

CPM [A 1.-
M[d: d+5 I) ;

ADM i (

CRM + (
M[m:m+
SxM[dl-l I t
CPM[A:A+
Mldl-11);

A c M [z]-I ;
next
M [z]<-A) ;

EJM + (
7 C,FLG [d]+

c
IJM i(

- P c m)) ;
7 C,ACT [d]+ (

FJM + (
CvFLG [d]+ (

CWM i(
CPM [A :A+
M [d 3 - I I+
M[m:m+
5xM[d] - I l) ;

OAM 4 (
(7 C J L G [d 1-
CYDATA [d 1
+M[m:rn+Al));

AJM i(
CdXTCdl-, (

t

IAN -> (
A+
C,DATA[dl) :

IAM + (
C,FLG[d l i (
M [m : m+A I<-
C,DATA[d 1))

DAN --t (
CuDATA[dl
c A) ;

FAN + (

<.A) ;
C,FCN[d]

ACN + f DCN i (
C,ACT[d]
t o) :

I

1 end I n s t r u c t i o n q x e c u t i o n *
1 uord or short, instruction

Chapter 40

Computer-network examples

We are just entering the era in which general-purpose networks
of computers make technical and economic sense. The requisite
hardware and software development of operating systems and
multiprogramming capability is still maturing. Thus, unlike the
other PMS structures discussed in this book, there is no supply
of operational systems with published descriptions upon which we
can draw. Consequently, we have assembled several brief examples
of networks to provide at least some illustrations of what is sure
to be an important aspect of computer systems in the near future.
The more interesting of these examples are still in the planning
stages; those that exist currently are still highly specialized.

Spatially distributed intercommunicating networks of digital
devices have existed for a long time. But many of the ones that
come most easily to mind are not computer networks. For example,
the various airline reservation systems like American Airline’s
SABRE [Plugge and Perry, 19611 have spatially distributed termi-
nals (T’s) with a single Pc, possibly mediated by Pio’s or Cio’s.
When there are several Pc’s, they are functionally integrated so
as to provide the total capacity and reliability needed. Some
military networks, such as the SAGE Air Defense System [Everett
et al., 19571 have multiple computers (SAGE actually has a very
large number). But they transmit to each other highly specialized
data streams (for example, aircraft positional information for con-
trol). The National Physics Laboratory of England has made a very
comprehensive proposal for a general-purpose network [Davies et
al., 19671, although we do not include it as a chapter. Again, it
is just in the proposal stage. The Lawrence Radiation Laboratory
(at Livermore) is no doubt the earliest and most impressive net-
work.

In terms of our PMS descriptions, a computer network (N)
requires at least two C’s not connected through primary memory.
Thus each C has a Pc and an Mp of its own and has to communi-
cate with other C’s through messages. Duplex computers are thus
defined as networks, provided they do not share Mp. For networks,
links (L’s) are usually shown explicitly. In spatially distributed
systems, both the time delays and the flow rates of the links are
significant. The latter is so partly because the networks must make
use of the telephone communication system, which exists inde-
pendently of the networks, thus having parameters that do not
correspond with any of the internal parameters of the individual
computers. There may also be limitations of reliability, cost,

accessing characteristics, and the size of the information unit that
derive wholly from the links. For instance, many computer net-
works would like to buy their transmissions from the telephone
system for very short intervals (milliseconds), at very high data
rates, and with short switching time (milliseconds), Le., bursts.
Switching time and pricing policies within the telephone system
conspire to make this a difficult thing to do. Thus, with networks,
links become important independent components.

One classification of networks (N’s) is by fixed or variable
interconnection structure. Fixed structure may mean that the links
are fixed permanently over the life of the network. However, fixed
structure may mean only that connections once made must be
held for long periods of time relative to the message flows. An
example is the telephone switching system mentioned above,
which looks like a variable switching structure at the level of
human conversations, but like a fixed switching structure at the
level of computer conversations. Figures l a and IC show variable-
structure systems; Fig. l b shows a fixed-structure system. In the
former, any C can talk directly to any other C. In the latter, each
C talks directly to only a few C’s; thus, to communicate with the
other C’s, it must transmit through them as links; that is, it must
use another C as an L.

A second classification of N’s is by the nature of the delays
suffered by the messages as they travel from an initiating C to
a target C. Communication can be direct, in which case the only
delays are those through the switches (S) and links (L) between
the two C’s (Figs. l a and lb). Alternatively, communication can
involve storing messages at intermediate nodes (called store-and-
forward communication), thus introducing additional memory
delays into the communication but decreasing the demands for
coordination between the two C’s. Although store-and-forward
systems can be built with the intermediate nodes being K s with
buffer memories, in the present context the natural form for such
a system uses the other C’s in the system as the intermediate nodes,
as in Fig. IC.

Several kinds of reasons can justify the existence of a particular
network. The following list is adapted from Roberts [1967]:

Load sharing. A problem (program and data) initiated at one C
that is temporarily overloaded is sent to another for processing.
The cost of transshipment must clearly be less than the costs of

504

Chapter 40 I Computer-network examples 505

;/
/
C

Fig. la. Variable-structure direct switching network PMS diagram.

delay in getting the problem processed. Load sharing implies
highly similar facilities at the nodes of the network.

Data sharing. A program is run at a node that has access to a large,
specialized data base, such as a specialized automated library. It is
less costly to bring the program to the data than t o bring the data
to the program.

Program sharing. Data are sent to a C that has a specialized
program. This might happen because of the size of the program
(hence, fundamentally the same reason as data sharing), but it
might also happen because the knowledge (i.e., initialization and
error rituals) to run the program is available at one C but not
at another.

Specialized facilities. Within the network there need exist only
one of various rarely used facilities, such as large random-access
memories, or special display devices, or special-purpose array
processors.

c--L/[I kL I

/ \

Fig. lb. Fixed-network PMS diagram.

I

Fig. IC. Store-and-forward network PMS diagram (using C switching)

Message switching. There may be a communication task of such
magnitude that sophisticated switching and control are worth-
while.

Reliability. If some components fail, others can be used in their
place, thus permitting the total system to degrade gracefully. (At
the present state of the art, peripheral computers are needed to
isolate the periphery from the unreliability of the network, and
vice versa.)

Peak computing power. Large parts of the total system can be
devoted for short periods to a single task, if there are important
real-time constraints to be met. This depends on being able to
fractionate the task into independent subtasks.

Communication multiplexing. Efficient use of communication fa-
cilities is obtained by multiplexing a number of low data-rate
users, for example, T(typewriter; 150 b/s)’s. This may not be a
reason for a network per se but may justify a larger network,
provided that there is some reason for having one in the first
place.

Better communication. A community of users (e.g., a scientific or
engineering community) that could mutually use the same pro-
grams and data bases and converse about these directly (i.e., not
by writing about them but in the context of mutual use) might
become a much more productive community, with less duplication
of work, faster communication of results, etc.

Better load distribution through preprocessing. Some tasks require
very high-data-rate communication with a computer. By doing
preprocessing in a smaller computer, a reduced information rate
can be sent to the more general system.

With this general view of networks, let us consider several
examples.

506 Part 5 1 The PMS level

?

Ms(disk) . . . l s (magne t i c tape) . . .
I

r“‘
Mp((. l - 5)megabyte)

Pie. . . Pc(’IBM System/360 Model 40. 50)

T(card) . . . T (l i ne; p r i n t e r) . . . T (typewr i t e r)

- -

Section 4 I Network computers and computer networks

ZBM ASP (Attached Support Processor)

This first example (Fig. 2) is the simplest of all computer networks,
consisting of two computers tied together, with each functionally
specialized (and in addition required to be physically close). The
function of Csupport is job setup and breakdown, that is, pre-
processing and postprocessing. All T’s for the network are handled
by it (except for Txonsole on C.main). The function of C.main
is to process data. Thus this is an escalated version of the Pc-n
Pi0 organization, where the Pio’s have been made into a Csupport
and thus can take on additional functions. It should be compared
with the CDC 6600 organization, which is C.main-10 Cio, but
where the Cio’s are rather small Cio(4096 w; 12 b/w) compared
with the C.support. The ASP organization is the 360 analog of
a system consisting of an IBM 7090-IBM 7040 which emerged
spontaneously in the early sixties at several IBM installations in
order to deal with 7090 1/0 bottlenecks. Thus this kind of simple
computer network has been with us for some time.

In more detail, the advantages that are claimed for ASP are
in reducing resource interference:l

‘Adapted from IBM System/360 Attached Support Processor (ASP) System
Description, H20-0223-0.

C (‘Ma i n) :=

Fig. 2. IBM System/360 Attached Support Processor system/ASP
PMS diagram.

The addition of smaller modules of Mp in the form of a
second processor. The processing of the application is di-
vided between the main processor and the support proces-
sor, with each performing those functions for which it is
best suited. The core requirements for the support processor
are small in comparison with those for the main processor.
With this division of responsibilities, the system can expand
its capabilities with a minimum addition of storage.

The elimination of concurrent use of Pc time on the main
processor for processing support functions (such as printing).
Because the clerical functions are assigned to the support
processor, the main processor no longer shares Pc time
between the support functions and the application pro-
grams. Therefore, the application has the opportunity to
use all the resources of the main processor to fiill capacity.

The addition of selector channels. The channel capacity of
the system has been increased by one or more additional
selector channels attached to the support processor.

An algorithm for efficient management of the direct-access
storage devices for system input/output data sets. The
algorithm was designed specifically to accommodate the
data demands, the data set characteristics, and the available
private devices. The input/output routines always know the
position of the access mechanism, thereby ensuring mini-
mum seek time when data are transferred to the devices.

IBM cites the above reasons for using the ASP system. These
views differ from ours on its usefulness. Ideally, a multipro-
grammed single-processor or multiprocessor structure would easily
provide all the above advantages without the overhead of having
large Mp’s on two computers (both of which hold nearly the same
operating system). Also, as we note in the introduction to the
System/S60 (page 584), the support-computer functions can be
handled in the main computer with very little loss of large Pc
power (3 to 10 percent). A multiprocessor structure should also
cause less overhead, by not passing data sets between two C’s.
(Alternatively, in ASP this could be done by an S to common Ms
from both C’s.)

University of Texas network

The structure shown in Fig. 3 is similar to ASP in that a C.main
is used, with some job setup and breakdown being done in several
other C’s. However, there are several of these C’s, and they provide
independent power for small tasks where the setup time for the
large system is greater than the computation time. They are also
physically remote from C.main and thus serve to make the power
of the central facility available at local sites. The Teletypes are

Chapter 40 I Computer-network examples 507

e I etype)

Telephone Exchange)

CDC 6600; Computation Center)

ie lephone Exchange)

L -C('CDC 1700; L i n q u i s t i c Research Laboratory) -

L - C('CDC 3100: College of Business Admin i s t ra t i on) -

L - C('8231 Computer Terminal)+ I +(ca rd) -

T(1 ine: p r i n t e r) +

E.
L (t o : o the r C's o f f campus)-

Fig. 3. The Computation Center, University of Texas, (Austin) Network
PMS diagram.

used to enter jobs directly to the C.main, where they are run in
a batch mode.

The network of Fig. 3 is that at the University of Texas, as
derived from its internal planning memoranda. Similar systems are
in existence or under construction at other universities.

M.Z. ?: proposed network

Figure 4 shows a network that is proposed for the M.I.T. campus
[Bhushan, Stotz, and Ward, 19671. It moves to a more complex
switching system, partly because there are two C.main's. Here
an S(direct) is used in a non-store-and-forward mode as each C
communicates directly with another. The communication rate
between C's is 40 - 230 kb/s. (Note that at higher data rates a
fairly large computer is necessary just to handle the store-and-
forward message switching information rates.) The purpose of the
network is to allow users of the small or terminal C's to get
access to C('1BM 360/67) and C('GE-645). These two C's can,
of course, communicate with one another. A large number of
users are connected to T(typewriters) via the S('Te1ephone Ex-
change).

The Lawrence Radiation Laboratory (at Livermore) network

The LRL network, started in 1964, appears to be the earliest
general-purpose-computer network. It serves a user population
of approximately 1,000, with several hundred simultaneous on
line users. The network consists of five large computers (three
CDC 6600s and two CDC 7600s), a switching computer (a DEC

PDP-6 with two Pc's ant1 a 262 kword Mp and a 10"bit fixed-
head disk for fast-access files), three terminal control com-
puters (DEC PDP-8's), and a large central file (a 1012-bit IBM
Photostore controlled by an IBM 1800 computer). Hardwired 4
megabit per second links connect the large computers to the
switching computer. The terminal computers and the large file
are also connected to the switching computer.

The main purpose of the network is to gain access to the
central filing, printing, and terminal facilities. Load sharing is not
an important consideration because each of the large computers
operates nearly autonomously. Thus little change was required in
each system to be integrated to the network. Jobs enter the net-
work in any of three ways-by the batch input terminals of a
large computer; by the typewriter inputs of a large computer;
or by the typewriter inputs of the terminal control computer
which in turn connects to the central switch. Unlike most uni-
versity computation centers, which provide service for many
users with small jobs, the LRL network is oriented to users with
(multiple) large jobs.

T storage CRT: d i sp lay : . . . I [keyboard

T 'Dataphone; (1 . 2 - . . .
i L . 8) kb/s

3
3

. . , - I5 char/s

('Dataphone). . .

1 ('Dataphone). , . T('Dataphone) . . . T ('Dataphone). . .

C (' S a t e l 1 i t e) . . .
:(CRT; d i s p l a y) . . .

3
'S('Te1ephone exchange:

'S('Wideband Communications Center; (40 .8 - 2 3 0 . 4) kb/s)

(IO- 1 5) c h a r / s , (l . 2 - 4.8) kb/s)

Fig. 4. M.1.T.-network PMS diagram (proposed).

508 Part 5 I The PMS level Section 4 I Network computers and computer networks

I
duDlexed f i l e
C 's s h a r i n g a
common secondary
memory f o r l o n g
t e r m f i l i n g

I I . _ _ _ . _ . _ . _ . _ . _ . _ . -
. C (s f ; M5) - - I
-C (s f : M s) T l r-3- - - - - - - - - -

I 1 l ; Z ; (c R T ; c o n s o l e) -

1 LN, :
.C(s f : Ms)- - I .\ u
c o n c e n t r a t o r s , I I

I

I I h i g h speed message

s p e c i a l systems,
s t o r e and f o r w a r d / s f L S "

I
-I F-s -x -I-- -

I main processors
w i t h secondary
memory (Ms)

'S(50 - 180 b / ~ e c) ~

'S(600 - 4800 b / ~ e c) ~

3 S (4 0 - 50 k b / ~ e c) ~

'S(200- 2000 kb/sec; f i x e d)

i x e d , ('Te lephone Exchange; d i r e c t) , (C(sw: 3
L (200 - 2000 kb /s)

-.- .- L(40 - 50 kb/s)

~ (6 0 0 - 4800 b / 5) - _ _ -
- - - - - - - L(50 - 180 b/5)

I -C (s f : M s F - - - - l '

c o n s o l e) -

~~ - ,I ,-;tT(card, l i n e s , ana loq , p l o t))

message concen- I
I t r a t o r s , spec ia l l

systems, s t o r e
I and fo rward /s f

L ; (c a r d , l i n e , p l o t) -

I ;
I
I

I

T e l e t y p e , - 3 u
network periphery

Fig. 5. Typical computer network PMS diagram.

Typical local network

We summarize in Fig. 5 the direction in which the last three
networks are moving by presenting a hypothetical, local network,
as it may mature on many large university campuses (and large
industrial establishments). The network is conceived as a single
computing facility, to serve a clientele with many heterogeneous
but partially overlapping computing needs. An essential feature
of the environment of the network is that the collection of com-
puting resources it connects are not planned all at once but keep
growing and changing in imperfectly controlled ways. This arises
from the quasi-independent nature of the subparts of large uni-
versities and engineering establishments. In any event, the network
is a mixture of functionally independent and functionally special-
ized C's. One probable feature is the duplexed C.files which handle

all the Ms functions for all C's, except the C(1ibrary). A library's
computer, though strongly coupled to the network, would have
its own files and specialized terminals, including hard copy devices
oriented to library needs. The C.file increases the requirements for
the S.centra1 but provides much more economic Ms, as well as
easing the ability to connect new C's into the system, since they
immediately have access to an organized Ms.

The reader should note that the four switches (S's) can be either
fixed links, variable switches (e.g., Telephone Exchange), or a
computer used as a direct switch or as a store-and-forward switch.

The most interesting aspect of this network is that it has a
general hierarchical structure and is like other hierarchical organi-
zations. Here, the levels of the organization are based on data
rates. For example, there is a very low-level computer which deals
with the basic communication to typewriters at -150 b/s. This

Chapter 40 I Computer-network examples 509

C switch concentrates several typewriters into a time-multiplexed
2,400-b/s link. Several of the 2,400-b/s links can in turn be con-
centrated prior to transmitting via a 50-kb/s link. Thus the general
organizing principle, like that of most large organizations, is to
handle problems at the lowest (cheapest) possible level. Another
organization principle of the hierarchy is that only relevant infor-
mation be passed between the levels. For example, encoding would
be used so that only some fraction of the bits flowing at the
periphery would enter the highest-level computers. At each of the
levels we assume that specialized, time-shared computers are
employed to handle the very simpler tasks of editing, simple
calculations, etc.

At the network periphery there are a number of terminal
computers, Le., C(termina1; CRT, card, lines, analog, plot, key-
board). Although they are computers, they behave as terminals.
The DEC 338 (Chap. 25) is typical of this terminal class. Part of
the periphery connects to other networks and part connects to
specialized processes, e.g., a process control, or experimental
apparatus on a dedicated basis. The peripheral computers are able
to do local tasks independently of the larger, more unreliable
computers.

Combat Logistics Network/ComLogNet

ComLogNet was developed for the U.S. Air Force in the early
1960s for the purpose of sending messages (or information) among
T's [Segal and Guerber, 19611. It is built to transmit both at low

N('ComLogNet) :=

l T (' 5 u b s c r i b e r Stat ion/SS) :=

(T(Te1etype I 'Compoun81 'Magnetic Tape Termina l4))

"See F i q u r e 6 ~ .
3T(1Compound) :=

r L r 5 , I 50, 3- r -S F ' (c a r d ; r e a d e r) j

300,600 b/s M.buf fe r T(card ; punch)+

T ('Te l e type) -

L 1200,2400, -K-Ms(magnetic tape) - 4 T Maqnetic Tape] := [[1] , Termi na 1 4800 b / s
M s , b u f f e r

c

N('ComLogNet)

1

D i s t r i b u t i o n /
ADU; # I : I I

Fig. 6b. Combat Logistics Network/ComLogNet component relationships.

N (ComLogNet) :=

i (' S C
I

/
I

I
I
I
I
I
I
1
\
\
\
\
',

('SC)'
(S S) 2 . .

S (' ComLogNet)

I N (' S w i t c h i n 9 C e n t e r / S C) See F i g u r e 6 d

zTT('Subscr iber Stat ion/SS) See Figure 6a

Fig. 6a. Combat Logistics NetworkKomLogNet PMS diagram. Fig. 6c. S('ComLogNet) PMS diagram.

510 Part 5 I The PMS level Section 4 I Network computers and computer networks

(10 char/s) and medium (1,200 - 4,800 b/s) speed, as shown in
Fig. 6a. In this regard the network is simply a message switch for
the three terminal types. It employs C's for the switching elements
and is fundamentally a store-and-forward system. Had it not been
for security, reliability, response time, and other considerations,
it would have been possible to construct an equivalent system
using standard lease wire switches (or telephone exchanges). In Fig.

C (Communications. Data Processor/CDP) :=

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p ~ ; reader)

3 7 T . c o n s o l e -
C(CDP) :=

T(paper tape; reader)+

Ms(# l :3 ; drum)

Ms(#1:48; magnetic tape) -

L (to :C(' E x t e r n a l)) -

T (l i n e ; p r i n t e r) +

T (' sys tem consol e) 3

C('Tape Search Uni t) '

'Mp(core; 1.5 p / w ; 8192 w: 56 b/w)

"C('Tape Search Unit/TSU :=

K-S-T(printer)+

Mp 'Data s to re ; Pc I:.;;; 1
Mp 'Procedure;

/5;:'96 b/w f unc t i on :

code trans Za-

3C ('Accumulation and D i s t r i b u t ion/ADU) :=

;-K # i : Z 5 ; ('low

- K [BOO b / s)] speed; 0 -601 -L4 -
b / s) I (' h i g h

speed); 601 -

P o n J
4Link; communications l i n e s

Fig. 6d. ComLogNet N("3witching Center/SC) PMS diagram.

6b a tree is used to present the relationship of constituent members
of ComLogNet. From it we see that at the first level ComLogNet
has just a switch, links, and terminals (as shown in Fig. 6 4 . The
networks switch employs five specialized N('Automatic Electronic
Switching Centers/SC)'s which communicate among each other
(Fig. 6c). Terminals connect to the individual N('SC)'s and mes-
sages are routed between two T's, either by a store-and-forward
process within N('SC) or among two N('SC)'s.

The individual N('SC)'s are located at five specific locations and
consist of fixed computer configurations of five to seven C's. The
structure of N('SC) (Fig. 6 4 is formed basically by a duplex C
structure which handles most processing. Attached to the two
C('Communications Data Processor/CDP) are two to four C('Ac-
cumulation and Distribution Unit/ADU) which handle communi-
cation-link processing. A C('Tape Search Unit) is used off line to
process data from Ms(magnetic tape). The structures of C('CDP),
C('Tape Search Unit), arid C('ADU) are defined within Fig. 6d.

ARPA network1

An experimental computer network (Fig. 7a) is operational and
connects 19 computer facilities associated with the contractors
of the Information Technology Branch of the Advanced Research
Projects Agency (ARPA). These contractors, all of whom are
engaged in advanced research in computer science and technology,
form a community in which to attempt a general-purpose network.
Since several of the nodes in this network (e.g., M.I.T.; see Fig.
4) will themselves be constructing networks at their own sites, the
system has faced a good many of the design problems associated
with such a network. Unlike many of the other networks discussed
in this chapter, the ARPA network consists of sites that are physi-
cally remote, that are each developing as total systems under
independent management, and that have no agreed-upon func-
tional specialization vis-i-vis each other. Furthermore, the uses
that each node will make of other nodes will be the fairly general
ones cited at the beginning of this chapter, as generated by a
general scientific community. Since many of the institutions that
will be tied in are major academic institutions, diversity will be
guaranteed. The motivation behind the experiment is to reveal
and begin to solve the technical problems of such general net-
works, while also discovering which of the several advantages of
using networks listed earlier (or others unmentioned) emerge as
important.

'The Specific links, sites, etc., change with time; thus the actual structures
we present are, by the nature of the experiment, almost guaranteed to be
in error.

Chapter 40 I Computer-network examples 511

C('Dartmouth Colleqe)

N('U Illinois)

Santa Barbara

I

Fig. 7a. Advanced Research Projects Agency (ARPA) network PMS diagram (tentative).

c ('Local) :=

C ('Host)- C (' Interface Messaqe Processor/lMP) 1 L(40 .8 kb/s ; to:N('ARPA))

I . . .
[I ...

Fig. 76. Advanced Research Projects Agency (ARPA) local-computer
PMS diagram.

Technically, the goals of the network are (1) to make a user
(T) at any site behave as though it were a T at another site and
(2) to let a C at any site use a C at another site for load, program,
and data sharing. To each site has been added a special C('1nterface
Message Processor/IMP). The C('IMP) has been designed by the
creators of the network, and it provides the communality that will
permit the network to function. One constraint in the network

design is to make only small perturbations to the larger host
computers. The C('1MP) is responsible for network messages
among other nodes (i.e., to their C('1MP)'s) and for the interface
between the network and the C (or N) at the local site. The local
computer C('Host)-C('1MP) interface is shown in Figs. 7h and 7c

I N('Loca1) :=

I""
Fig. 7c. Advanced Research Projects Agency (ARPA) local-computer-
network PMS diagram (tentative).

(' L o d i , Cal i forn ia)' (I Li tt leton, Massachusetts)'

S('Mojave, California)'

X (# l !312
I

S(manual;50 kb/s; 'Telephone Switching Centers)

2X(C('local)lN('locaI)) These N o r C may communicate directly

with one another or by using more L's can communicate via the S ' s .

Fig. 7d. Advanced Research Projects Agency (ARPA) fixed switching centers PMS diagrams (tentative).

512 Part 5 I The PMS level

for a local computer and local network cases, respectively. The
C('1MP) is a C('Honeywell516; 16 b/w; 12 - 16 kw; 1 p / w) with
capability to connect to four to six links at a 5O-kb/s data rate.

The ARPA network leases a set of fixed links, L(50 kb/s).
These emanate from four Sfixed, as shown in Fig. 7d. Thus the
fixed links between the various sites, as shown in Fig. 7a, are
composed of the links in Fig. 7d. For example, the L(Carnegie-
Mellon University; Bolt Beranak and Newman) goes from Carnegie-
Mellon University in Pittsburgh, Pa., to Williamstown, Ky., to
Littleton, Mass. (on one of the two links) to Bolt Beranak and
Newman in Boston, Mass. The other L(Litt1eton; Williamstown) is
part of L(University of Michigan; Lincoln Laboratory). With such
a fixed-link system the network must operate in a store-and-forward
fashion, with C('1MP)'s at each site carrying out this function. Thus
the C('1MP) is required at each site, since there is no uniformity

Section 4 I Network computers and computer networks

in the other C's that are at a site and no control over their
operation.

Conclusions

We feel the network is the most important computer structure
in the book. Through understanding it, we will be able to organize
more computing power than with any other structure and to
achieve more reliability. The issues of switches and links are so
vital that through understanding of them all computer structures
will improve.

References

BhusA67; DaviD67; EverR57; PlugW61; RobeL67; SegaR61; IBM
Systern/360 Attached Support Processor (ASP) System Description,
H20-0223-0

Part 6

Computer families

The three groups or families of computers described in this part are each built around
a single ISP and PMS structure. The IBM 701-7094 I1 sequence (Sec. 1) shows the
evolution of a series. The reader can trace a number of incremental changes, or
features, such as the addition of index registers, indirect addressing, 1/0 processors,
and larger random-access memories. The SDS 900-9000 series and the IBM Sys-
tern1360 are both families in which successor models are within a planned frame-
work; evolution occurs mainly in the implementations, not in the ISP.

513

Section 1

7094

709

704

70,

The IBM 701-7094 II sequence,

C (7094 I? C(7094 It)'
/-4*-*

~

c'7".L .c(7090)

/ .C.(7040,7044)6

-

~ c

- .C(701)
2 0 4 ?

, 1 I I , / / 1 1 I I l

a family by evolution

The IBM 701, 704, 709, 7090, 7040, 7044, 7094 I, and 7094
II sequence relationship is shown in Fig. 1. The group is not
a compatible series. The IBM 701 [Astrahan and Rochester,
1952; Buchholz, 19531 is a forerunner of the series; all except
the 701 are painfully compatible. The sequence is included
because the 7090 is a reference or benchmark of scientific-
computer power. All machines use 36-bit words. The 701 stores
two instructions/word in the same manner as the IAS computer
(Chap. 4), whereas all others in the sequence store only one
instruction/word. The 701, 704, and 709 are first-generation,
vacuum-tube technology; the rest are second-generation.

The IBM 7094 II description given in Chap. 41 is based
directly on information in the Programming Reference Manual,
but the Appendices of that chapter give the ISP of the Pc, a
Pio, and a K as inferred by the authors of this book. The
description of the Pc gives the instructions in the 704 and 7044

Fig. 1. Relationships among IBM 701, 704, 709, 7094 series.

-

b/char

'Mp(e1ec t ros ta t i c : random; 24 p / w ; 2048 w: 36 b/w)

" ~ c (2 i ns t ruc t i ons /w ; M.processor s ta te (- 3w) : I address/

i n s t r u c t i o n ; 36 b/w; technology: vacuum tubes: descendants:

IBM 704, IBM 709: 1953- 1956)

Fig. 2. IBM 701 PMS diagram.

to show an evolution. However, the major evolutionary change
does not appear in Pc's ISP but in the PMS structure.

The 704 structure, like that of the 701 (Fig. 2), provides only
for peripheral transfers to primary memory via Pc under pro-
grammed control with no interrupt system. As such, only one
T or Ms could operate easily at a time. The 709 introduced
the Pio('Data Channels) to improve the ability to transfer data
between Mp and Ms without requiring Pc intervention. Concur-
rent operation of several 1/0 devices is carried out by multiple
Pio's along the lines of the 7094 II PMS structure (Fig. 1, Chap.
41, page 518). However, the utilization of the data channels
tends to be rather low, particularly when the data channel is
controlling very slow devices (e.g., card equipment and line
printers). When operating a high-speed tape unit at 90,000 X 6
bits/sec the utilization of the data channel is still only approxi-
mately 3 percent. A program interrupt method of data transfers
would have been sufficient.

The incompatibility among the machines, especially the
7090-7040-7094, is disheartening, both from the point of view
of a user and an engineer. The incremental hardware needed

515

516 Part 6 1 Computer families

to achieve compatibility is inexpensive when the system price
is considered. Also, the incremental changes in the ISP do little
to increase the Pc performance. Compared with the 704, the
extensive order code of the 7094 shows an evolution in which
for marketing, emotional, or analytic reasons new instructions
were added. The index registers and their instructions are a
good example of this trend. The 7094 has a very general set
of index-register transmission instructions; if implemented
properly, they are probably easier to provide than the original
704 instructions.

In the implementation of the double-precision floating-point
hardware, the sense-indicator register is needed for temporary

Section 1 1 The IBM 701-7094 II sequence, a family by evolution

storage. Thus a user has to preserve this register when double-
precision floating-point instructions are given. The reason for
this undoubtedly relates to field modifications and cost. In an
original design this would be inexcusable; in this case double-
precision floating point is undoubtedly worth the loss of sense
indicators.

All in all, the designers of the 704-7094 I I provided increased
generality through evolution. They gradually ran out of patching
time, technology, instruction encoding space, and memory
addressing bits, while exceeding compatibility constraints. It
was indeed time to create the IBM System/360.

Chapter 41

The IBM 7094 I, II

Introduction

The IBM 7094 I and 7094 I1 computers are the last of a series
of computers beginning with the IBM 704 (Fig. 1, page 515). The
series is an outgrowth of the IBM 701. Although the series is
designed for scientific (arithmetic) calculations, its speed and
structure allow it to be used for general-purpose computation.
Business-type processing which uses string data is efficiently han-
dled by conversion into fixed-length fields at input and output.
From about 1956 to 1966 the family was the standard of large
computers in the United States, there being approximately 20 701,
50 704, 20 709, 50 7090, 130 7094 I, 125 7094 11, 120 7040, and
120 7044 computers in existence.

The PMS structure is a single central processor (Pc) with
multiple input/output processors (Pio’s) (for all except the 701 and
704). The Pio’s provide for multiple transfers to primary memory
(Mp) at high information flow rates. The structure allows for
duplex connection to terminal (T) or secondary-memory (Ms)
control (K). This provision permits the system to be used in real-
time applications requiring significant computation, high-data-rate
transfers with other systems, and high availability. However, the
system was not initially designed for time sharing and multipro-
gramming use, and the attempt to so use it required modification
[Corbato et al., 19621.

The word length is 36 bits. There is one single-address instruc-
tion/word. In all but the 7094 the processor interprets instructions
serially. In the 7004 one register instruction look-ahead is used.
The Pc has index registers, the 704 being the first IBM computer
to use them. Their number increased from three in the 704 - 7090
to seven in the 7094, as their usefulness became apparent.

Structure

A simple tree-structured IBM 7094 I using PMS is shown in Fig.
1 and using a conventional block diagram in Fig. 2.

Primary memory (M p) and P-Mp switch

The primary memory, Mp(’7302 Core Storage), has a capacity of
32,768 36-bit words with a cycle time of 2 microseconds. The
actual memory has a 72 + 1 parity bit word for even and odd
addresses of 36-bit words. A request for two 36-bit words can be

acknowledged in one 2-microsecond memory cycle. Thus Mp is
Mp(’7302 Core Storage; 2 p / w ; 16384 w; (72, 1 parity) b/w) for the
7094I,andMp(1.4ys/w; 1 6 3 8 4 ~ : (72,l parity)b/w)forthe7094 11.

The S(’7606 Multiplexor: time multiplexed) provides access to
Mp from any one of nine P’s. Only Pc can request two 36-bit words
at a time from Mp for instruction look-ahead and double-word
operations. There can be only one Pc in the system.

Processors, P

Three processors are described: Pc(’7109, 71 10 Central Processing
Unit/CPU), Pio(’7607 Data Channel), and Pio(’7909 Data Chan-
nel).

All P’s behave similarly in that Pc instructions and Pi0 com-
mandsl are fetched (or requested) from Mp and then interpreted
in P. An instruction location counter in P addresses the next
instruction. A processor instruction may, in turn, require the
processor to access Mp for data, to perform transfers, to modify
its state, etc. Although structurally the P’s are similar, organiza-
tionally the Pc is superior to the Pio(’Data Channe1)’s; Pc issues
programs to Pio’s and start and stops (controls) Pio’s.

Two-way communication is required between Pc and the Pio’s.
Tasks (jobs or programs) for Pio’s are first set up in Mp by Pc.
Pc then demands that Pi0 execute the program independently
under its own control. Initialization takes place when Pc sets the
instruction counter of a Pio. Upon task completion in Pio, an
interrupt request is sent to Pc from Pio.

Below we first give a description of the Pc. Then the Pio(’7900)
is presented in detail and the Pio(’7607) is outlined. The reader
should compare the two Pio’s. The Pio(’7909) is a later design than
the Pio(’7607). It interprets instructions for the block of data being
transferred and issues instructions to the KMs or KT. The earlier
Pio(’7607) interprets the instructions for controlling the informa-
tion being transferred; the Pc interprets and issues the instructions
to KMs or KT. The 7909 is therefore able to control more closely
a T or Ms using a single program without need for Pc intervention.

‘IBM attempts to distinguish between Pc and Pio’s terminologically by
“instruction” and “command.” We make no such distinction in the follow-
ing discussion; P s interpret instructions.

517

518 Part 6 1 Computer families Section 1 1 The IBM 701-7094 II sequence, a family by evolution

I T('7151 -2: consol e) -

. K-Sfx-Ms

X-Sfx 7 l-
-
0 : 9 : '729 I - V I . magnetic

tape: 751112 i n / s : 2400 f t ;

200, 556, ROO b y / i n : 6 b/by

'716: l i n e ; p r i n t e r : 72/120

cha r / l i ne ; 150 In/min: 64
symbol/char; 6 b/char

-

. K

' T .console -

I ,
I
I

I

I
I
I T.console -

Sfx-Ms (#0:9; '7340 Hypertape) -

-
K (# l : 6)-Sf x-K-T(rUO.9)b. u

L (t o : P i 0 (#4: 8))

'Mp(core; 16384 w: (72, I p a r i t y) b/w: 2 . 0 /LS /W)

"S(t ime mu l t i p lexed ; '7606 M u l t i p l e x o r : I M : R P: r a d i a l ; l oca t i on : c e n t r a l)

3Pc('7109,7110 Centra l Processing U n i t ; I i ns t ruc t i on /w : I address / i ns t ruc t i on ;

Mps(12w): data: si,bv,sf,suf,df,duf,fr.i: technology: t r a n s i s t o r s : antecedants: I B M 704,709,

7090: descenddnib:IBM 7040,7044,7094 I I ; 1962 - 1966)

'S(f ixed; from: 2 K; t o : 5 Ms; c0ncurrency:Z)

' K (# l .2: '7640)

" T := (T (l O 1 1 1 paper tape: reader: 500 char/s; 6,7,8 b / c h a r) l T (' l 0 1 4 ; paper tape:

7 S (f i x e d : 2 K)

punch) I T (Tel e type) 1 T (typewri t e r))

Fig. 1. IBM 7094 I PMS diagram.

Chapter 41 I The IBM 7094 1,ll

Pc

Console

-
'7109, 7110, 7151-2 Central Processing Unit/CPU;
36 b/w; 1 address; 1 instruction/w;
data: (si, bv, sf, suf, df, duf, fr.i);
number representation: s i p , magnitude;

- able(1 : 12), 'miscellaneous-bits(1 : 7))

519

+
Instruction I Arithmetic

+ Processing equence
Unit I Unit

(Central Processing Unit)

Core Storage

t
I

7909 Data Channel - - - - - - - - - -
0 (channel switch) 0 (channel switch)

Control
Reader Tape Units Control Synchronizer

w$+,+, Drum Storage

File

I I

Telegraph
1/0 Units

Fig. 2. IBM 7094 data-processing system configuration. (Courtesy of International Business Machines Corporation.)

The Pc will be discussed in two parts: the Register-transfer
level implementation and the Instruction-set Processor. These are
partially redundant, but they offer another opportunity to compare
the two types of descriptions. The Pc hardware will be described
by first giving the registers and the interregister transfer paths.
Then the process by which instructions are interpreted will be
described. (Interpretation occurs in a distinct set of memory cycles,
called instruction/I, execute/E, logic/L, and buffer/B, which are
sometimes mentioned in describing registers and will be fully
discussed later.)

520 Part 6 1 Computer families Section 1 1 The ISM 701-7094 II sequence, a family by evolution

Processor registers and mode bits registers

Figure 3 gives the Pc registers and the data transfer paths. Both
the ISP registers (denoted by ") and the temporary registers are
given. The ISP registers and modes are controlled by the program.

Instruction counter (IC)". The Instruction Counter, IC, is 15 bits.
It is used by the processor to locate the next instruction in Mp.
Once the program is started, the IC can be set to an address
specified by a transfer instruction. For most instructions, the IC
is stepped sequentially by 1 with each new instruction. The IC
is normally advanced at the end of each instruction (I cycle).

Instruction backup register (IBR). The Instruction Backup Register,
IBR, is a 36-bit register, (S, 1:35), and is used to buffer the next
instruction. Pc attempts to have the next instruction available in
IBR, since the Mp permits 72-bit transfers, thus avoiding an
unnecessary reference to Mp. When the instruction reference is
to an even location, the IBR is loaded with the contents of the
next higher odd address after the contents of the even address have
been placed in the Storage Register. The IBR is also used for
fetching operands in double-precision operations.

Address register (A R) . The Address Register, AR, is 15 bits and re-
ceives information from the Storage Register, Instruction Backup
Register (at the beginning of a storage reference I or E cycle),
Index Register, and Index Adder. The contents of the AR are
sent to the Multiplexor Address Switch to select the core mem-
ory location.

Instruction register (IR) . The 18-bit Instruction Register, IR, is
divided into two parts: bits (S, 1:9) always contain the operation
part of the instruction, and bits (10:17) form the Shift-counter
Register. The Shift Counter is used during shifting, multiplication,
division, and floating-point instructions. Bits (10:17) may also
contain a sense instruction address, operation codes for those
instructions which require an address part, and the class and unit
codes for input/output instructions.

Storage register (SR). The 36-bit Storage Register, SR, stores infor-
mation that comes from or goes to core storage.

Adders (not a register). The Adders furnish a 36-bit path for data
going from the storage register to other registers in the processor.

Accumulator register (AC)". The Accumulator Register, AC, is 38
bits (a 35-bit word with a 1-bit sign, and 2 bits for overflow

conditions, P and Q). The AC is used to hold one factor during
arithmetic or logical operations and to receive results from the
adders.

Information may be shifted into the accumulator from the MQ,
1 bit at a time.

Multiplier-quotient regi.ster (MQ)" . The MQ Register is 36 bits.
During a multiply instruction, MQ contains the multiplier; during
a divide instruction, MQ receives the quotient. It can be shifted
right or left, independently, or combined with AC into a 72-bit
register.
Sense indicator register (S I) " . The Sense Indicator Register, SI, is 36
bits. SI is normally used as a set of binary program switches which
can be set and tested. However, it is also used as a temporary register
in double-precision arithmetic operations.

Indexregisters (XR)". Seven 15-bit Index Registers, XRs, in the 7094
system are used for address modification. They are specified by the
tag bits of an instruction (bits (18:2O)) and modify an address by
adding the two's complement of their contents to the address. In the
earlier 7090 (and 7044) only XR[l, 2, 41 are available.

Multiple tag mode". In Multiple Tag Mode only Index Registers
1, 2, and 4 can be specified. The indexing function specified is
determined by the "logical-or'' of each index register specified.
When not in Multiple Tag Mode, each 3-bit number selects one
of seven index registers. The 1-bit Multiple-Tag-Mode Register
maintains the state of the mode. The requirement for the two
modes comes entirely from the need to maintain compatibility
between the 704, 709, 7090, 7040, and 7044 (which have three
index registers addressed as in Multiple Tag Mode) and the 7094
I and 7094 I1 which have seven index registers.

Tag register (TR). This temporary register holds the tag field of
the instruction being executed and is used to select the Index
Register being addressed.

Index adders (XAD) (not a register). A separate 15-position Index
Adder is used for the Index-register operations. All storing, load-
ing, changing, and modifying of Index Registers is via the Index
Adders.

Accumulator overflow*. The Accumulator Overflow Indicator is
turned on whenever a 1 passes into or through position P from
position 1 of the AC as a result of the execution of a fixed-point
arithmetic or a shifting instruction.

Chapter 41 1 The IBM 7094 4 1 1 521

I C I MULTIPLEXOR
I
I
I
1
L

I I I I I

Opemtion Sense
Decode

Index Registers [=I
L

CPU * I I I
I 0-35

Sense Indicators
Adders 0- 17118- 35 I c I / I

Accumulator s,1,9 I M-Q
S,Q,P,I-8 9- 35 1- -1s. 35 I I A I C I I 1

Address R ister

-
I I 3-17

I .
I I odd 5.1-35

Odd Core I Multiplexor I I Addresses
Address Switch 1

I I

I 3 - 17 I T
I
I Even Cwe Even 5.1-35
. Addresses

* '
I 1-

CORE STORAGE
MULTIPLEXOR

*Avai lable to the lns t ruc t lon Set Processor

Fig. 3. IBM 7094 central-processingunit information flow. (Courtesy of International Business Machines Corporation.)

522 Part 6 I Computer families Section 1 I The IBM 701-7094 I I sequence, a family by evolution

Dioide-check". The Divide-Check Indicator is turned on, in fixed-
point or floating-point division, if the magnitude of the number
in the AC (dividend) is greater than or equal to the magnitude
of the number in memory (divisor).

Input-output check". The Input-Output Check Indicator (1-0
check) is turned on by the attempted execution of an input/output
instruction without first selecting an input/output unit.

Transfer trap mode". The computer can be operated in a special
Transfer Trap Mode. Operation in the Trap Mode permits the
program to run at normal speed with interruptions of normal
operation only at transfer points. At such points the location of
the last sequential instruction is saved, and a transfer of control
is made to a fixed location.

Sense switches". Six Sense Switches are located on the console.
They may be turned on or off manually, and there are instructions
which sense them.

Sense lights". Four Sense Lights are also on the console. Any one
of these lights may be turned on, off, or the status tested by
instructions.

€'cine1 in-out sicitclzes". These 36 switches on the console may be
read by an instruction.

Instruction-set interpretation

The basic computer clock cycle is 2.0 p in 7094 I and 1.4 ps in
7094 11, as dictated by Mp. Within the single 2- (or 1.4-) micro-
second cycle, up to 10 sequential register transfers and/or data
operations can take place, each of which transfers information
among the Pc's registers; several operations may occur simulta-
neously. In Pc four different cycles are used: instruction/I, exe-
cute/E, logic/I,, and bnffer/B. The cyclic sequence of an instruc-
tion is fixed, always beginning with an I cycle and progressing to E,
L, or B cycles, depending on the instruction. The number of cycles
requiredfor an instruction may vary from I (e.g., transfer) to 19 (e.g.,
double-precision floating-point divide).

Instruction cycle (I). The I cycle begins when IC furnishes the
instruction location to Mp, via S('Multip1exor). The addressed
instruction word taken from Mp goes to the Multiplexor Storage
Bus (Fig. 3) . From the Multiplexor Storage Bus the instruction
is read into the Storage Register where it is separated into the
operation portion and the address portion of the instruction word,

The operation portion of the Storage Register goes into the In-
struction Register, where the operation code is decoded and the
execute control circuitry is set up to perform the operation
specified by the instruction. The address portion of the instruc-
tion word, now located in the Storage Register, may be used
directly. Normally, however, it goes to the Address Register and
then to the Multiplexor Address Switch to locate the appropriate
data word in Mp. If the address is to be modified, it is routed
from the Storage Register to the Index Adders for Index-register
modification. The modified address is then brought to the Address
Register and on to the Multiplexor Address Switch to locate the
data word in core storage.

Concurrently, during the same instruction cycle, a second
instruction, located at the immediately higher odd-numbered Mp
address location, is broiight to the Instruction Backup Register/
IBR. While in the IBR, the odd-numbered instruction is partially
decoded to determine if it meets certain criteria for concurrent
execution, thus saving a second Mp reference. If the instruction
in the IBR cannot be executed with the current instruction, it is
ignored in the current I cycle and is brought into the Storage
Register on the next I cycle.

Execution cycle (E) . The execution (E) cycle is used when a reference
to core storage is needed. All instructions requiring an operand have
an E cycle following the I cycle.

Indirect addressing of an instruction requires an extra E cycle.
In other words, an instruction that normally goes from I to E to
be executed will go to I, E, and again to E if it is indirectly
addressed.

Logic cycle (L) . The L cycle is an execute cycle that does not
require a reference to Mp. Many instructions use both E and L
cycles when information is required from storage and the instruc-
tion cannot be completed during an E cycle. Other instructions
require no reference to storage and, therefore, use only I and L
cycles for their completion.

Bufer cycle (B) . A buffer (B) cycle is a null Pc cycle; it is used
when the data channels get information from or put information
into core storage. This information can be either data or data-
channel commands. All demands for B cycles come from the
channels themselves. Because of the nature of Ms's and T's, the
demand for a B cycle takes precedence over an instruction being
performed by Pc. If Pc is in its logic cycle, then both an L and
B cycle occur simultaneously.

Chapter 41 1 The IBM 7094 1,Il 523

Instruction interpretution. Instruction flow diagrams for the CLA,
CAL, and CLS instructions are given in Fig. 4. These diagrams
show the sequential process of instruction execution. Although the
flow diagrams for these instructions are trivial, the general process
is still apparent. The more complex instructions, for example, dou-
ble-precision floating-point divide, are carried out in a similar
fashion, but with many more operations. The registers, transfer
paths, and interregister data operations are the register-trans-
fer-level primitives from which the ISP is implemented. The data
flow diagram (Fig. 3) explicitly defines the main registers and
register operations within Pc.

Pc ZSP

The Pc Instruction-set Processor is given in Appendix 1 of this
chapter. The instructions are arranged in groups according to the
location of operands. These groups are:

Operations on Mp
M p t u Mp
M p t u Mps

Mp + Mp b Mps

(unary operutionlu on M p)
(unary operation on Mprocessor

(binary operationlb)
state/ Mps)

Obtain instruction

s. 1-1 I 71-15

ploced in inrt, reg

Operation decoded
in decoders

1
Bring up execution
control lines

Minus to storage
register sign

I I

Address routed through
address register 3-17

I

!
Address of data i s
located

CLA, CAL Data routed to the

Fig. 4. IBM 7094 CLA and CLS instruction flowcharts. (Courtesy of
International Business Machines Corporation.)

Operations on AC and MQ
Mps t u Mps
Mps t u Mp
Mps t Mps b Mp

Operations on the index registers

Operations on the sense indicators

Instruction for program control

Memory mapping for multiprogramming and Mp(65536 w)

A special option provides multiprogramming by allowing a pro-
gram to run in a protected area of Mp. Two registers are used:
The base register establishes the lower bound of the program, and
the length register establishes the upper bound. Pc checks that
all program references are within the protected area.

Two Mp(32678 w)'s can be used on the computer. Mp is then
considered as A core and B core for addresses 0:32767 and
32768:65535. A 1-bit register is used to select whether A or B core
is to be used for data; and one 1-bit register is used to select
whether A or B core is to be used for the instruction. These
modifications were used at M.I.T. in their Compatible Time Shar-
ing System/CTSS [Corbato et al., 19621 which used a 7094 11.

Pio('7607 Data Channel)

The Pio('7607 Data Channel) executes programs which transfer
data between Mp and Ms(magnetic tape) or T(card; reader,
punch), (line; printer)). The paths and structure can be seen in
Fig. 1.

Transferring blocks of data between Mp and an Ms or a T via
the 7607 data channel takes places as follows:

1

2

Pc sets up the block transfer program in Mp for Pio.

Pc attaches a K for Ms(magnetic tape) or for T(card;reader)
to Pio. (Faults in the connection may cause K to interrupt Pc.)

Pc starts the Pi0 by loading the Pio's instruction counter.

The data transmission takes place. On input, for example,
T or Ms transmits a &bit character (or a 72-bit word) to
K. The characters are buffered (collected) in K and sent on
to Pio. Pi0 then requests a memory access from Mp via the
S('7606 Multiplexor) and, finally, a data word is transmitted
to Mp.

At the termination of a simple data block transfer, Pi0
fetches the next instruction from Mp. If the next instruc-
tion-task type is the same, Pi0 and K remain logically linked
and continue to transmit data.

3

4

5

524 Pari 6 I Computer families Section 1 I The IBM 701-7094 I1 sequence, a family by evolution

6 At the termination of the task, the completion signal from
Pi0 causes Pc to interrupt and Pi0 may also halt.

Pio('IBM 7909 Data Channel)

Ms('1301 Disk Storage, '7340 Hypertape Drives) and the T('Te1e-
Processing equipment) communicate with Mp via the Pio('7909
Data Channel). Four 7909 Data Channels may be attached to a
7094 I or I1 system.

K('7631 File Control) is required for M(disks). Several K('7631)
can be used with the 7094 system alone or shared with an IBM
1410 system or shared with another IBM 7000 series (not 7072
system).

When Ms('7340 Hypertape Drives) are attached to the 7094
system, K('7640 Hypertape Control) is used between the 7909 data
channel and the drives. One K('7640) may be attached to a 7094
system; it has two paths, each of which can be used for data
transmission.

The K('1416-6 Input-Output Synchronizer) is used with T('Te1e-
processing Equipment)'s. The structure for these T's is rather
elaborate, yet only six T's can be active at a time.

Transferring data from Mp to a T or an Ms via the 7909 takes
place as follows:

Pc sets up the data-transfer management program in Mp for
a Pio.

Pc starts Pi0 by setting Pio's command (instruction) location
counter at the origin of the task program in Mp. (Faults in
the connection may cause Pi0 interrupts to Pc.)

Pi0 issues an instruction to be executed by K. This establishes
a state in K which selects and initializes the particular Ms or
T and attaches the peripheral device K to Pio. (Faults in this
selection may cause interruption of Pio.)

The data-transmission instruction is read and initializes Pio.

The data transmission takes place under control of Pio-K.
The K of the selected device assembles characters. Input
characters are transferred to Pi0 which assembles them into
words and in turn transfers them to Mp.

At the termination of a data block transfer instruction,
another instruction is fetched from Mp by Pio. This in-
struction may be to another K.

At the termination of the Pi0 program, Pi0 signals comple-
tion by interrupting Pc.

This discussion is based on information taken from the IBM
7094 Reference Manual. The body of the description is contained

in ISP descriptions (Appendices 2, 3 and 4 of this chapter). The
main registers of Pi0 are shown in Fig. 5. These registers are
declared and their function is explained in the first section of the
ISP description of Pi0 (Appendix 2). The remainder of the ISP
description is concerned with defining the interpreter and the ISP
instruction set.

There are about 50 bits in the K's (see Appendix 3). A knowl-
edge of K's state and the K process is required for understanding
the Pio. A description of the K and Pi0 data-transmission processes
is given in Appendix 2.

The Pc instructions controlling Pi0 are presented in Ap-
pendix 4.

The level of detail in the appendices is slightly greater than
that in normal ISP description. It is, however, not completely
precise, as the behavior is extremely time- and Ms- or T-depend-
ent. The sequence check conditions are incomplete; that is, the

Mp(core)

3'7606 Mlultiplexor)

(36 datal (15 address)

Storage Channel
address

switches switches

(1 5) (1 51 (15)

Operation Word Address

1 1
I A I I

Assembly
register/

AR<S,l 35>

switches. ring/ r ing/
register
,. Pi0 status

Fig. 5. IBM 7909 data-channel-registers diagram.

Chapter 41 1 The IBM 7094 1,Il 525

conditions for illegal instruction sequences are not given. Both ISP
and text descriptions are given for parts which are particularly
complex.

The ISP description should be observed in the following se-
quence: Pi0 State; K State (Appendix 3); Pi0 Instruction Format;
Pi0 Interpreter; Pi0 Instruction-Control (or Initialization) in-
structions, Block Transfer (or Copy) instructions, Conventional
Move and Transfer instructions, and Interrupt Control instructions;
Instructions in Pc (Appendix 4); Interrupt Operation; and Proc-
esses definingdata movementsbetween K and Pio(Appendix2). The
Pio, K, and Ms or T processes are, in several ways, more complex
than those of a Pc. First, Ms or T activity is not categorized as

nicely as a Pc instruction set. The T or Ms events occur at times
peculiar to the device-not a simple synchronous clock. Finally, the
peripheral components have a large number of error states.

Conclusions

The series ending with the IBM 7094 I1 is a significant member of
the computer population. It provides a good example of the evolii-
tion in computer systems that occurred from 1954 to 1!)65.

References

CorhF62; FrizC53; GreeJ57; CrumM58; RossH53; SaxoJH3; StevL52; A22-
6703 IBM 7094 Principles of Operation

526 Pari 6 I Computer families Section 1 I The IBM 701-7094 II sequence, a family by evolution

APPENDIX 1 IBM 7094 PC ISP

Appendix I

I B M 7094 Pc I S P Desc r io t i on

Pc S ta te
The descr ip t ion does not include the imo protec t ion and re locat ion schemes used for t h e 7040 and 7094.
i s declared; i t s ac t ion i s not described.
t i o n Backup Regis ter i s not described, although it i s used t o save time i n program execution.
func t ions i s highly s i m p l i f i e d .

AC<a,P ,S, 1 : 35> * Accumulator, 38 b i t s

The Trm-Mode . f l ip - f lop
Trapdode allovs anu change o,f t h e Tns truc t ion Counter t o cause a t rap . The Tnstruc-

The descr ip t ion of t h e ar i thmet ic

ACsIS.1 :35> := A C 4 , 1 : 3 5 > * signed AC &lord

AC\6,1:35> := ACB.1:35> A log ica l AC word

P := A C 6 > * carry .for A C d : 3 5 > : AC overflow i s a l s o s e t

Q := ACQ>

5 := AC<S>

MQ<S, I : 35>
ACMQ<S,Q,P,l :71>:= A C d l Q < l :35>
S la: 35>

X R ' [1 :7]<3! Ih

* carry for b i t s @ , l : 3 5 >

* s ign b i t of AC

* Mult ip l ier -Quot ien t

* i?ouble uord accwrtulator
Sense Indicators or pr>ogram f l a g s must be preserved i f

index Regis ters i n 7094

double prec is ion f l o a t i n g poin t i n s t r u c t i o n s are given.

XR"[A,B,C]<3: ID := X R [1 , 2 , 4] 8 r ID * Index Regis ters f o r 704, 7090

Multiple,Tag,Mode Drogram switch t o force compatibi1it.u w i t h 704 , 7090; only
3 index r e g i s t e r s XR[A,B,CI are i n 704, 7090

I c<3: l7> * I n s t r u c t i o n Location Counter

Run * ind ica tes whether machine is executing i n s t r u c t i o n s

DivideJheck

A C d v e r f low

*
*

MQuoverf low *
I n pu t Jl u t pu t ,chec k

Trap,request<A:H>

*
Request t o trap Pc :porn P i 0 # A , . , # H

TrapJode 4 A l l o ~ l s trapninq o r not o f t r a n s f e r i n s t r u c t i o n s (not
descrihed I

PC Console S t a t e

b y K o l 3 D
Sens%Switches<O:P

Sense,L i gh t s<O : P

Mp Sta te
M[O:32768-l]<S, I : 3 V

Ins t ruc t ion Format
instruct ion<S,1:35>

Y<21 :35> := i n s t r u c t i o n Q l :35>

~<18:2@ := i n s t r u c t i on<l8: 20>

F d 2: I3> := i n s t r u c t ion<l2: 13>

i n d i r e c t := (F<12:13> = 1 1)

op<S,1;11> i= instruct ion<S,l111>

hi,opd:2> != i ns t ruc t i on<S, l .2>

corresponds t o t h e physical Storage Repis ter
generallu t h e address oar t : .*sed t o ca lcu la te the e f , f ec-

t i v e address: corresponds t o the physical Address Regis ter
the XR t o use: I , . . .7; 0 means no indexing; corresponds t o
a physical r e g i s t e r

i n d i r e c t address s o e c i f i c a t i m

OD code; corresponds t c a oh!isical r e g i s t e r
special o p coi'es

* Denotes subset ISP> IBN 704, 7044 s e r i e s

Chapter 41 I The IBM 7094 1.11 527

R<18; 35> ;= inst ruct ion<l8;35>

De: l 7 > := i n s t r u c t i o n d ; l 7 >
C ' <I 2 : l 7 > := i n s t r u c t ion<lZ: l 7 >
C<1 0 : I 7> : = i ns t r uc t i on <I 0 : 1 7>
c<l5: l 7 > := i n s t r u c t i o n < l 5 : 17>

E f f e c t i v e Address Calculation Process

r i g h t hal f o f i n s t ruc t ion used to s e l e c t SI b i t s

'Decrement p a r t o f i n s t ruc t ion , used t o d i r e c t l y modifq XR's
s p e c i f i e s variable length Dart 0.f operation

convert i n s t ruc t ion parameter
speci , f ies character pos i t i on i n 7040, 7044 o r extends pp code

eQ1:35> := (7 i n d i r e c t +e ' ; e f f e c t i v e address ca lcu la t ion

i n d i r e c t + inst ruct ion<18:35> c M [e']<18:15>: n e x t e ') 1 ZeveZ i n d i r e c t addressing

e'Q1:35>:= ((T = 0) + Y ;

(T # 0) *Y-XR[T])

e "Q3 : 35>:= e ' Q 3 : 35>

indexed e f f e c t i v e

5cQ8:35>:= e 'Q8 : 35>

XR[T]<3:17> := (

a truncat ion o.f e,

index r e g i s t e r s are or 'd together in mul t ip l e tag mode

used for) spec i fu ing number of s h i f t s :
corresponds t o a vhusical r e g i s t e r

~ M u l t i ple,TagJode X R ' [TI ;
Multiple,TagJIode + (

(T<13>+XR"[A]) V (T<19> +XR"[B]) v (TQO> j X R " [C])))

The descript ion f o r Mult iple Tag Mode i s incomplete for t he case o f wr i t i ng i n several index r e g i s t e r s a t one t ime. The o n h
wau t h i s could be accomulished in t he descript ion would be t o de f ine each load index reg i s t e r i m t r u c t i o n as microprogrmed .

Data Formats

SI 4.1 : 35>

sxcs, 1 : 35>

5x s i g n := s x 6 >

s x magnitude<l:35> := sx<1!35>

s f 4 , I : 35>

5 f s i q n := s f d >

s f exponent<l:8> := 200 - 5f<1:8>

s f mant i 55a<D:26>:= s f 6 : 3 5 >
8

df[O:l l<S,1:35>

df s i q n := df[O]<S>

df exponent<l:8> := ZOO8 - df[O]<I:R>

d f mantissad):53>:= df [0 : 1] 6 : 3 5 >

Ins t ruc t ion in t e rpre ta t ion Process

Run i (i n s t r u c t i o n t M C I C 1 : IC t l C + l ; nex t

i n s t r u c t i o n , i z x e c u t i o n)

logical data; unsigned integer/boolean vec tor
s ing le prec i s ion f i x e d point (i n t e g e r) data

s ing le v rec i s ion f l o a t i n g po in t value o f : sfusigmsf,mantissa
x2s f,exponent

double v rec i s ion f l o a t i n g po in t value of: df,sigmdf,mantissa

X 2 d , f u e ~ o n e n t

, fe tch
execute

Ins t ruc t ion Set and Ins t ruc t ion Ezecution Process

I n s t r u c t i o n g x e c u t i on := (

Operat iow on M: M[e] - f; o r MLe] - f I M [e] l ;

STZ (: = op = 600) i M [e] -0; * s tore zero

MSP (:= (op = -1623) A (c = 7)) +M[e]6> t o) : make s ign nos i t i ve ; 704 se r i e s onip

MSM (:= (op = -1623) A (c = 6)) +M[e]<5> + I) ; make s ign minus; 704 se r i e s only

Block t rans f e r of data, ?4- ?4 1704 series o n l y)

TMT (: = op = -1704) + (M[ACVI:35>:.(ACQI:35> + e 'Q8 :35>)] t

M [A C < 3 : 1 7 > : (A C < 3 : 1 7 > + e'Q8:35>)1);

528 Part 6 I Computer families Section 1 I The IBM 701-7094 II sequence, a family by evolution

Single word data transmission t o M , M[e 1 +Reg i s t e r
* s tore MQ

* s tore l e f t hal f MQ

* s tore
* s tore logical word

* s tore p r e f i x

* store decrement

* s tore tag

A s tore address
store i n s t m c t i o n locat ion counter

STR (: = h i d p = - I) +(M[O]Q1:35> + I C ; I C + 2) ; s tore in s t ruc t ion locat ion counter and trap

S T I (:= op = 604) + (M[e] + S I) ;

DoubZe length data transmission to M from A

DST (:= op = -603) - (M[elcM[e+l 1 + A C S M Q) ;

Binary operation with AC: M[e] - AC b M[el;

store indicators

double s to re

ORS (:= op = -602) + (M[el t A C I V r e]) ;

ANS (:= op = 320) + (Mcel cAC1 A MCel);

* o r t o storage

* and t o storage

6 b i t character t o M from AC, (7040 on ly) ;

SAC (:= op = -1623) --f (M[e]<c x 6 : (c x 6+5)> - AC<30:3p);

Operations t o the AC,MQ, or ACQVQ with AC,MQ,ACMQ, Keys and M operands.

C L M (:= (op = 760) A (e ' = 0)) +(AC4l,P,l :35> e o) ;
S S P (:= (op = 760) A (e ' = 3) l - CARS> - 0) ;

SSM (:= (op = -760) A (e ' = 3)) 4 (Ac<S> - 1) ;

CLA (: = OP = 500) + (AC e o ; next ACs +AC+M[el);

CAL

C L S (:= op = 502) i (AC t-0; next AC +AC-M[eI); clear and subtract

C l e m wgn i tude
* s e t s ign PLUS
* s e t s ign minus

clear and add
c l ear and add logical (:= op = -500) - (AC - 0 ; next A C I +ACI+M[el);

load MQ

enter Xeys
LDQ (:= op = 560) + (MQ +M[el) ;

FNK (:= (op = 760) A (e ' = 4)) + (MQ +Keys);

place indicators i n AC

double load

COM (: = (op = 760) A (e ' = 6)) + (AC<a,P,l:35> e,AC<a,P,l

RND (:= op = 760) A (e ' = IO)) +MQ<l> + A C c A C + I ;
FRN (:= op = 760) A (e ' = 1 1)) - (AC + round(ACMQl(sPl1;

ALS (: = op = 767) + (AC<Q,P,l:35> <-AC<Q,P,1:35> x 2");

ARS (:= op = 771) i (AC<Q,P,l:35> tAC<Q,P,1:35>/2sC);

LLS (: = op = 763) + (ACMQ' - A C M Q ' x 2");

L R S (:= op = 765) + (ACMQ' - A C M Q ' / 2");

LGL (:= op = -763) + (ACMQ" + A C M Q "

ACMQ1<0:71> := AC<Q,P,l:35> 0 MQ<l:35>
z s c (logicall);

LGR (:= op = -765) + (ACMQ" t ACMQ'/ Z s c [l o g i c a l l) ;

ACMQ"<O:72> := AC<Q,P,I:35> 0 MQ<S,1:35>

RQL (: = op = -773) + (MQ ~ M Q x 2" (r o t a t e l) ;

Exchange of Data betueen reg i s t e r s , AC, and ?4Q

35>) ; *complement magnitude
* round
* f l oa t ing round
* AC l e f t s h i f t
* AC r i g h t s h i f t
* long l e f t s h i f t
* long r i g h t s h i f t

* Zogical l e f t s h i f t

* Zogical r i g h t s h i f t

* ro ta t e MQ l e f t

Chapter 41 I The IBM 7094 I , I I 529

XCL (:= op = -130) + (MQ t A C I ; A C I c M Q ; A C G , Q > - 0) ; exchange logical AC and MQ

6 b i t character t o AC from M (704 on ly)
pcS (:= op = -1505) + (ACq0:35> c M [e F (c x 6) : (C x 6 + 5) ;) ;p lace character from storage

Binary operations w i th M,AC+ AC b M ;

ADD (:= op = 400) + (AC t AC + M [e 1) ; * add
ADM (:= op = 401) +(AC t A C + abs(MCe1)); * add magnitude

SUB (:= op = 402) + (AC t A C - M[el) ; * subtract
SBM (:= op = -400) +(AC c A C - a b s (M [e l)) ;

MPY (:= op = 200) + (A C M Q c M Q x M[e]; A C d l , P > -0) ;

MPR (:= op = -200) +(ACMQ c M Q x M[e l ; n e x t * mul t ip l y and round

* subtract magnitude

* mul t ip l y

MQ<l> + A C t A C + I ; A C Q , P > e o) ;
OVH (:= op = 220) + (A C , M Q tACMQ / M [e l ; n e x t

D i v i d e L h e c k + R u n -0) ; * d iv ide o r h a l t
OVP (:= op = 221) -(AC,MQ t A C M Q / MCel);

ACL (:= op = 361) +(ACI c A C l + M [e l) ;

* d iv ide o r proceed; DivideYcheck may be s e t

* add and carry logical uord

The fol lowing are variable length x and / operat ions. C ' s p e c i f i e s t he length o f d i v i sor o r mul t ip l i e r .

VLM (:= op = 204) + (ACMQ e M Q X M [e l {VI 1);
VDP (:= op = 225) - (AC ,NQ tACMQ / M [e I (VI 1) ;
VDH (:= op = 224) +(AC,MQ t A C M Q / M[e] {VI}; n e x t

variable length mu l t ip l y
variable length d i v ide or proceed

variable length d i v ide o r h a l t

D i v i d e d h e c k +Run e o) ;
Single prec i s ion f l o a t i n g po in t

FA0 (:= op = 300) + (AC,MQ + A C + M [e l (s f \) ;

FAM (:= op = 304) + (AC,MQ c A C + abs(MCe1) { s f)) ; * add magnitude

FSB (:= op = 302) + (AC,MQ t A C - M[e l (s f ?) ;
FSM (:= op = 306) + (AC,MQ e A C - abs(M[e l) { s f)) ;

FMP (:= op = 260) + (AC,MQ t M Q X MCel (s f ?) ;

FDH (:= op = 240) + (AC,blQ c A C / M [e l { s f) : n e x t

* add

.i subtract
* subtract magnitude

* mul t ip l y
* d iv ide o r h a l t

Div ideucheck +Run e o) ;
FOP (:= op - 241) + (AC,MQ e A C / M [e l { s f]) ; * d iv ide or proceed

Unnormalized s ing le prec i s ion f l o a t i n g po in t
UFA (:= op - -300) + (AC,MQ c A C + MCel [su f)) ; * add
UAM (:= op = -304) +(AC,MQ c A C + abs(M[e l) (suf]) ; * add magnitude

UFS (: = op = -302) + (AC,MQ t A C - M [e l {Suf));

USM (:= op E -306) + (AC,MQ t A C - abs(M[e])

UFM (:= op = -260) +(AC,MQ t M Q x M [e l [Suf]) ;

* subtract
* subtract magnitude

* mul t ip l y
(s u f)) ;

Double prec i s ion f l o a t i n g point
~n DF operations, t he S I are used as temporary r e g i s t e r s and w i l l be changed.

DFAD (:= op = 301) + ("a&
ACMQ c A C M O + M[elOi%e+l 1 {df) ; S I + ?) ;

DFAM (:= op = 305) + (* add magnztude
ACMQ - ACMQ + abs(MCelCW[e+ll) (d f j ; SI ?) ;

ACYO +ACMO - M[eIQl[e+i 1 (df1; S I + ?) ;

DFSB (:= OD = 303) + (* subtract

DFSM (:= OD 307) + (* subtract magnitude
ACMO eACMQ - abs(MEeIM[e+l 1) {df 1: SI + 7) ;

530 Part 6 I Computer families Section 1 1 The IBM 701-7094 II sequence, a family by evolution

DFMP (:= op = 261) + (

ACMQ t A C M Q x M[e]DM[e+ll { d f l ; S I e?);

DFDH (:= op = -240) i (

ACMQ tACMQ / M[e]oM[e+l] { d f l ; S I e?; nex t

Div ide-check +Run eo);

DFDP (:= op = -241) + (

ACMQ t A C M Q / M[e]OM[e+l] (d f) ; S I t 7) ;

Unnormalized double prec is ion f loa t ing poin t
DUFA (:= op = -301) + (

A C M Q +ACMQ + M[e]nM[e+l] [du f] ; S I e?);

DUAM (:= op = -305) i (

ACMQ t ACMQ + abs(M[elOM[e+l 1 I {undf 1; S I t 1) ;

DUFS (:= op = -303) + (

ACMQ t ACMQ - M[e]d l [e+ l] (duf I ; S I e?) ;

DUSM (:= op = -307) i (

ACMQ -ACMQ - abs (M[e]d l [e+ l]) {du f1 ; S I t?);

DUFM (:= op = -261) i (

ACMQ tACMQ x M[eICM[e+l] {duf) ; S I t?);

Logical
ORA (: = o p = -501) - (AC l +ACl V MCel);

ANA (:= op = -320) +(AC l +ACl A M r e l) ;

ERA (:= op = 3 2 2) i (ACI t A C I @ M[e l) ;

* mul t ip ly

* div ide or h a l t

* div ide o r proceed; Divide check may be s e t

* add

add magnitude

* subtract

subtract magnitude

* mul t ip ly

* o r t o accwnulator
* and t o accumulator

* exclusive or t o accumuZator

The convert ins t ruc t ions are not described i n d e t a i l .
characters i n AC or MQ and form a sum of products i n the AC or M Q for each character component of the word.

These ins t ruc t ions take a tab le i n memory, addressed by the E, ti b i t

C V R (: = op = 114) i (AC,MQ +f(AC,C,XR[ll,M[Y:Y+631));
C R Q (:= op = -154) + (AC,MQ +f(MQ,C,XR[II,M[Y:Y+631));
CAQ (: = o p = -114) i (AC,MQ c f (A C , M Q , C , X R [l I , M [Y : Y + 6 3 1)) ;

Transmission between M, X ~ Q [T I , and AC
If tag,-,=o, then a no operation DCCUPS

PDX (: = op = -734) + (XRCTI +AC<3:17>);

PAX (:= op = 734) i (XRLTI +AC<21:35>);

PDC (:= op = -737) --f (XRCT] +215 - AC<3:17>);

PAC (: = op = 737) + (XR[Tl ~ - 2 ’ ~ - AC<21:35>);

LXD (:= op = -534) i (XRLTI cM[YI<3:17>);

LXA (: = op = 534) + (XR[T] tM [Y]QI :35>) ;

LDC (:= op = -535) --f (XR[T] + Z I 5 - M[Y lO :17>) ;

LAC (:= op = 535) + (XR[T] < -Z I5 - M [Y] Q l : 3 5 >) ;

A X C (:= op = -774) + (XR[T] + Z I 5 - Y) ;

P X D (: = op = -754) +(AC t o ; n e x t ACO:17> tXR[T l) ;

PXA (:= op = 754) + (AC + 0; n e x t AC<21 : 3 5 > +- XR[T]);

AXT (:= op = 774) i (XR[T] + Y) ;

convert by replacement from the AC

convert by replacement from the MQ

convert by addi t ion from the MQ

* place decrement i n index
* place address i n index
* place complement o f decrement i n index
* place complement of address i n index
* load index from decrement
* load index from address

.i load complement of decrement i n index

* load complement of address i n index

* address t o index true

A address t o index complement
* place index i n decrement
* place indez i n address

P C D (: = op = -756) + (AC t o ; n e x t 4 C q : : 7 > + 215 - XR[T]);

PCA (: = op = 756)+(AC t o ; n e x t ACQ1:35>- 215 - XR[T]);

SXD (: = op = -634) i (M [Y] Q : 1 7 > t X R [T l) ; * s tore indez in decrement

SXA (:= op = 634)

* place complement of iv.dex ir, decrement
* place complement of index iv . address

* s tore index i n addres:: i (M [Y] Q l : 3 5 > t X R [T I) ;

Chapter 41 I The IBM 7094 1,ll 531

SCD (:= op = -636) + (M [Y I Q : I 7 > +Z15 - XR[T]);

SCA (:= op = 636) + (M [Y] a l : 3 5 > t 2 I 5 - XR[T]);

Transmission t o Sense Indicators
PA1 (:= op = 44) + (S I + A C l) ;

LDI (:= op = 441) + (S I + M [e l) ;

O A l (:= op = 43) + (S I + S I V A C I) ;

R I A (:= op = -42) + (S I + S I A Y A C 1) ;

I I A (:= op = 41) +(SI + S I 62ACl);

O S I (:= op = 442) + (S I + S I V MCeI);

R I S (:= op = 445) + (S I + S I A ~ M [e l) ;

IIS (:= op = 440) + (S I + S I @ M [e I) ;

SIL (:= op = -55) + (S I a l : 1 7 > t S I a l : 1 7 > V R) ;

RIL (:= op = -57) + (S l a l : l 7 > t S I a l : 1 7 > A 1 R) ;

I I L (:= op = - 5 1) + (S l a l : l 7 > c - S I a l : 1 7 > 62 R) ;

S I R (:= op = 55) + (Sl<l8:35> t S I < I 8 : 3 5 > V R);

R I R (:= op = 57) + (S I i I 8 : 3 5 > t S I < 1 8 : 3 5 > A i R) ;

I I R (:= op = 51) 4 (S1<18:35> c S l < l 8 : 3 5 > C d R) ;

Program flow control i n s t ruc t ions

NOP (:= op = 761) + ;

HPR (:= op = 420) + (Run to);
HTR (:= op = 0) + (Run + O ; I C + e) ;

TRA (:= op = 20) --f (I C + e) ;

X E C (:= op = 522) + (i n s t r u c t i o n + M [e l ; n e x t

I n s t r u c t i o n s x e c u t i o n) ;

Conditional t rans f e r s
TZE (:= op = 100) + ((A c < ~ , P , I : ~ s > = 0) + I C te);

TPL (:= OP = 120) + (-, AC<S> + I C + e) ;

TMI (:= op = -120) --f (AC<S> + I C +e);

TOV (:= op = 140) + (AC&verf low + I C t e ;

TNZ (:= op = -100) + (T (AC<a,P,1:35>= 0) + I C + e) ;

AC,overf low t 0) ;

TNO (:= op = -140) + (l A C d v e r f l o w -f I C + e ;

AC,overf low t 0) ;

TQP (:= op = 162) + (l MQ<S> + I C + e) ;

TQO (:= op = 161) + (MQ,overflow + I C + e ;

t i e o v e r f l o w t o) ;

TLQ (:= op = 40) + ((AC > MQ) + I C + e) ;

T I 0 (:= op = 42) 4 ((ACI = (ACl A S I)) + I C + e) ;

T I F (:= op = 46) --f ((0 = (ACI A S I)) + I C + e) ;

TSX (:= op = 74) 4 (XR[T] + Z i 5 - I C ; I C C Y) ;

TSL (:= op = -1627) + (M[e]<21:35> + I C ; I C + e + 1) ;

Index manipulation and control and subroutine ca l l i ng

Loop control
TXI (:= hi,op = I) + (XR[T] +XR[Tl + 0 ;

TXH (:= hi,op = 3) + ((D < XRCT]) + I C + Y) ;

I C C Y) ;

* s tore complement of index i n decrement
* s tore complement of index i n address

place accumulator i n indicators

load indicators

or accumulator t o ind ica tor s

neset indicators from accumulator
inver t indicators from accumulator

or storage t o indicators

r e s e t indicators from storage
inver t indicators from storage

s e t indicators of l e f t ha l f

r e s e t indicators of l e f t ha l f

i nver t indicators of l e f t h a l f

s e t indicators of r i g h t hal f
r e s e t i nd ica tor s of r i g h t hal f

i n v e r t indicators of r i g h t hal f

no operation

* h a l t and proceed

* h a l t and t rans f e r
* t rans f e r

execute

* t rans f e r on zero
* t rans f e r on no zero

* t rans f e r on plus
* t rans f e r on minus

* transfer on overflow

* t rans f e r on no overflow

* t rans f e r on M Q p lus
* t rans f e r on MQ overflow

* t rans f e r on low MQ

* t rans f e r when indicators on

* t rans f e r when indicators o f f

* t rans f e r and s e t index

* 704

* t rans f e r wi th index incremented

.+ t rans f e r on index high

532 Part 6 I Computer families Section 1 1 The IBM 701-7094 II sequence, a family by evolution

TXL (:= h i d p = -3) i ((0 5 XR[T]) i I C t Y) ; * t rans fer on index low o r equal
TIX (:= h i d p = 2) + ((XR[T I > D) i (XRCTI t X R [T] - 0; * t rans fer on index

I C CY));

TNX (: = hi-op = - 2) + ((XRCT] > D) +XR[T] t X R [T] - D ; * t rans fer on no index

(XR[T] < D) + I C cy);

S k i p t e s t s

M I T (:= (op = -1341) A (c = 7)) + (M[e]<S> + I C c I C + I) ;
PLT (:= (op = -1341) A (c = 6)) + (7 M[e]<S> - I C t I C + I) ;

CCS (:= ((o p = -1341) A (C < 6)) + (

storage minus t e s t ; 704 s e r i e s Oniy

storage p lus t e s t ; 7 0 4 s e r i e s onlu

compare
character wi th storage; 704 series only (AC<30:35> = M[ej<(c x 6) : (c x 6 + 5)>) + I C t I C + I ;

(AC<30:35> < M[e]<(c x 6) : (c x 6 + 5)>) + I C + I C + 2)) ;

PBT (:= (op = -760) A (e" = I)) i (AC<P> + I C t I C + I) ;
DCT (:= (op = +760) A (e" = 1 2)) + (Divide-check + I C t I C + I).* D i v i d e j h e c k t e s t

LBT (:= (op = ~ 7 6 0) A (e" = I)) + (AC<35> + I C t I C + 1) ;

ZET (:= op = +520) - ((MCe] = 0) + I C t I C + I) ;
FlZT (:= op = -520) - ((M[e] # 0) - I C t I C + I) ;

CAS (:= op = +340) i (

* P b i t t e s t

* low b i t t e s t

* storage zero t e s t
* storage own zero t e s t
* compare AC wi th storage

(ACs = MCel) i I C c I C + 1 ;

(ACs < M[eI) + I C c I C + 2) ;

LA8 (:= op = -340) - (* log ica l compare AC wi th storage

(AC<Q,P,l:39 = M[el<S,1:3P) + (I C c I C + 1) :

(AC<Q,P,l:39 < M[e l<S,1 :39) - (I C t I C + 2)) ;

SWT (:= (op = 760) A (e 1 < 9 : l W = 1 6)) + (Sense-Switches test
Sens~Switches<e'<l5:I;n> i I C c I C + I) ;

SLF (:= (op = 760) A (e ' = 140)) i (S e n s L L i g h t X 0 : b c 0) ; Sense- l ights off
SLN (:= (op = 760) A (e ' < g : l b = 14) A (e ' < i 5 : l P # 0)) - (Sense- t ights on

S e n s c L i g h t x e ' < i 5 : i b > I) ;

CLT (:= (op = -760) (e1<9 :1b = I *)) + (Sense-lights t e s t
Sense,Lights<e1<l5:I~> + (I C + I C + I ; SenseULights<e'<l5:l7>> t o)) ;

ETM (:= (op = 760) A (e ' - 7)) + (Trap-Mode + I) ; enter Trapdoode

LTM (: = (op = -760) A (e ' = 7)) i (Trap-Mode t 0) ; leave TrapJdode

EMTM (: = (op = -760) A (e ' = 16)) + (Multiple-Tag-Mode - I) ; enter MuZtipZe&zg-fdode
LMTM (:= (op = 760) A (e ' = 1 6)) + (Hultiple,Tag,Mode - 0) ; Zeave M u l t i p l e 2 a g d o d e

1 end Ins t ruc t im&xecu t ion

Chapter 41 1 The IBM 7094 1,Il 533

APPENDIX 2 IBM 7909 DATA CHANNEL ISP DESCRIPTION (A PIO)

Append ix 2

I B M 7909 Data Channel ISP D e s c r i p t i o n (a Pio)

Although the fol lowing descr ip t ion i s of a Pio, s ignals generated i n D c , '4, and K are necessaru.
a l so necessaru f o r a complete descript ion.

Ppnendices 1 , 3, and 4 are
The Ms attached t o K controls t he precise time information f l ows .

P i 0 S ta t e
CC<21:35>

AC<21:35>

AR<S,I:35>

ARc [O:5]4 :5> := AR<SS,l:35>

CTC<O:P

Cornnand Counter: 15 b i t command (or i n s t r u c t i o n) counter
containing the locat ion c,f t he next command

Address Counter: during vector data t rans f e r s A C contains
t h e address o f t h e nes t data word t o t rans f e r . Durina a
t r a n s f e r comand A C i s s e t t o t he address 01- t he nes t command

r e g i s t e r and the device control r e g i s t e r s

s e l ec t ed ARd PSR]

stored bu the ISP

Assemblu Regis ter: a buf,fer ,for 4ata f low behjeen the data

character arrau defined bu RR; a character is normally

Control Counter: a E b i t r e g i s t e r uhich can be loaded and

wc<3 : 1 I> Vord Counter: a counter con t ro l l i na the number of words l e f t
t o t r a n s f e r during a command

Data transm<ss<on modes 'n Pio f o r thP E-Pia dialoouer
.These control the f l ow d i rec t ion and data types between K and P i o .
exclusive o.f the o thers ,

illthough not described as such, each ind ica tor i s mutuallu

SH I

WR I

RD i

W a i t

8 I L := 42

I n t e r r u p t - R e q u e s t := ((CKC<1:6> A CKC1<30:35>) # 0)

Pc,Trap,Reques t

I n t e r r u p t Mode

C KC<1 : 6>
CKC<l>/ I nput,OutputJheck/ I JlpyCheck

CKC<2>/SequenceUCheck

CKC<3>/K,Unusual ,End

CKC<k : 5>/At t e n t i o n Cond i t i ons<l : 2 9

CKC<6>/KUCheck

C KC I <30 : 35>

The CXC ind ica tor s m e described as fol lows;
i n v u t Dutvut. Check

Sense Tndicator; K i s transmit t ing sense data t o Pio.
Write Tnc'icator: K i s receiving -lata from Pio.

Read Tndicator; ii i s transmit t ing data t o ?io,
b i t denotes a hal ted condi t ion i n Pio: i n s t ruc t ions are not

Tnterruot Location f o r P i 0 #A t o i n t e r rup t i t s e l f . Fach of

executed

the E ? i o ' s have svecial locat ions. b o locat ions, TL,
TL t l , are reserved

s i p n i f i e s a reouest t o in t e r rup t Pio from K o r w i th in Pio
s i g n i f i e s a reouest to trap Pc , f m n P i 0

b i t t o denote t h a t an in t e r rup t propran is running i n Pio
Check Conditions i n K t ha t cause an in t e r rup t o,f the P io

a mask t o i n h i b i t P i 0 i n t e r r u v t s from CKC

This' condi t ion occurs when the channel . f a i l s t o obtain a storage re,ference cycle i n time t o s a t i s f u demands of the attached
IO device.
t h e Pc eseeutes an RSC or RIC ins t ruc t ion .

adapter (XI. The command counter contains the locat ion p l u s one of t he present comand. The address counter contains the loca-
tion p lus one or two of the l a s t word transmit ted i p the operation was o wr i t e or control , o r the locot ion plus one o,f the l a s t
w x d transmit ted i f the operation

The condi t ion i s also monitored i n the ?e. I,O,Check is turned o f f when an L I P or LIPT command i s executed or when

When an I,O,Check occurs, the adapter i s disconnected and an in t e r rup t occurs when the KJnd signal i s received f r o m the

was a read o r sense.
I f an I d d h e c k occurs whi le the channel is i n i n t e r rup t mode, t he Tg-Check is not recogn<zed a d is not saved,

534 Part 6 1 Computer families Section 1 I The IBM 701-7094 II sequence, a family by evolution

Sequence Jheok
A Sequence-Check ind ica te s an inva l id sequence 0.f channe 1 commands,

the adapter i s l og ica l l y disconnected and the in t e r rup t occu21s when the KJnd signal i s received.
The following in s t ruc t ions cause a Sequence-Check and a channel i n t e r ruv t .

descrio t i on . i

I f a Seauence,Check occurs during data transmission,

(The checks ore not described i n the IS?

I . I f a CTLW, CTLR, or SNS is folloided by CTL, CTLW, WTR, TWT, o r SNS.
2, If an SNS or CPYP i s followed by an,u command other than a PYP, CPYD, TCH, or TDC.
3. I f a TCH o r TDC followina an SNS or CPYP t rans f e r s control t o anu command other than a PI". P Y D . TCH. o r TDC.

~~

4 . ff a CPYP or CPyb has no; been proverly preceded by a CTLW, CTLR, o r SNS.

K Jnusua ldnd

determined by sensing the K error indicat ion.

A t t en t ion Conditions

a t t e n t i o n signal i s generated when an access mechanism has comvleted a seek overation.
generated t h i s i nd ica t ion may be determined .from sense data.

Kdheck

The conditions which cause an adapter check are:

This signal i nd ica te s an error condi t ion recognized bu K . I t causes an { m e d i a t e in t e r rup t t o Pio. The s ignal may be

This i s a s ignal indicat ing a change i n s ta tus o f the attached input output device. For e x q l e , during disk operations, an
The var t i cu lar access mechanism tha t

Adapter check (=heck) i nd ica te s an error and i s recognizer' bzj the 7909, hut does not necessari lu indicate a K ma1,function.

1.
2 .
3.

Circu i t f a i l u r e occurs i n the ASR or CR.
The character ra t e 0.f the attached I O device ezceeds the capab i l i t y of the channel.
The adapter (K) i s not operational.
read, wr i t e , control or sense.

This i nd ica t ion occurs i.f power i s off on the a d m t e r and an attempt i s made t o

Harduare &i tches

not r eg i s t e r s .
These gates route information among the reg i s t e r s on a selected bas i s , They are not under control of the program and are

S t o r a q e Bus S w i t c h e s d , l : 3 5 >

Channel A d d r e s s S w i t c h e s Q l : 3 D

C h a r a c t e r Swi tchescO:5>

These 36 switches (and/or ga te s) provide the data path t o
and from the 7606 bdultinlexor f o r data or comand entru i n t o
the Pio.

Address information i s selected from the Address Counter o r
the Comand Counter.

or w r i t t e n i n t o the Pssemblir Segis ter .

These 35 switches provide the 9 with address information.

These 6 b i t switches enable the character t o be read from

Pi0 S ta te (not i n ISP)
Yardblare reg i s t e r s not i n ISP but used i n the descriot ion and the Pi0

OR<O:4> Operation Regis ter . The reg i s t e r containing the operat ion
OR i s made up from i<S,l:3,19>. part o.f the in s t ruc t ion .

DR<S,l i 35>
CR

Data Regis ter .

Character Ring.

A bu f f e r f o r 4ata .fZow between M and the AR.
P reg i s t e r t o control the t iming or trans-

mission i n t o AR.

ASR6
Assemblu Ring.
AR from/boK.
Y, one 6 -b i t character a t a time v ia the Character ,%itches
under control of A.qRR.

The counter t o control the gates to/ from
Data are sent t o or received from the control ,

In s t ruc t ion .Format

i 4.1 : 35> i n s t ruc t ion : normally I W c a l l s these comands because a Pio
executea them

f := i<18>

0 p 4 : 4 > ;= iC;,1;3,19>
ycO:14> ;= i Q l 1 3 5 >
c d) : 1 4 > I = i d t l h

c'<O:Z> := i<315>
rn4:5> := i<12:17>

i nd i rec t
operation code

address
count part

mask

Chapter 41 1 The IBM 7094 1,Il 535

eQ1;35> ;= t7 f + y ; f +MCylQ1;35>); 2 l e v e l o f i n d i r e c t addressing

I% S ta te
MCO:32768-1 la, 1 :35> Computer ' s primaru memory

Ins t ruc t ion Tnterpretat ion Process

Inter$upt,request A 7 Wait + (I n s t r u c t i o n + M [C C] ; f e t c h , no in t e r rup t
CC + C C + l ; n e x t

I n s t r u c t i o L e x e c u t i o n) ; execute, no in t e r run t
I n t e r r u p t j e q u e s t A Interrupturnode + (

(M [I L] Q 1 : 3 5 > + CC;M[IL IB :17> c C C ;

i n t e r r u v t process

Interrupturnode tl: next C C c l L + 1) ;

P i 0 I n t e r rup t s and P c Traps

d i s t i n c t from a data channel trap in which ?io in t e r rup t s the P c . On recogni t ion of an in t e r rup t condi t ion the P i 0 s to res the
contents o f t he command and address counters i n a f i x e d memor,u locat ion, IL, and then executes the command located i n the next
locat ion.

t h a t w i l l change the contents of the command counter ITCH, LIPT, or successful TDC or TCV).
successful t r a n s f e r , t he channel executes it and resumes operation a t t he locat ion i m e d i a t e l v .following the locat ion where the
in t e r rup t occurred. I f the command a t t he f i x e d locat ion i s a WTR or TW?, the channel suspends ooeration as described i n the
channel command sec t ion , but t he command counter contains the locat ion p lus one o f the command responsible f o r t he in t e r rup t .

In t e r rup t condi t ions are s tored i n a s i x -pos i t i on r e g i s t e r i n the data channel and may be exmined with the TCM command.
Any combination o f i n t e r rup t condi t ions causes an i n t e r r u p t : however, Once interrupted the channel i s placed i n in t e r rup t mode
and f u r t h e r at tempts t o s e t the in t e r rup t condi t ion or t o in t e r rup t are inh ib i t ed .
an L I P or L I P T command i s executed by t he channel or an RIC i n s t r u c t i o n is executed b y t h e CPU. If a channel i s i n i n t e r rup t
mode and an RSC ins t ruc t ion i s executed by the CPU before the channel executes a LIP or LIPT command, the in t e r rup t condi t ion
r e g i s t e r i s r e s e t but the channel remains i n in t e r rup t mode. A n L IP or LI?? command or a RIC ins t ruc t ion i s the only program
means avai lable t o cause the channel t o e x i t from i n t e r rup t mode and become recep t i ve t o f u r t h e r in t e r r imt condi t ions.

This i n h i b i t i n g n e r s i s t s u n t i l e i t h e r an RSC
or STC ins t ruc t ion (depending on whether the channel was enabled) i s executed by the Pc.

I f tlie channel i s prepared t o read or wr i t e , t h i s c o k a n d causes c words t o be transmit ted between the channel and MD, s t a r t i n g
w i t h M[e]. Data transmission continues u n t i l c i s reduced t o zero or a &End s ignal is received by t he channel.
t he channel read or wr i t e indicator i s r e s e t . I f , while a rPYD i s being executed a L F n d s ignal I s received before the count i s
reduced t o zero, the channel read or idrite i nd ica tor i s r e s e t , and the channel obtains a new comvand from the next seauent ial
locat ion.

I f the next comanc' <s a copy, the channel
in terrupts on a program sequence check. The l a s t word transmitted t o s torage under CPYD control remains i n the assemblii r e g i s t e r
i f a LEnd s ignal i s received be.fore the word count reaches zero.

g e t t h e next sequent ial command u n t i l a L E n i ! o r KJinusuaLEnd s ignal i s obtained.
channel does not ob ta in the next seauent ial command u n t i l e i t h e r a Kdnd or a LUnusuaLFnd s ignal causes an in t e r rup t .

In s t ruc t ion Se t and Ins t ruc t ion Ezecution Process

The ?io i s capable o f having i t s s tored program interrupted independently of other P I S . This operation i s separate and

I f t he 7909 channel i s to be diverted from normal command execut ion seouence, t he cornan? i n the f i x e d loca t ion must be one
I f t h i s command i s other than a

The channel remains i n in t e r rup t mode u n t i l

In t e r rup t s are a l so inh ib i t ed i f channel trap i s in process on t h a t channel.

This command, when decoded by a channel not prevared t o read or wr i t e , causes a seauence cheik and, thus, a channel i n t e r run t .

I n e i t h e r case,

I f t he next command i s other than a copg, the channel executes t h a t cornand.

I f t he count f o r the CPYD goes t o zero be fore the KJnJ signal i s received, t he channel i n i t i a t e s a disconnect but does not
I n generaz, when operating under CPYD contro1,the

The fol lowing control commands transmit i n s t ruc t ions (orders) o r operation information t o K.
MCel s t a r t i n g with the high order 6 b i t characten and co t i nues u n t i l a K 3 n d i s received by P i 0 from K.
word i s required, t he next words come from H e+l,e+Z,. . .7.

In,format :on i s s en t t o K from
I f more than one control

,Vert the Read or F'vite i nd ica tor i s s e t i n pia. For CTL, CTLR, and CTLW ins t ruc t ions , t he control uorc's are f i r s t transmLtted.

I n s t r u c t i o n e x e c u t i o n := (

C T L (:= op = 01000) i (AC t e: covtrol
MoveYwordYfrornUM; ASP - 0 : n e x t

Move,con t r o l ,char,touK) ;

CTLR (:= op = 0 1 0 0 1) i (AC + e : control and read
Move,word,f rorn,M: ASR t 0 . n e x t

Move,control,char,to,K: R D I t I) ;

CTLId (:= op = 01010) i (AC + e : nex t control and wr i t e
MoveYwordYfrornYM; A S R - 0 . nex t

Kove,controlUcharYtouK; W R I + I) ;

536 Part 6 I Computer families Section 1 I The IBM 701-7094 I I sequence, a family by evolution

CPYD &= op = 101+01) + (AC + e ;

Copy,data,block: n e x t

RD lOSNlOWRl -0 : KLend-wa i t) ;

CPYP (:= op = I O O S O) (AC t e ;

Copy,data&lock);

SNS (:= op = OlOll) + (SNI 1) ;

Execution of t h i s command must be fotlowed by a conu command.
r e g i s t e r through AR and DR t o M .

SMS (:= (op = 11100) A (c '=O)) + C K C I c e Q 9 : 3 5 > :

LCC (:= op = IlOll) -3 (AC + e ; n e x t

CTC t AC<30: 35,) :

TDC (:= op = 11010) + (AC t e ; n e x t

(CTC = 0) + :

(CTC # 0) -3 (CTC t C T C - I ; C C t A C)) ;

ICC, (:= op = 1 1 1 ~ 1) -3 (

(0 < c ' < 7) + A R c [c '] c CTC;

(c ' = 0) +ARc[5] c C K C I ;

(c ' = 7) -3 :) ;

((c ' = 0) ,+, -i i<Il> A (m = C K C)) + (cc + e) ;

((c ' = 0) A i< l l> A ((m A C K C) = m)) + (cc e e l ;

((0 < c ' < 7) A 7 i < I I > A (m = ARc[c])) + (C C - e) ;

((0 < c ' < 7) A i<ll> A ((m A ARc[C])

((c ' = 7) A (m = 0)) + (cc + e)) ;

TCM (:= op = l O l @ l) -3 (

= m)) - (CC + e) ;

TCH (: = op = O O I + O) + (Cc + e) ;

LAR (:= op = 01100) +(AC t e ; n e x t AR t M [A C l) ;

SAR (:= op = O l l O l) +(AC + e : nex t M [A C] t A R) ;

XMT (:= op = OOOll) + (AC t e ; \.IC t c ; n e x t

M g l o c k a o v e)

XMT i s ac tual ly a vec tor move wi th in Mp.
XMT (:= op = 000@1) + ((c # 0) + (

copy and disconnect

covu and proceed

sense
The data i n K ' s sense ind ica tors are sent v i a the K d a t a

s e t mode and s e l e c t

load control counter

t r a n s f e r an6 decrement counter

i n s e r t control counter

t r a n s f e r on condi t ions met

t ranqfer i n channeZ

load assemb1.y r e g i s t e r

s tore assemblli r e g i s t e r
an i n s t r u c t i o n t o move c words i n I"[CC: ICC + ci 1 t o Y[e: (e + c

vector move

M[e i (e t c - I)] c M [C C ; (C C + c - I)] !
WC e o ; A C c A C + c ; f i x end condi t ions
cc c c c + c)) :

WTR (:= op = OOOW) + (AC + e ; Wait t l) ; wait and transfer

TWT (:= op = O l l l O) +(AC t e ; Wait el; trap and wait

PcJrapJequest t 1) .

L I P (:= op = IlOOl) + (leave in terrupt urogram

c c +YILI&I i35>)
C K C t o ; I n t e r r u p t J o d e to);

LIPT (:= 001@1) + (leave i n t e r r u p t p r ~ g r ~ n ~ and trans,fer

(CC +e; CKC -0;

I n t e r rup t,Mode t 0)

) end Ins t ruc t ion-execut fon

Chapter 4 1 I The IBM 7094 1.11 537

K , Pio, and M Data Movement Processes
The fol lowing processes de f ine the movement o f characters and words among the r e g i s t e r s and FJemory.
copydadatadlock.
reading, a character i s taken from K and assembled i n Pio, then trans,ferred as a word t o M.
e i t h e r characters o r words i n a d i rec t ion r e l a t i v e t o pio.

The pr inc ip l e a c t i v i t y is
On wr i t ing , a word i s taken from M and placed i n Pio, then transferred character by chanacter t o K . On

The fol lowing urocesses move

Moueshar,toJ(
Movedontro l$har,toJ

Moue &harJromJ

Move JJord,to &
MoueaordJromJ4
MQtockJoove
K&nd&ai t

Copy,data&lock := (

R D I --f (Movedhar - f r o m X : ASR + 0) ;

SNI + (Movejhar, f romX; ASR e o) ;
WRI + (Move,wordfromJ; A S R t o ; W C t W C

Move,char,toX))

Movejhar,toJ(:= (

K,End V (WC = 0) + :

7 K S n d A (WC # 0) A K D a t a J q + (

m i t i n g i n t o K

s e t t i n g uv i n s t ruc t ion in K

reading from K
wr i t i ng i n t o M

reading from Ed

read M , wr i t e M on a word bu word bas i s
p r o c e ~ s t o u a i t f o r K end s ignals

I ; n e x t

K t P i o c M data movement

s top a t end

transmit a char
(ASR = 0) + M o v e ~ o r d f r o m d ; WC c W C - I ; n e x t

KJata cARc[ASR]; ASR c A S R + 1 ; nex t

Move,char, to,K) ;

1 K,End A (WC # 0) A K d a t a d q + (

Move&har,to,K))

Movejontrol&har,to,K := (

K S n d + ;

-, K,End A KJataJq --f (
(ASR = 0) --fMove.wordUfromJ4; n e x t

KQata cARc[ASR]; ASR c A S R t I : next

Move&ontrolghar,toJ() ;

7 K S n d A K Q a t a a q +Move~ontroI&har,to,K))

Move&har,fromJ(:= (

K,End v (WC = 0) + ;

7 KJnd A (WC # 0) A KSataJ Iq + (

ARcCASR) c K D a t a ; ASR t A S R + 1 : n e x t

(ASR = 0) + (Move#ord,toJI: WC c W C - I) ; next

Movejharfrom,K) ;

KJnd A (WC # O) A K Q a t a d q + (

M o v e s h a r f rom,K))

Move,.word,tod := (DR c A R ; n e x t

M [A C l e D R : AC t A C + I)

MoveJuordfromJI := (AR t D R ; n e x t

DR eM[ACI ; AC c A C + I)

PQlock f love := (

i d l e t i l l char ar r i ves

K t P i o cM
stou a t end
transmit a char

i d l e , t i l l char ar r i ves
kf e P i 0 t K data movement
s top a t end

rece ive a char

i d l e t i l l char ar r i ves

i” c Pi0 data movement

P i 0 e ? n data movement

V c M block move process f o r m o v i q WC words w i th in M , i . e . ,

538 Part 6 I Computer families Section 1 1 The IBM 701-7094 II sequence, a family by evolution

1 (W C = 0) - :
(W C # 0) i (DR t M [C C] : CC t C C + 1 ; n e x t

""[i'C: f[i'(' + W) I t P ' [A C : (A r + V C) 1 I
M [A C] t D R ; AC c A C + I ; WC t W C - I : n e x t

M,block,move))

K s n d - w a i t := ("rocess to ?Iqle u n t i l R transmits an end signal -. (K,End v K,Unusual,End) i K s n d j v a i t ;

(K,End v K,Unusual,End) i ;)

Chapter 41 1 The IBM 7094 1,ll 539

APPENDIX 3 K('HYPERTAPE) AND 'KDISK ISP DESCRIPTIONS

Appendix 3

K('Hyper tape) and K (d i s k) I S P D e s c r i p t i o n s

These K depend on control and s t a t e d e f i n i t i o n s from P i 0 of Appendix 2.

K S t a t e
K g p d) : 1

K,Da t K O : 5>
t h e ooeration or i n s t r u c t i o n r e g i s t e r i n K

i'ata b u f f e r i n P; used *or t ransmi t t inp and receiving characters
KJa ta,Rq

K,End

used t o control data f low bptween ARcCASR] and K d a t a : s ignal
i n K denoting KJata reauires neu data i f wri t ing , or has a
full data b u f f e r i f readinq

s e t by K a t the completion o f reading o r o r i t i n g a block o f data
KJJnusual Jnd s e t b~ K when an error is detectec7 during wr i t ing or reading and

data f l o w must be terminated

The following sense data b i t s for tape or ig inate i n Ens and K.
Some o f the b i t s are s e t using t h e CTL, CTLR, o r CTLW i n s t r u c t i o n s ,from Pi0 a s control words
SDT[O:l 1 6 , 1 : 3 5 >

SDT[Ol<l>/Operator Requ i red := (

These r e g i s t e r s can be read by P i 0 using t h @ Pi0 SNS i n s t r u c t i o n s

sense data .for K('H,upertape)

SDT[Ol<l j>/Selected D r i v e Not Ready V
SDT[0]<15>/Selected D r i v e Not Loaded V
SDT[01<16>/Selected D r i v e F i l e P r o t e c t e d V
SDT[O]<I 7>/0perat i o n Not S t a r t e d)

SDT[OI<l9>/lnval i d Order Code v
SDT[OIQl>/Selected D r i v e Busy v
SDT[O]42>/Selected D r i v e a t Beg inn ing of Tape v
SDT[O143>/Selected D r i v e a t End o f Tape)

SDT[OlQ5>/Correct i o n Occurred v
SDT[Ok27>/Channel P a r i t y Check V
SDT[OlQ8>/Code Check V
SDT[OIQ9>/Envelope Check v
SOT[O1Ql>/Overrun o r Charac ter Lost Check v
SDT[O]~3>/Excess ive Skew Check v
SDT[Ol (3b /Track S t a r t Check o r C lock L o s t Check)

SDTll l< l> /Se lec ted D r i v e Read a Tape Mark V
SDT[I lQ>/Se lec ted D r i v e i n End o f Tape Warning Area)

SDT[O]q>/Program Check := (

SDT[O]<O/Data Check := (

SDT[D k 5 > / Except i o n C o n d i t i o n s := (

SDT[01<7,9:11>/Selected Tape U n i t Address O : 3
SDT[I 1<7>/Read S e c t i o n Busy
SDT[I]->/Write S e c t i o n Busy
SDT[I]<I I N B a c k w a r d Mode
SDTCl 1<13,15: 17,19,21 :23,25,27>/Drive A t t e n t i o n [O : 9 1

SDF[OlO>/Program Check := (
SDF[O:I I6,i :35> Sense data d'or t h e K ('Disk)

SDF[Olq>/ Inva l i d Sequence V
SDF[Ol<S>/lnval i d Code V
SDF[O]<IO>/Forrnat Check v
SDF[Ol<I I>/No Record Found
SDF[0]<13>/lnval i d Address)

SDF[OI<lp/Response Check V
SOF[O]<lb/Data Compare Check V
S D F [O l < I P / P a r i t y o r C y c l i c Code)

SDF[Ol<p/Except ion C o n d i t i o n := (
SDF[O1<1F'/Access I n o p e r a t i v e V
SDF[01<21>/Access Not Ready V
SDF[01<2D/Disk C i r c u i t Check V
SDF[O]<2j>/Fi l e C i r c u i t Check

SDF[O]<b/Data Check := (

SDF[O1<7>/six B i t Mode/Status B i t
SDF[O l < 31 ,33 : 3poSDF[I] < 1,3 :5,7,9>/Access 0, Module[O :9]

540 Part 6 I Computer families Section 1 I The IBM 701-7094 II sequence, a family by evolution

Control Orders, i . e
In s t ruc t ion Names and Nwibers f o r X i d i s k)
These in s t ruc t ions are s e t i n the K op r e g i s t e r by the CTL ins t ruc t ions from Pio.
K ' s .

The inc t ruc t ions are then executed by the
They w i l l only be given as names, mnemonics, and operation codes.

DNOP (:= K d p = AA) +

DREL (:= K&p = A4) +

DEBM (:= K&p = A8) --f

DSBM (: = K d p = As) +

D S E K (:= K d p = EA) +

DVSR (:= K a p = 82) .--)

DWRF (:= L o p = 83) +

DVTN (:= K a p = 84) .--)

DVCY (:= K d p = 85) --f

DWRC (:= K,op = 86) +

D S A l (:= K d p = 87) .--)

DCTA (:= K,op = 88) +

DVHA (:= K d p = 89) +

Control Orders, . i . e .
In s t ruc t ion Names and Numbers f o r K i 'Hypertape)

HNOP (: = K d p = AAJ +

HE05 (:= K a p = A I) +

HRLF (: = L o p = A2) +

HRLN (:= K,op = A3) --f

HCLN (:= L o p = A5) +

HSEL (: = K,op = A6) +

HSBR (:= L o p = A7J i

HCCR (:= K,op = 28) --f

HRWD (:= L o p = 3A) +
HRUN (: = K,op = 31) --f

HERG (: = L o p = 32) --f

HWTM (:= L o p = 33) +

HBSR (: = L o p = 34) +

HBSF (:= L o p = 35) +

HSKR (:= K,op = 36) +

HSKF (:= L o p = 37) --f

HCHC (: = L o p = 38) +

HUNL (: = L o p = 3 9) i
HFPN (:= L o p = 42) +

no operation
release

e igh t b i t mode

s i x b i t mode

seek

prepare t o v e r i f y (s ing le record)

prepare to wri t e format
orepare t o v e r i f y (track w i t h no addresses)

prepare t o v e r i f y icy1 +der operat ion)
prepare t o wr i t e check

s e t access inoperat ive
prepare t o u e r i f y (track w i th addresses)

prepare t o ver i , f y (home address)

no operation
end of sequence

reserved l i g h t 0,f.f

reserved l i g h t on

check l i g h t on

s e l e c t
s e l e c t f o r backward reading

change cartr idge and rem%

rewind

rewind and unload cartr idge
erase long pao
wr i t e tape mark
backspace

backspace f i l e
space

space f i l e
change cartr idge

unload cartr idge
file pro tec t on

Chapter 41 1 The IBM 7094 1,ll 541

APPENDIX 4 IBM 7094 PC INSTRUCTIONS TO PlO('7909)

Appendix 4

IBM 7094 Pc I n s t r u c t i o n s t o P i 0 (~ 7 9 0 9)

P r S ta te
Pc,t r a p g n a b l e d , B,C, D,E, F,G. H> An 8 b i t r e g i s t e r i n Pc which i s used t o mask or allow t r a p

reques ts frov P i o . (# A , q, . . . H)
Ins t ruc t ion S e t

The .Collowing i n s t r u c t i o n s i n Pc are used t o
R S C i (Wait i (CC t e ; Wait - 0) ;

?Wa i t + R S C) : ,

STC + (W a i t + (CC L A C ; Wai t ~ 0) ;

+sit i S T C) :

SCH + (M[elQ1:35> t C C ; M[e]<3:17> c A C) :

ENB --f (P c d r a p a n a b l e cM[e]Q8:35>);

R I C + (CTCOACuARnCCnUCnWait t o) ;
TCO + (7 Wait --f I C + e) ;

TCN + (Wait + I C +e);

operate on each P i 0 s t a t e : thus, each i n s t r u c t i o n i s actuall!i 8 ins t ruc t ions
r e s e t and s t a r t channel
i n i t i a l i z e s a Pi0

s t a r t t h e Pi0 program

s t o r e channel. Checks s t a t u s of a P i o .

enable .from e , f f e c t i v e address
r e s e t channel

t r a n s f e r on channel i n operation
t rans fer on channel no t :n ooeration

I I

Section 2

The SDS 910-9300 series,
a planned family

The Scientific Data System 900-9000 series consists of the SDS
910, 920, 925, 930, 940, 945, and 9300 computers. The series
includes capabilities and features found in most 24-bit ma-
chines. The design implementation is among the best for 24-bit
machines, as measured by equipment utilization, the processor
state, implementation technology, and ease of use.

The first delivery dates for the members of the series are910
(August, 1962), 920 (September, 1962), 925 (February, 1965),
930 (June, 1964), 940 (April, 1966), 945 (-1968), and 9300
(December, 1964).

The 910 and 920 were designed at the same time as a
planned series of compatible computers which spanned a range
of performance. The 910 has instructions which facilitate de-
fining 920 instructions by software. For examde, these include
the multiply and divide step1 (see page 544) instructions in
the 910 for programming the multiply and divide instruction
in the 920.

The I / O facility evolved to a clean structure, with the poten-
tial for having a high degree of T and Ms data-transfer concur-
rency at a comparatively low cost. The IBM 7094 should be
studied for a contrasting (more expensive) approach.

The instructions which help manipulate floating-point data
are interesting and useful. The machine's ability to execute
closed floating-point arithmetic subroutines is fairly good con-
sidering that the instructions are not hardwired.

The Programmed Operator (POP) instructions provide the
ability to define an instruction set for efficient encoding. The
idea appeared earlier in Atlas. However, the POP instruction
calls subprograms in primary memory, instead of in fixed
memory like Atlas.

A nice scheme1 is described for increasing the memory
address space from 16,384 to 32,768 words. Other schemes
which switch memory banks, like those in the PDP-8 (Chap. 5)

'We believe this appeared originally in the DEC PDP 1 introduced in November,
1960.

and in the 65,384-word 7094 II (Chap. 41), tend to be less
desirable and flexible.

The SDS 930 was used at the University of California (Berk-
eley) as the base machine for the design of the Berkeley Time
Sharing System (Chap. 24). SDS later marketed the system as
the SDS 940.

The 9300 was not a member of the original 910-930 series.
There is almost symbolic language program compatibility. Sev-
eral registers and extra memory transfer paths were added to
form the 9300 from the 930. The power of the 9300 is only
a factor of 2 times the 930 for simple instructions. However,
the hardwired floating-point instructions in the 9300 increases
the power over the 930 by a factor of almost 10 for arithmetic
problems. It is hard to believe that the incompatible 9300 was
a wise choice. (We suggest a more reasonable alternative could
have been a two-processor 930'. The 930' processor would be
a 930 but with hardwired floating-point arithmetic instructions.)
The 9300 has interesting twin-mode instructions for simulta-
neously operating on 12-bit data pairs. The 24-bit fixed-point
word is sufficient for the real-time applications for which the
computer was designed.

A flaw in the series is the sharing of K's among peripheral
T's and Ms's. This problem can be seen by looking at the PMS
structure (Chap. 42, Fig. 2, page 546). The connection to the
peripheral K from K('Channe1) requires a continuous connection
during the data-transfer dialogue to Mp. This structure is espe-
cially bad in the case of a slow T, for example, a typewriter.
A single character transmission requires that K('W, 'Y) be
assigned to the typewriter during the complete message trans-
mission (at a connected time of 100 milliseconds/character).
The problem can be avoided by placing a character memory
in each slow KT. Multiple devices could then run concurrently
without requiring the elaborate K('W, 'Y) to be attached to them.
The structure does not preclude such an improvement.

A complete description of the input/output and interrupt
system is given and should be read carefully.

542

Chapter 42

The SDS1 910-9300 series
Introduction

The SDS 910, 920, 925, and 930 form a compatible series of
computers. The 9300, though not compatible with the series, was
an outgrowth of it. The 9300 uses the Ms and T devices of the
930. The 940 was designed initially at the University of California,
Berkeley (see Chap. 24) for time sharing, and the 945 is a successor
to the 940. The word length is 24 bits, and one single address
instruction is encoded per word. The state of the machine consists
of Mp(2048 - 32768 w) and Mps('P/Program Counter, 'A/Accu-
mulator, 'B/Extended Accumulator, 'X/Index register).

These computers have been designed to process data originat-
ing from physical processes in real time. This design goal leads
to a priority interrupt system with many (1,024) levels. The multi-
ple interrupts facilitate programming and decrease the interrupt
response time. A 24-bit word or two 12-bit words are a reasonable
size for the problem types encountered. A multiple of 6 bits was
chosen because of the (then) standard 6-bit magnetic-tape charac-
ter. The relatively efficient storage representation and processing
of floating-point data allow these computers to be used for gen-
eral-purpose computation. However, only the 9300 has built-in
floating-point operations. The 9300 has extensive capability for
more general-purpose use. It is also used for operations on half-
length data.

The data types processed by the 910-930 include words, inte-
gers, addresses, and boolean vectors. Several special instructions
aid processing of types floating-point and double-length integers.
The 9300 processes the additional data-types single- and double-
length floating point. The 9300 has twin-mode instructions which
operate on two half-length data (12 b) simultaneously. The two's
complement representation is used for negative numbers.

The multiply, divide, and several other instructions are not
wired into the 910, and compatibility between the 910 and 920-930
cannot be completely obtained by programming, although the 910
is a subset of the 920-930. Likewise, a smaller minimum Mp is
available on the 910 (2,048 word versus 4,096 word). The 920 and
930 have identical instruction sets and differ in memory and logic
performance. The 930 has a t.cycle: 1.75 ps, and the 910-920 has
t.cycle: 8 ps. The more elaborate PMS structure of the 930 al-
lows for greater growth, (e.g., by having more access ports to Mp).

'Scientific Data Systems merged with Xerox Corporation in 1969. The
divisional name became Xerox Data Systems (XUS).

The 9300's instruction set is different from the 930's. There are
three index registers. The PMS structure is similar (and nearly
compatible) with the 930. There are more (and better) working
registers in the 9300 Pc to increase performance. The 9300 has
two memory-access links, and the Pc can fetch instructions and
data simultaneously. The instructions in the various C's appear
in Table 1 for comparison purposes.

The SDS 925, a 1.75-ps version of the SDS 910, was available
only for a brief time and will not be discussed further.

The machines process instructions (operations to the accumu-
lator) in the following times (microseconds):

Instruction 910 920 930 9300

Fixed-point Add 16 16 3.5 1.75
Fixed-point Multiply 248 32 7.0 7.0
Floating-point Add 896 384 92 14.0
Floating-point Multiply 1696 656 147 12.25

Structure

The structure of these computers is given with PMS and conven-
tional diagrams in Figs. 1 to 4.

The SDS channel is a Kio('Channe1) and not a Pio, since it has
no program counter and uses Pc. However, it can be as effective
as a Pio. Of course, the cost is lower since Pc is shared. If K('W,
'Y) requires memory accesses, they must wait until suitable times
in the Pc instruction-interpretation process to communicate with
memory (Fig. 1).

The PMS structural detail (Fig. 2) does not show the algorithm
by which simultaneous Kio('V', 'Y, 'C, 'D) and Pc requests for Mp
are resolved. K has the highest priority, and further resolution
among K's is determined by the K with the fullest buffer memory.
Thus the priority is variable.

There are three basic K types, or channels (Fig. 2), in the 930
and 9300:

1 K('Time Multiplexed Communications Channel/TMCC)

2 K('Direct Access Communications Channel/DACC)

3 K('Data Subchannel/DSC)

543

544 Part 6 1 Computer families

Table 1 SDS 910, 920, 930 and 9300 instruction sets1

Section 2 I The SDS 910-9300 series, a planned family

Mnemonic Name Mnemonic Name

LOAD/STOR E

+ LDA
+ STA
+ LDB
+ STB

LDP
STD
LDS
STS

+ LDX
+ STX
+ EAX

STZ
+XMA

XMB
XMX

AR ITH M ETlC

Load A
Store A
Load B
Store B
Load Double Precision
Store Double Precision
Load Selective (Masked)
Store Selective (Masked)
Load Index X
Store Index X
Copy Effective address into Index Reg

ister 1
Store Zero
Exchange M and A
Exchange M and B
Exchange M and

Index Register

+ADD
DPA

+SUB
DPS
M PO

OMIN
M PT

*+ADM
$ + M U
$ + DIV

TMU
DPN

x MUS
x DIS
*.sue
$oADC

x ~ M D E

Add M to A
Double Precision Add
Subtract M from A
Double Precision Subtract
M Plus One
M Increment (M + 1)
M Plus Two
Add to Memory
Multiply
Divide
Twin Multiply
Double Precision Negate
Multiply Step
Divide Step
Subtract with Carry
Add with Carry*
M Decrement

ARITHMETIC, FLOATING-POINT (OPTIONAL)

FLA M, T Floating Add
FLS M, T Floating Subtract
FLM M, T Floating Multiply
FLD M. T Floating Divide

LOGICAL

+ETR M, T Extract
+MRG M,T Merge

REGISTER CHANGE

RCH
AXB

$oCLA
$oCLB
0CLR

$.CAB
0ABC

$CBA
0BAC
0XAB

$oCBX
$oCXB
$oXXB
$oSTE
$oLDE
$oXEE
$oCXA
$CAX

0XXA
$oCNA

OCLX
COPY

BRANCH

+ BRU
+ BRX
+ BRM

BRC
BMA

+ BRR

TEST/SKIP

$ + SKE
+ SKG

SKL
+SKM

SKU
SKQ

SKF

+ SKA

S+SKB

+ SKN
S+SKR

Register Change
Address to Index Base
Clear A*
Clear B*
Clear AB
Copy A into B*
Copy A into B, Clear A
Copy B into A*
Copy B into A, Clear B
Exchange A and B
Copy B into Index*
Copy Index into B*
Exchange Index and B*
Store Exponent*
Load Exponent*
Exchange Exponents*
Copy Index into A*
Copy A into Index'
Exchange Index and A*
Copy Negative into A*
Clear X
COPY

Branch Unconditionally
Increase Index and Branch
Mark Place and Branch
Branch and Clear Interrupt
Branch and Mark Place or Argument

Address
Return Branch

Skip if A Equals M
Skip if A Greater than M
Skip if A Less than M
Skip if A equals M on B Mask
Skip if A Unequal M
Skip if Masked Quantity in A Greater

Skip if Floating Exponent in B is Greater

Skip if A and M do not Compare Ones

than M

than or Equal

Anywhere

Anywhere
Skip if B and M do Compare Ones

Skip if M is Negative
Reduce M, Skip if Negative

Chapter 42 1 The SDS 910-9300 series 545

Table 1 SDS 910, 920, 930 and 9300 instruction sets (Continued)

Mnemonic Name Mnemonic Name

+EOR M,T

REGISTER SHIFT

SHIFT M,T
ARSA N,T
ARSB N,T

ARSD N, T;
ARST N, T
LRSA N,T
LRSB N,T

LRSD N, T;
LRST N, T
CRSA N,T
CRSB N,T

CRSD N, T;
CRST N, T

ALSA N, T
ALSB N,T
ALSD N, T
ALST N, T
LLSA N, T
LLSB N, T
LLSD N, T
LLST N, T
CLSA N, T
CLSB N, T

*RSH,

0 LRSH (930 only),

oRCY,

0LSH;

0 LCY,
CLSD
CLST
NORA

0 NOD
NORD

CONTROL

+ HLT
+ NOP
+ EXU

INR
REP

Exclusive OR

Shift
Arithmetic Right Shift A
Arithmetic Right Shift B
Arithmetic Right Shift AB
Arithmetic Right Shift Double
Arithmetic Right Shift Twin
Logical Right Shift A
Logical Right Shift B
Logical Right Shift AB
Logical Right Shift Double
Logical Right Shift Twin
Circular Right Shift A
Circular Right Shift B
Circular Right Shift AB
Circular Right Shift Double
Circular Right Shift Twin
Arithmetic Left Shift AB
Arithmetic Left Shift A
Arithmetic Left Shift B
Arithmetic Left Shift Double
Arithmetic Left Shift Twin
Logical Left Shift A
Logical Left Shift B
Logical Left Shift Double
Logical Left Shift Twin
Circular Left Shift A
Circular Left Shift B
Circular Left Shift AB
Circular Left Shift Double
Circular Left Shift Twin
Normalize A
Normalize: Decrement X
Normalize Double

Halt
No Operation
Execute
Interpret
Repeat

SKP M,T Skip if Bit Sum Even
+SKS M,T Skip if Signal Not Set
0SKD M, T Difference Exponents; Skip"

FLAG REGISTER

FRTS M Flag Indicator Reset Test/Set
FLAG M Flag
FIRS M Flag Indicator Reset/Set
FSTR M Flag Indicator Set Test/Reset
FRST M Flag Indicator Reset/Set Test
SWT M SENSE Switch Test

INTERRUPTS

+ EIR
+ DIR
+ EIT
+ IDT
+AIR

Enable Interrupts
Disable Interrupts
Interrupt Enabled Test
Interrupt Disabled Test
Arm Interrupts

MEMORY EXTENSION (930 ONLY)

Set Extension Register
Extension Register Test

BREAKPOINT TESTS (SENSE SWITCHES IN 9300)

0BPT 4 Breakpoint No. 4 Test
0BPT 3 Breakpoint No. 3 Test
0 BPT 2 Breakpoint No. 2 Test
0BPT 1 Breakpoint No. 1 Test

OVERFLOW (FLAG IN 9300)

0ROV Reset Overflow
.REO Record Exponent Overflow
0 OVT Overflow Test: Reset

PROGRAMMED OPERATORS

.POP M,T Programmed Operator (64 instructions)

'M-Memory or Memory Address: N - n u m b e r of shifts: T-tag field: +-also in the 910, 920 and 930; x.910 only; m o t in the 9300; $-not in the 910.

546 Part 6 1 Computer families Section 2 I The SDS 910-9300 series, a planned family

I T.consol e -

MP"-PC- ~ (' ~ n - o u t B U S) TK('W)-sfx ;+

K('Y)-Sfx t

' P c (l a d d r e s s / i n s t r u c t i o n : 1 i n s t r u c t i d w ; 24 b/w:

technology: t r a n s i s t o r ; 1962 - 1968)

Fig. 1. SDS 910 and 920 PMS diagram.

The links between KT or KMs and any one of K('TMCC),
K('DACC), and K('DSC) are identical. The KT or KMs assembles/
disassembles characters into/from words and transmits/receives
them to/from the Kio('Channe1). The channel communicates with
Mp or Pc for data transmission and finally communicates with Pc
a t task completion (the block of data transferred). Task alarms may
came Kio to interrupt Pc. Each Kio('Channe1) can assemble data
on a 6-, 12-, or 24-bit basis for Mp accesses. A K('Channe1) recog-
nizes two types of information: data being transmitted between
Mp and the peripheral K, and initialization or controlling infor-
mation from Pc.

In the 930 or 9300 K's the principal distinction is that the actual
data-path switching routes differ. From a program operation and
control viewpoint the Time Multiplexed and the Direct Access
Communication Channels (TMCC and DACC) and the Data
Subchannels (DSC) behave almost identically. The TMCC and
DSC differ from DACC in that the block control information
(number of words and location in memory) for the channel may
be either in primary memory or in local hardware memory associ-
ated with the channel hardware.

T.conso le -
I

L (I / O b u s : under Pc v r o g r m e d control)

- P c1- s

T-
L - L('Memory I n t e r f a c e Cnnnection/MlC)-

' Pc(laddress/instruction: 1 i n s t r u c t i o n / w : Mps(-4 w) : 24 b/w; t e c h n o 1 o g y : t r a n s i s t

2Mp(core : I .75 p s / w ; 4 -
a S (c o n c u r r e n c y : l ; 1 . 7 5 u s / w)

kw. (24, I p a r i t y) b/w)

K('T ime Mu1 t i p l exed Communi c a t inns Channel /TPCC)

' K (' D i r e c t Access Communications Channel/DACC)

' K (' D a t a Subchannel/DSC)

" S (# D a t a Y u l t i p l c x - r Evs tedDPS)

E x := TIM^

- c n n t r n l , da ta

da ta o n l y

Fig. 2. SDS 930 PMS diagram.

Chapter 42 1 The SDS 910-9300 series 547

Main Frame
Para1 l e 1

Input/Output POT

i zs -7

-
. I
Additional
Optional

.
Memory

Multiple Access
to Memory 1 Feature 1

r - l Memory

Multiple Access
to Memory I Feature I

TMCC -m

I-- Second Path --- I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
Data Multiplexing System I

Priority
Control

Optional
E I N

I I

Where

DSC= Data Sub-channel
M I C = Memory I n t e r f a c e Connection
TMCC= Time Mu l t i p lexed Communications Channel
DACC= D i r e c t Access

I
I
I
I
I
I
I Priority Interrupts
I
I

Fig. 3. SDS 390 computer-configuration diagram. (Courtesy of Scientific Data Systems.)

548 Part 6 I Computer families Section 2 1 The SDS 910-9300 series, a planned family

The 9300 structure, though not given in the PMS diagram, is
essentially that of the 930 (Figs. 3 and 4). In the 9300, Mp has
three access ports or a S('Memory-Processor; 8 Mp; 3 PX) . The
Pc('9300) requires two of the access ports for independent access
of instructions and data, leaving one for K transfer to Ms and T.

'nstruction-set processor

The interesting parts of the ISP are discussed informally below.
The formal ISP description given in Appendix I of this chapter
should be read. The descriptions are partially taken from the SDS
Programming Reference Manuals.

Instruction/operand access
i s overlapped when separate
memory modules are accessed

Core Memory
Expandable to 32,768 words

Basic 4096-word Memory
C

Singye-bit 1/0 Instructions -
Control and Sense 1 1 A S 9300 _ _ _ - _ - - ----

b COMPUTER h Optional 4096-word Memory I

Time-Multiplexed 1

4 * k _ _ _ - - - - - - - - i

1 r - - - - - - - - - - -
I/O Optional 8192-word Memory I

24-bit 1/0 Ari thmetic Operands and
and Control -

$L -__-- - - - - - - -I
Input/Output Control

+ -1 I--- - - - - - - - - -
I I

I
Optional 16,384-word Memory I

I
I I
L _ _ _ _ _ _ _ _ - _ _ - J I

Time-Multiplexed Communication Channels b
(Up to 30 devices/channel)

r - - - - z - - T r - - - - - - -1
I
I
I \ _ _ - _ _ _ - _1

Mul t ip le Access I I Data Mult ip lex
I, System I

to Memory I
L _ _ _ _ [- - J

G

1 Tm Direct Access Communication Chonnels
(Up to 30 devices/channel)

Up to 128 Data I r - - - - - ----
To/from Special Devices I M~~~~~ interface I

I Connections* I
4 Subchannels

L ---------- J
Note: Broken lines indicate optional hardware.

Fig. 4. SDS 9300 computer-configuration diagram. (Courtesy of Scientific Data Systems.)

Chapter 42 I The SDS 910-9300 series 549

R x Instruction code 1 Address field
I I I I I 1

Registers and memory (930)

The Pc state is declared in the ISP description. The ISP registers
are A, B, X, P, M, and miscellaneous bits for overflow, carry, etc.
Overflow can be turned on for arithmetic overflow in addition,
subtraction, multiplication, division, and left-shift instructions.

Data formats

General. A computer word, W, is 24 binary digits (bits) or 8 octal
digits. A word is numbered W(0:23) from left to right or alterna-
tively W (0:7),.

Fixed-point data format. Fixed-point numbers are represented in
two’s complement form with the sign at W(0). A 23-bit fraction
W(1:23) can be assumed. The binary point is to the left of bit
position 1 (W(1)) . For integers, the binary point is to the right
of W(23).

Floating-point datu format. Subroutines perform double- and sin-
gle-precision floating-point arithmetic. A floating-point word is

defined as f(O:47) := W[n:(n + 1)](0:23). Of course, single-
precision floating point requires less processing time.

The fractional portion (mantissa), f(0:38), of a double-precision
floating-point number is a 39-bit proper fraction with the leading
bit being the sign bit and the binary point located to the left of
the most significant magnitude bit, f (1).

The floating-point exponent is a %bit integer, f(39:47), with
the leading bit being the sign, f(39). The standard routines operate
on both fraction and exponent in two’s complement form. If F
represents the contents of the fractional field and E represents the
contents of the exponent field, the number has the form F x 2E.

Standard subroutines assume that the more significant word is
in the A register and that the less significant word is in the B
register. Correspondingly for Mp, the more significant word is in
Mp[x] and the least significant word in Mp[x + 11.

The single-precision floating-point representation is identical
to that of double-precision floating point; Le., it takes two words.
However, the least significant bits of the mantissa, f(24:38), are
not processed; thus there is a saving in time but not in space for
using single precision.

Znstruction word format (930)

The computer instruction word format is given in Fig. 5.
W(0) is the Relative Address bit, R. Standard software loading

programs use this bit; central processor decoding logic does not
use or sense this bit. A 1 in W(0) causes some loading programs

I dig't I
Fig. 5. SDS 930 instruction-format diagram.

to add the assigned location of the instruction to the address field
contents prior to actual storage into the assigned location.

W(1) is the Index Register bit, X. It determines whether or
not the index register will be added to calculate the effective
address.

W(2:8) is the Instruction Code field and determines the oper-
ation to be performed. The Programmed Operator facility is
selected by W(2); it is part of the Tag field W(0:2).

W(9) is the Indirect Address bit, I. I t determines whether or
not e or M[e] is to be used as the effective address (see below).

W(10:23) is the Address field and for most instructions repre-
sents the location of the operand called for by the instruction code.

Address modi$cation. Index and indirect addressing, used singly
or in combination, perform address modification after bringing the
instruction from memory but before executing it. The instruction
remains in memory in its original form. The results of indexing
and/or indirect addressing form the “effective address,” e.

INDEXING If the content of the index bit in an instruction is a
1, prior to execution the computer adds the contents X(10:23),
of the index register to the contents of the address field of the
instruction. This addition does not keep any overflow or carry
beyond the fourteenth address bit. This addition occurs prior to
any indirect action.

INDIRECT ADDRESSING A 1 in the indirect address bit causes the
computer to decode the contents of the effective address, accessed
as described above, as if it were an instruction without an instruc-
tion code; that is, the address logic reinitiates address decoding,
using the word in the effective location (the memory cell whose
address is the effective address). This is an iterative process and
provides multilevel indirect and indexed addressing. Each level
of indirect addressing adds an additional cycle time to the in-
struction execution time.

930 memory extension control registers. Core memory in the 930
is expandable to 32,768 words. However, the address field in the

550 Part 6 I Computer families

1 X Instruction code Address f ield
I I I I

Section 2 I The SDS 910-9300 series, a planned family

instruction format is 14 bits long, allowing direct access of only
up to 16,384 words. Memory extension in the 930 contains two
3-bit memory extension registers, EM2 and EM3, and allows
addressing of memories of 32,768 words. The program loads either
or both of the registers and activates them as desired. Each register
can become the most significant digit (fifth octal) of any operand
address.

The program uses the first extension register, EM3, by calling
for an address with an 11, in the most and next most significant
address bits, respectively (a 3 for the most significant octal digit).
The program calls for EM2, the second extension register, by
setting the same two address bits to 10, (a 2 for the most significant
octal digit). In this way, normal addressing compatible with the
910 and 920 occurs by setting a 3 in EM3, and a 2 in EM2.

910-930 instructions

Programmed Operators (POP’S) enable subroutines to be called
with a single instruction. This provides definable instructions of
the same form as built-in machine instructions. The computer
decodes the operation codes 100, - 177, as special instructions
and transfers to a subroutine whose address is uniquely determined
by the code. The computer records the address of the POP in-
struction at location 0 together with an indirect address bit so
that the program continuity may be maintained. By indirect
addressing which refers to location 0, which in turn refers to the
POP instruction, the subroutine can gain access to the effective
address of the operand associated with the POP instruction.

The instruction set for the computers in this series is listed in
Table 1. The table should be used to compare the machines.

There are two instructions in the 910 which are not in the 920
or 930: Multiply Step and Divide Step. These instructions facilitate
writing subroutines for multiplication and division. The Multiply
Step (MUS) instruction is defined:

MUS + (B(23) + A t A + M[e]; next AB t AB/2);

9300 instructions

The instruction word format in the central processor is shown in
Fig. 6.

2 3 4 5 6 7 I
Fig. 6. SDS 9300 instruction-format diagram.

W(0) contains the Indirect Address bit I.
W(1:2) contains the Index Register bits X(0:l) .
W(0:2) is called the Tag field.
W(3:8) contains the Instruction code; the contents of this field

determine the operation to be performed.
W(9:23) contains the Address; for most instructions, the con-

tents of this field represent the memory location of the operand
called for by the instruction code.

Address modijication. Each index register contains an unsigned
base address of 15 magnitude bits and a signed increment of 9
bits. The increment contains 8 magnitude bits and a sign bit and
is held in two’s complement form.

Index registers are modified by adding the signed-increment
value to the base address using two’s complement arithmetic. Since
the increment and base address fields are of unequal lengths, the
sign bit (bit 0) of the increment field is extended six positions to
the left prior to the addition. This 15-bit sum is then stored in
the base address field of the index register. The index register may
be incremented by any value from -256,” to 255,” using a single
instruction. Incrementing and testing for a “terminal condition”
is done by the instruction Increase Index And Branch (BRX), as
follows:

If the index register has been negatively incremented, a ter-
minal condition exists when the base address has been reduced

below the zero value.
If the index register has been positively incremented, a terminal

condition exists when the resultant base address has been increased
beyond the maximum address value (077777,).

If the terminal condition exists, the next instruction is taken
in sequence. If the terminal condition does not exist, program
control is transferred to the location specified.

The instruction set for the 9300 is given in Table 1.

Pc implementation

All the processors of the series have basically similar register
configurations because of the common Instruction-set Processor.
However, the increasing complexities of the machines can be seen
by comparing the register structures of the 910-930 (Fig. 7) with
the 9300 (Fig. 8). The figures show both the registers accessible
to the program or defined by the ISP (denoted by ”) and the
temporary registers which are necessary for the implementation.

910, 920, 930 registers (Fig. 7)

ISP registers (”). The A register is the main accumulator of the
computer. The B register is an extension of the A register. The

Chapter 42 1 The SDS 910-9300 series 551

1 Core memory (24 b / w ,
2048 T, 16384 w 1 * /

Memory B u f f e r IL Memory address w
A *

Gccumulator

To peripheral T and Ms

Al l registers 24 b i ts except Sq0.23>;0<3.8>;EM2<0:2>; and EM3<0 2>
x Registers accessable t o program OSP)
t Only in 930,930 core memory is 32768 w

Fig. 7. SDS 910, 920, and 930 registers diagram.

B register contains the less significant portion of double-length
numbers. Overflow and carry bits are used with A and B opera-
tions.

The index register X, used in address modification, is a full-word
register. Index-register operations use the least significant 14 bits.

The P register is a 14-bit register that contains the memory
address of the current instruction. Unless modified by the program,
the contents of P increase by 1 at the completion of each instruc-
tion.

The memory extension registers, EM3 and EM2, are 3-bit
registers that specify the portion of extended memory being used.
They exist only in the 930.

Harcliuare registers not i n the 1SY. The S register is a 14-bit register
that contains the address of the memory location to be accessed
for instructions or data. The 15-bit address is formed by S and
one of the memory extension registers.

The 24-bit C register comniunicates with memory. Instructions
are temporarily held in C before instruction decoding. It is used
as an arithmetic and control register in multiply, divide, and other
operations. Address modification and parity generation/detection
use the C register.

The 0 register is a &bit register that contains the instruction
or operation code of the instruction being executed.

The MI register is a 24-bit register that holds each word as i t
comes from memory. Recopying of a word into memory takes place
from the MI register.

9300 registers (Fig. 8)

1SP registers ("). The A and B registers of the 9300 are the same
as in the 900 series computers; however, the P register is P(9:23).

There are three 24-bit index registers, X[l:3]. Each index regis-
ter is composed of a base address of 15 bits and a signed increment
of 9 bits.

The Flag register, F, is a @bit register that may he set and/or
sensed by the program. The first bit position of this register is the
overflow indicator.

Hardware registers not i n the LSY. The C register holds the 24-bit
operand word as it is transmitted to, or received from, memory.

The D register holds the next 24-bit iiistruction word as it is
received from memory.

The 15-bit S register contains the address of the memory loca-
tion to he accessed for either instruction or operand.

The &bit O register contains the instruction code of the in-
struction being executed.

The A' register is an optional 15-bit register used for the
floating-point option. It temporarily extends the A register during
the execution of floating-point instructions.

The B' register is an optional 15-bit register which temporarily
extends the B register during the execution of floating-point in-
structions.

Instruction interpretation in the 900 series

The instruction-interpretation process can be explained in terms
of the processor's registers (Fig. 7). The ADD instruction execution
(not including memory mapping) defined in ISP as A t A + M[e]
is interpreted as

S t P; P t P + 1: next fetch the instruction

MI t Memory[S]; next

C t MI; next

552 Part 6 1 Computer families Section 2 1 The SDS 910-9300 series, a planned family

D (Instructions) - I
Memory

r--------: r--------- 1
I I
I M Registers I I M Registers I
I I I I

4 X I (Index)
Incr. Bose

?

L _________ -1

t t l f t .

-

C (Operands) -'m7

r

L- X2 (Index) 2-
Incr. Base

I

-

u
Direct Parallel I/O

Gene rat ion Check

Incr.
X3 (Index) -

Base

Misc. B i t s

Overflow

Note: Only;':
r e g i s t e r s access i b le t o program

Fig. 8. SDS 9300 registers diagram. (Courtesy of Scientific Data Systems.)

0 t C(0:5); next

(0 = 05)+ (

S t C(1O:23); next

MI t Memory[S]; next

C t MI; next

A t A + C)

Input/output processing

Introduction

ADD execution

operand effectiue-address-cal-
culation process (including
indexing and indirect ad-
dressing)

final operand fe tch

add operation

There are several methods of transferring data between Mp and
the K's. These methods will be described independently, and in

order of increasing complexity. They are:

la

l b

Single bit sent to a selected K (EOM instruction).

Single bit sense (or bit detection) from a K (SKS instruc-
tion).

Word parallel to/from a K (POT/PIN instruction).

Interrupt from one of 1,024 K's on a priority basis to Pc.
K can signal Pc to execute a particular program.

Time Multiplexed Communication Channel/TMCC (In-
ternal Interlace' feature).

2

3

4a

4b Time Multiplexed Communication Channel (External
Interlace*).

Direct Access Communication Channel/DACC (External
Interlace).

5

'The control information for the location of the next word transferred and
the number of words to transfer are kept in Mp.
2The control information is taken from registers within K.

Chapter 42 1 The SDS 910-9300 series 553

6a Data Subchannel/DSC (Internal Interlace).

6b Data Subchannel (External Interlace).

7 Memory Interface Connection/MIC link. A component has
a link to Mp.

Methods 1 to 3 above are completely under control of a pro-
gram and are simple time-independent instructions (or methods)
of transferring data to K’s (and onto KT or KMs). The ISP descrip-
tion (Appendix 1 of this chapter) has a detailed description of the
1/0 devices and these 1 / 0 instructions.

Single-bit control and sense

Two instructions provide for single-bit ON/OFF control signals.
The first, EOM, transmits a control signal and a 14-bit address
to an external device or a function within the computer. The
second, SKS, selects an external device or computer function and
skips in response to a false (0) signal. Up to 16,384 control signals
can be sent and 16,384 input signals tested theoretically. (A more
reasonable number of physical destinations would be 50.) Execu-
tion of an EOM causes a signal of approximately 1.4 microseconds
duration to be transmitted.

EOM instruction format. EOM is used to select a specific 1/0
device by placing a 1 in its select register. EOM requires one cycle.

W(2) = 0.
W(0 : l) is reserved for special system address bits.
W(3:8) contains the EOM instructions code, 02.
W(1O:ll) contains the system mode specifier.
W(12:23) contains the 12-bit address field that specifies the

special system destinations.

SKS format. The SKS instruction format has each corresponding
bit field identical to the system EOM format. Execution of an SKS
causes a 14-bit address to be presented to all K’s; the K being
addressed responds and is tested. If the addressed external K
supplies a “set” signal to the central processor, the computer
executes the next instruction in sequence from the SKS. If no signal
is set, the computer skips the next instruction in sequence and
executes the following instruction. No registers are affected except
the P register. SKS requires two or three Mp cycles if no skip or
skip, respectively, is executed.

Word parallel instructions

Two instructions, Parallel Output (POT) and Parallel Input (PIN),
permit any word in Mp to be presented in parallel on a physical

connector to a K or, inversely, permit signals sent from a K to

be stored in Mp. The execution of a POT or PIN instruction sends
a signal to the external device involved in the input/output oper-
ation, which notifies the device to send its data word as soon as
it is operational. When the device becomes operational during a
Read or PIN operation, it transmits a Ready signal to the central
processor while a t the same time presenting a data word to Pc.

During the execution of a POT instruction, the central proc-
essor transmits a signal to the external device, alerting it to receive
a data word. When the device becomes operational, it transmits
a Ready signal to the central processor, which releases the data
word to the external device.

Selective input/output with these devices is accomplished by
preceding POT or PIN with an EOM to alert (select) the desired
device by a specific address. By preceding the POT or PIN with
an SKS, the Ready signal of the special device can be tested after
the execution of the EOM but prior to execution of the parallel
transfer instruction; a possible Pc “hangup” can thus be avoided.

The Ready signal can also set one of the priority interrupts.
PIN stores the contents of 24 input lines in parallel in the

effective-memory location. PIN or POT requires four cycles plus
any waiting time for Ready.

Interrupt

The interrupt provides program control of input/output opera-
tions, aids in programming simultaneous input/output and com-
pute operations, and allows immediate recognition of special
external conditions by causing Pc to execute an instruction in a
selected Mp location at the end of the execution cycle of the
current instruction. Without disturbing the program register, the
processor executes an instruction in one of a selected set of mem-
ory locations. A Mark Place and Branch (BRM) instruction in this
location saves the contents of the program register, EM3, EM2,
and overflow indicator and transfers to the particular interrupt
servicing routine reqnired. To exit from the interrupt service
routine, a Branch Unconditionally (BRU) instruction using indirect
addressing returns control to the next instruction in proper se-
quence in the main program; it also clears the interrupt. Processor
state (that is, A, B, Overflow, and X) must be preserved and
restored by the program if the registers are used by the program.

The priority interrupt system has up to 1,024 interrupts ar-
ranged in levels. The levels have priority according to a priority
number; the higher priority levels have a smaller number. Inter-
rupt channels are installed in Pc in groups of 16. The assignment
of physical memory locations to interrupt levels is shown in Ap-
pendix 1 of this chapter; the assignment is in order of decreasing
priority from location 200, (highest) to 1477, (lowest). Interrupt
requests can also be programmed. The power fail-safe (for power

554 Part 6 I Computer families

R Lines

I I I
I I t

D e v i c e

Control
\ Control Logic

Section 2 1 The SDS 910-9300 series, a planned family

Channel

- Request - . Control

Un i t Line

supply off) interrupts and out-of-order interrupts have the highest
priority.

Besides the interrupt mechanism just discussed, there is also
a single instruction interrupt. This permits the execution of only
one instruction before automatically being cleared and returning
to the program that was interrupted. For example, if an external
clock source is connected to the computer so that it pulses an
interrupt line at set intervals, the program can maintain a pro-
grammed real-time clock. Each time the external pulse causes an
interrupt, the program executes the single instruction, Memory
Increment (MIN), to add 1 to the memory word selection for use
as a programmed real-time clock. (The main program can examine
this memory location whenever necessary to determine how many
time increments have elapsed since the clock was started.)

Interrupts can be single or normal-instruction interrupts in any
combination desired.

Channel E

(8-

Error

Character Output Parity --La L
(8-, 12-, 24-bit opt ional)

An interrupt has three operational states: inactive, waiting, and
active states.

In the inactive state, 110 interrupt signal has been received into
the level and none is currently being processed by its interrupt
servicing subroutine.

In the waiting state, an interrupt has been received but is not
being processed. This situation may arise when an interrupt of
higher priority is being processed. When all higher waiting inter-
rupts have been processed, this level goes to the active state.

In the active state, the interrupt has caused the main program
to recognize its presence and has transferred to its assigned inter-
rupt location where it is being processed.

Two program control features are Arm/Disarm and Enable/
Disable. Arm/Disarm controls whether an interrupt can proceed
from the inactive state to the waiting state. When armed, an
interrupt signal sets the interrupt to the waiting state. Enable/

to KMS
o r
KT

"Part o f in te r lace

Other

Communication

Channels

(F, G, H)

Address SDS
930

Memory

Modu I es

To Hp v i a S
or t o

Hp v i a Pc
(fo r Channels

W , Y , C . D)

Fig. 9. SDS 930 direct-access communication-channel register diagram. (Courtesy of Scientific Data Systems.)

Chapter 42 1 The SDS 910-9300 series 555

Disable operates on the entire interrupt system. (When the inter-
rupt system is enabled, interrupts can occur.)

Communications channels-Kio('Channel) 's

Kio('Communication Channels) provide buffering, input/output
control, and data transmission simultaneously with computation.
There can be u p to eight independent communication channels
and a large number of subchannels in a single system. Figure 9
shows the registers in a K('Channe1).

Each channel can control up to 30 KT's or KMs's. The channel
handles character, word assembly and disassembly, input/output
parity detection and generation, data transmission to and from
memory, and end-of-transmission detection.

All channels are bidirectional and can communicate with 6-bit
character devices or word devices in 6, 12, and 24 bits. The main
program that initializes a K specifies the number of characters to
be contained in each word during the transmission.

The channel interlace controls the transfer of the data words
going through the associated channel buffer, supplies the memory
address of data coming from or going to memory, and maintains
the word count determining the number of words transferred. This
interlace information can be either in K hardware (external inter-
lace) or in Mp (internal interlace). The terminal interrupts, End

of Record and Zero Word Count, come from the interlace and
are under its control.

The time-multiplexed channels use the memory-access logic of
Pc to transmit input and output of data words and require two
memory cycles (see Fig. 2). Each direct-access channel has inde-
pendent memory-access logic and requires one memory cycle (see
Fig. 2).

Comrriunication-channel description. Up to 30 peripheral devices
(K's for T or Ms) may be connected to one K('Channe1) (Fig. 9).
Each device has a unique, 2-digit, octal address by which it is
selected for an input/output operation. To select the peripheral
device, the program loads the proper unit address into the 6-bit
Unit Address Register (UAR) in the channel. This address selects
both the device and, if appropriate, the function to be performed.
Placing a nonzero unit address in the unit address register connects
the peripheral unit addressed to the channel, and the unit becomes
active. When the UAR contains a zero address, or any time that
a terminal or initial condition clears the contents of UAR, the
channel becomes inactive.

The 24-bit data Word Assembly Register (WAR) contains the
data word actively being received or transmitted during an input
or output operation. During input, 6-bit characters (plus parity)

enter the Single-Character Register (SCR) where the channel
buffer assembles them, one at a time, into the WAR.

The channel interlace contains two working registers: the Word
Count Register (WCR) and the Memory Address Register (MAR).
A channel may have these registers either in K or in Mp. In the
setup sequence for an interlaced input/output operation, the POT
instruction transmits to the interlace a data word made up of the
word count (that is, length) and the starting address of the data
block. The 15-bit Word Count Register (WCR) contains the data
word count during a data transfer. The number of data words is
decremented by 1, and the new count replaces the old one in the
WCR for each word transmitted.

The Memory Address Register (MAR) contains the starting
destination or source address in memory of the transmitted data.
The memory locations to or from which data words are to be
transmitted enter the MAR a t the same time the word count does.
During transmission of data, the interlace increments the MAR
after each word as i t decrements the contents of the WCR. These
two registers provide the interlace control of block transmissions.
Obviously, if the interlace control registers are in Mp, then two
extra accesses are required for each word transferred.

Memory interface connection link

Once a computer is equipped with a multiple-access-to-memory
feature, one or more Memory Interface Connections (MIC) can
be attached. The MIC is a general interface to the computer that
allows special devices to access Mp. It preserves the integrity of
the memory by generating the parity of incoming data words and
checking the parity of words read from memory to indicate mem-
ory failures. The device that is connected to the MIC must hold
both the data and the address until the transmission to/from
memory is completed (that is, MIC does not have registers).

Conclusions

The SDS computers appear to be the first attempt to design several
computers a t the same time with a common ISP. Over a longer
time span other compatible computers were added to the original
910 and 920 as technology (and marketing) dictated. The series
is characteristic of well-designed typical 24-bit computers. By
increasing the arithmetic capability, the series could also be used
more generally.

References

Scientific Data Systems Reference Manuals for the 930 and 9300 computers

556 Part 6 1 Computer families Section 2 1 The SDS 910-9300 series, a planned family

APPENDIX 1 SDS 930 ISP DESCRIPTION

Appendix 1

SDS 930 I S P D e s c r i p t i o n

The descr ip t ion de f ines t h e I n s t r u c t i o n S e t without exact assignment of operation codes t o i n s t r u c t i o n names.
i n s t r u c t i o n ac t ions are given f o r t h e simple contro ls , bu t do not include t h e ac t ion of the channels or t h e devices.

Input-outnut

P c S t a t e

A 4 : 2 3 > A c c m l a t o r ; main ar i thmet ic r e g i s t e r
BCO : 23>

AB<D:47> := AOE

x 4 0 : 2 3 > Index Regis ter
P<I 0 : 23>

Overf low/Ov

Car ry := X c O >

Run

Mp S t a t e

secondaru ar i thmet ic r e g i s t e r f o r m u l t i p l i e r , quot ien t , e t c .
combined 48 b i t ar i thmet ic r e g i s t e r

Program o r i n s t r u c t i o n locat ion counter f o r 16 kw

s e t on in teqer operations

used i n mul t ip le nrec is ion operations t o l i n k words

Mem0ry[O:77777~lcO:23> 32 kw prirnaru memom
Tuo 3 b i t map (or ex tens ion) r e g i s t e r s eztend t h e address space o f Mp t o 32 kw.
20000 -27777 are used. 8 8

EV2 holds a 4 kw block number when addresses

8' EM3 holds the 4 kw block number f o r addresses 30000-37777

EM2Q):2> Fxtension Vemor,u r e g i s t e r s
~ ~ 3 4) : 2 >

Memory Mapping Process
This process maps the 16 kw address space i n t o t h e 32 kw phusical memory.

Mdl:23>[a] := (

(a < 200008) +Memory [a 14):23>

(200008 4 a i 277778) ~Memory[EM24):2>oaQ2:23>14):23>

(30O0Og 4 a) +Memory [EM34:2>Oea2:23>14):23>

P c Console S ta te
Individual r e g i s t e r s i n Pc can be read and w r i t t e n from the console.

B P T d : 4 > Breakpoint o r sense switches

I n s t r u c t i o n Format
i n s t r u c t ion/ i<O: 23>

re1 a t i ve := i<D>

index,bi t / xb := i <I >
op,code/op<2:8> := i<2:8>

pop,code<0:5> := i<3:8>

i n d i r e c t & i t / i b := i<9>
y<10:23> := i<10:23>

p microcoded i n s t r u c t i o n b i t s w i t h i n an instruction

E f e c t i v e Address Calculation Process
e<10:23>:= (7 i b + (

~ x b + Y ;

xb + y + X);

i b + (

-,xb - . (i d) @ : 2 3 > tM[y IQ)og:23>

xb i (i < O O 9 : 2 3 > t M [y + X]<009:23>); n e x t e))

e I < I 8: 23> : = e<l8: 2 9 s h i f t count

unused by I.SP; so,ft#are re locat ion b i t

programed oneration code v a l w

address f i e l d f o r 16 kw

i t e r a t i v e process of i n d e f i n i t e i n d i r e c t addressing u n t i l
no inc' irect b i t , ib , i s found

Chapter 42 I The SDS 910-9300 series 557

Ins t ruc t ion In t e rpre ta t ion Process -. ~nte r rup t - i n te rp re ta t i on --f (normal in t e rpre ta t ion

i n s t r u c t i o n + M I P I ; P t P + I ; n e x t , fe tch
I n s t r u c t i o n d x e c u t i o n) ; execute

I n te r rup t , i n te rp re ta t i on + (i n t e r rua t i n t e rnre ta t ion
I n s t r u c t i o n +M[200 + 208 x K j l d d r e s s + l a d d r e s s] : n e x t e

I n s t r u c t i o n e x e c u t i o n)

Ins t ruc t ion Set and Ins t ruc t ion Execution Process
l n s t r u c t i o n g x e c u t i o n := (
Load and Store Croup

LDA + (A t M [e l) :

STA --f (M [e l - A) ;

LDB + (E - MEel) ;

STB + M [e I c B) ;

LDX 3 (X c M [e]) ;

STX + (M[e] e x) ;
EAX + (X t e) ;

XMA + (M [e] t A ; A t M [e]) ;

Arithmetic Group

SUB +(Ov,CarryDL\ + A - MCel):

ADD + (Ov,CarryDL\ + A + M [e l) ;

SUC +(Ov,CarryOA + A - M [e l - C a r r y) ;

ADC +(Ov,CarryOA + A + M [e l + C a r r y) ;

M I N +(Ov,M[el - M [e] + I) ;

ADM +(Ov,M[e l - M [e] + A) ;

MUL + (Ov,AB + A X MCel);

D I V + (Ov,B c A B / M [e l ; A + A B mod MCel):

Logical Group

ETR * (A + A A M [e l) ;

MRG + (A t A v M [e l) ;

EOR - (A t A e M [e l) ;

load A

s tore A

load R

s to re B

load index
s tore index

load index .from e
exchange A and nr

subtract

add
subtract wi th Carr:,

add u i t h Carru
memoru increment

add t o memoru
mu l t i p 114
d i v ide

ex t rac t

merge
exc lus i ve o r

Microcoded Regis ter Exchange Ins t ruc t ion
Each ins t ruc t ion can be formed from a ser i e s of microprogrmed operat ions.
wi thout a p I .

Comnound microcoded ins t ruc t ions are shown below

CLA + (A 1-0) ;

CLB + (B t o) ;
CLR +(AB - 0) ; c lear A and B

CLX + (X - 0) ; u, c lear X

C A B + (B + A) ; p, cop!, A i n t o R

c l ear A

u, c lear B

CBA - (A t B) ; p, COpU B i n t o A

X A B + (A t B ; B + A) ; exchange P ond B

C X B - (B e x) ; p, eovy X i n t o B

C B X + (X + a) ; (2, copy B i n t o X

X X B + (X + B ; B e x) ; exchange X and B

C A X + (X + A) ; +, copy A i n t o X

558 Part 6 I Computer families Section 2 i The SDS 910-9300 series, a planned family

C X A + (A t X) ;

X X A --f (A t X ;

CNA --f (A t~ A) ;

BAC + (A t B : B t o) ;
ABC i (E + A ; A to);
STE + (X<15 : 23>

X + A) ;

B<15 : 23>; X.8 : I 4> t s i an-extend (B<l5>)) ;

B<15:23 >t 0) ;

LDE i (B<15:23> t X < l 5 : 2 3 >) :

X E E --f (< E l 5 : 2 y t X<15:23>; X<15:23> t EK15:23>;

X<0:14> + sign&xtend(B<15>));

End of microcoded instruction group

L R S H --f (A B + A B / zel { l o g i c a l)) ;

R C Y -) (A B < - A B / z e l r o t a t e l) ;

Lcy - (AB - A B x zel (r o t a t e l) ;

N O D -) (X t X - normalize,exponent(AB)

S h i f t Group

RSH -) (AB t A B / 2 e l) :

L
LSH + (Ov ,AB < - A B X 2 1 ;

A B t n o r m a l i z e (A B)) ;

Skip T e s t Group

SKE i ((A = M[e]) i (P t P + 1)) :

S K B + ((~ ~ ~] A B) = o) + (P t P + I) :

SKN -1 (MleI;O> * (P - P + I)] :
SKR -1 (Ov,M[el + M [e l - I : next M[e]<O> - (p + P + 11);
SKM - ((M[e] A E) = (A A 8)) + (P C P + 1) ;

SKG - (A > M[e]) + (P t P + 1) ;

S K D - (XR<0:23> t a b s (k l 5 : 2 3 > - M[e]<15:23>l;

SKA - ((M [e] A A) = 0) 4 (P C P + I) ;

(M[e]<l5:23>>B<l5:23>) i (P t P + I)) :

Branch Croup

BRU - (P t e) :

BRX - (X t x + I : x < p i P t e) ;

BRM + (M [e] < b t O v ; M [e] G : 5 > t E M 3 ; M[e]<l ,2,9> t o ;
M[e1<6:8> r-EM2: M[e1<10:23> t P : n e x t

P + e + I) :

BRR i (P t M L e] + I ; Ov t O v v M [e] a >) :

Control Group
HLT 4 (Run t o) :
NOP 4 :

E X U - (i n s t r u c t i o n t M [e] :

Ins t ruc t ion ,execut ion) :

Overflow T e s t Group

OVT + (OV + (P + P + I) ;

R O V -1 (0" c 0) ;

REO 3 (X < I b C8 X<15>) + (Dv t

(0" + 0)) ;

p, copy X into A
exchange X and A

P, not A

copy R into A , c lear B

copu A i n t o B, c lear A

p , s tore exponent' emonent control bit

load exponent

exchanpc exponent

log ica l r i g h t shift
r i g h t s h i f t

r i g h t cgcle

left s h i f t
l e f t cycle

normalize, decrease X

sk ip if A = M

s k i p if B and M d o n ' t compare 1 ' s

s k i p i.f M negative
reduce F , s k i p < 0

skib on masked M
s k i p if greater than M

di.F,ference emonents ami s k i p

skip if A and M don ' t compare 1 ' s

branch uncomiit ionally

increment Tndex, Rranch
mark nlace and branch

used t o eel2 subroutines

branch re turn; used in terminating subroutines

h a l t
no operation

execute

overfZo7i t e s t
r e s e t overflow

record exponent

Chapter 42 1 The SDS 910-9300 series 559

Breakpoint T e s t Group

((BPT I A BPT<I>) V (BPT 2 A BPTQ>) V (BPT 3 A BPTO>) V (BPT 4 A BPT<4>)) -f (P t P + 1) ;
Memory Extension Regis ter Control Group

SET + (i n s t : u c t i o n < l 7 > + (EM2 t i n s t r u c t i o n Q l :23>) ;

i n s t r u c t i o n < l 6 > i (EM3 t i n s t r u c t ion<18:20>)) ;

EXT + c o n d i t i o n - (P t P + I) ;

c o n d i t i o n := ((i n s t r u c t i o n Q Z > A (EM2 = 2)) A (i n s t r u c t i o n Q 3 > A (EM3 = 3)))

POP + (M [0 1 4 , 9 : 2 3 > tOvUlC4'; P - 1 0 0 + p o p ~ o d e) ;

EOM + I0,ins t r u c t i o n g x e c u t i on:

POT + I O - i n s t r u c t i o n g x e c u t i o n :

P I N i I O - i ns t r u c t i o n g x e c u t i o n ;

SKS - I0,i n s t r u c t i o n g x e c u t i o n ;

8

)

Input-Output Control from the Pc

XT and ILnls S t a t e
17euices cons is t o$ the fol lowing parts:

l O , D e ~ i c e [O : 7 7 7 7 7 ~ 1

10,output E O : 7777781<0:23>

lO,inp~t[0:77777~]<0:23>
I0,Ready[0:7777781

I O , S e l e ~ t [0 : 7 7 7 7 7 ~]

i o - u n i t<:0:14:,

I O Ins t ruc t ion Se t
EOM - + (io,unit ~ - e) ;

POT -3 (IO,,Select: io,unit] A IO,Ready[io,unitl -f (

l 0 , O u t ~ u t L i o d n i t l t M [e l ; i o - u n i t t o) :
IO,Select[io,unit] A IO,Ready[io,unit] -f (POT)) :

P I N i (IO,Select[io,unit] A IO>eady[io,uni t] + (

MLe] e- IO,lnput[io,unit]; io,unit to):
IO,Select[io,unit] A IO,Ready[io,unit] + (P I N)) ;

SKS - (io,unit t e : n e x t

(IO,select[io,unit] A IO,Ready[io,unit] i (

P t P + I) ;

i o - u n i t - 0) :

Tnterruot .C!ustern S t a t e s

I n t e r r u p t

I,RQ[0:63]<0:15>

I ,ON [0 : 63]<O : I 5>

I ,S i gna I [0 : 63]<0 : 15> := I ,RQ[O : 6 3 ~ 0 : l5> A i ,ON [0 : 6 3 ~ 0 : 15>

K d d d ress<O : 5>
I,address<O: 3>

programmed operator; 64 user de.fined ins t ruc t ions ca l led via

see the d e f i n i t i o n o{ the iO i n s t r u c t i o n set below

subroutine ZinP i n b q n]

end i n s t r u c t i o n ~ ~ e c u t i o n : not i rc luding Input Output
ins t ruc t ions

name lor addressi of a s p e c i f i c I O device: the EOM command
i s f i r s t given t o s e l e c t the s p e c i f i c device: subseauent
commands are i m n l i c i t l u t o the selected device

devices
Irput and Output Data b u f f e r s associated wi th s p e c i f i c

b i t for each 3evice t o denote when device is rea& t o trans-

a b i t wi th in each deuice denoting i t has been se lec ted .for

the par t icu lar i o devzce se lec ted by the EOM cononand;

m i t data

an operation

cornand t o s e l e c t or a f i i r e s s the device: energize output Pf

outnut data commard

wait u n t i l read.u

input data command

wa i t until r p a h

s k i p i f signal i s not s e t

contro ls whether in terrupts w i l l be processed
arrau o.f 1024 in terrupt r e o m s t s
array of in terrupt enable t o enable or i n h i b i t in terruot

reouests

groui, number
l e v e l number wi th in a group 0.f the ac t ive i n t e r r u p t

560 Part 6 1 Computer families Section 2 I The SDS 910-9300 series, a planned family

The Idaddress and ypddress combine (ZOO8 t 208 x K address t I s d d r e s s l t o e s tab l i sh an i n t e r r u r t address, 2008 i s the highest
p r i o r i t y and Z O O 8 t 14778 t h e lowest priori . ty .

There are three s t a t e s associated with each i n t e r m v t , Tnact ive , Waiting, and Ac t i ve :
3 I nterrupt, level ,state[O :63] i o : l 5 >

Inact ive means no I,signal i s present.
Waiting means t h e r d i g n a l has been received but i s waiting t o be processed.
Act ive means the in t e r rup t has caused the main program t o recognize i t s vresence.

x Kdddress t I d d d r e s s] is executed upon in t e r rup t . The in s t ruc t ion in MI200
i n s t ruc t ion allows one i?%truc#ion t o be executed and the in t e r rup t l eve l s t a t e i s chiazged from ac t i ve t o inac t i ve ; and normal
reauires tha t a mark place and branch, BRlvf, i n s t ruc t ion to be executed t o save P . A t the comnletion o.f the in t e r rup t nrogram,
a branch unconditional (BRU) i n d i r e c t l y v i a the BRM ins t ruc t ion re s tores the in t e r rup t l e v e l .
i s changed from Act ive t o Inac t i ve , and another I J i g n a l can be processed, l

t 20 There are two kinds o f i n t e r ruv t s : Single

(That i s , the Interruot , level&tate

I n t e r rup t,i n t e r p r e t a t i o n

A s t a t e denoting tha t an in t e r rup t i s t o be processed o r the in t e r rup t l eve l s t a t e to be ci,anged .from Waiting t o Act iue for
normal in t e r rup t s and Waiting t o Act ive to Inact ive for s i n g l e i n t e r r u v t s . The in t e r run t processed is the highest of those
waiting provided there are rn i n t e r rup t s of highest l eve l i n the Act ive s t a t e .

Interrupt Control In s t ruc t ions
E I R + (I n t e r r u p t t I) ! enable in t e r run t : turn on mooe

D I R + (I n t e r r u p t t o) ;
I E T + (I n t e r r u p t + P t P + 1) ;

disable in t e r rup t ; t u r r off

i n t e r rup t t e s t : s P i p i f on

IDT + (7 I n t e r r u p t + P t P + I) ;
POT in s t ruc t ion t o control the Interrupt Sustem.

i n t e r rup t disable t e s t ; s k ip i f off
EOFn[200201 i s . f i r s t given to s e l e c t the Interrunt Sustem.

(POT A IO,ReadyC20020]) + (i n t e r rup t control i n s t ruc t ions

(c = I) + lJN[al<0:15> c I$N[a]<0:15> v B<0:15>)

(c = 2) + I,ON[a]<O:15> t I J N [a l 4 : 1 5 > V - R<Oi15>:

(c = 3) + luON[a]4J:15> t b < 0 : 1 5 >) ;

arm a channel l eve l group

disarm a channel leve l group
se t a channel leve l group
prow select or K d d d r e s s a<0:5> := M[e]<O:5>

b<0:15>:= M[e]<8:23> data .for I-address

c 4 : l > := M [e] 4 : 7 > command control b i t s

Section 3

The IBM System/360-
a series of planned machines which span
a wide performance range

In this introduction, besides making some general comments
on the IBM System/360, we will attempt an analysis of the
performance and costs of the series. Performance is notoriously
difficult to measure, as we noted in Chap. 3, and costs are even
more so. With respect to the latter, what is publicly available
are price data, not manufacturing-cost data.

These prices reflect not only marketing policies but also
accounting policies within the organization for the attribution
of costs to product lines. For example, we have had to determine
Pc and Mp prices on the basis of incremental Mp prices within
a C. Nevertheless, the 360 series provides two things which
make a comparative analysis worthwhile. First, the common ISP
makes simple performance measures more comparable; sec-
ond, the common manufacturer makes relative prices more a
reflection of relative costs than would otherwise be the case.
Neither of these aspects is perfect, as we will note at several
points in the discussion. Nevertheless, the 360 series provides
as good an opportunity to attempt cost/performance analysis
as we know. Indeed, this opportunity has already been grasped
in a paper by Solomon [1966], which we have found very valua-
ble and use to provide a basis of Pc power.

Analyses of the type we attempt here produce only rather
crude pictures and are subject to question if all the input data
are not very carefully checked. We have not done the latter,
depending instead on published sources. For the purpose of this
book, illustration of the style of analysis seems sufficient. In
addition, using a performance measure based only on Pc power
measurements, as we do here, leaves many questions un-
answered because it does not address the soft areas of analysis
relating to throughput, task environment, and the operating
system software.

Unlike the other introductions in this book, the reader may
find it worthwhile to scan this one, read the chapters in the
section, and then return to this introduction when the system
has become somewhat familiar.

The IBM System/360 is the name given to a third-genera-
tion series of computers which constitute the current primary
IBM product line. They all have a common ISP but differ in inter-

preter speeds and PMS structure. Many PMS elements are
used in common, particularly K's, Ms's, and T's.

The System/360 series is presented both because IBM's
market dominance makes it the most prevalent current com-
puter and because its implementations span the largest per-
formance and price range of any series. The C('360) models
should be compared with one another (Table 1) to be aware
of their capabilities. Their introduction dates and their relation-
ship are shown in Fig. 1. Chapters 43, 44, and 32 discuss the
logical structure of the system, the implementations,I and the
microprogrammed Model 30.

A succinct description of the design goals and innovations
is given in the abstract of the paper Architecture of the IBM
System 360 [Amdahl et al., 1964al:

'Chapters 43 and 44 are from IBM Systems Journal, vol. 3, no. 2, 1964, which
was devoted exclusively to the System/360. The other articles (listed in the
bibliography) are recommended for additional details.

Model
11 30'
4 800'
20

25
30
40
4 4
50
60
62
64
65
66
67
TSS(softwa
7 0
75
85
91
92
95

RCA Spectr

A-announced; D-delivery; E-exhibited; W-withdrawn
'Not part of System/ 360
'Uses same ISP

Fig. 1. IBM System/SCO models introduction dates.

561

562 Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range

The architecture“ of the newly announced IBM System/360
features four innovations:

1 An approach to storage which permits and exploits very
large capacities, hierarchies of speeds, read-only storage
for microprogram control, flexiblestorage protection, and
simple program relocation.

2 An input/output system offering new degrees of concur-
rent operation, compatible channel operation, data rates
approaching 5,000,000 characters/second, integrated
design of hardware and software, a new low-cost, multi-
ple-channel package sharing mainframe hardware, new
provisions for device status information, and a standard
c han ne1 interface between central processing unit and
input/output devices.

3 A truly general-purpose machine organization offering
new supervisory facilities, powerful logical processing
operations, and a wide variety of data formats.

4 Strict upward and downward machine-language compati-
bility over a line of six models having a performance
range factor of 50.

The above four featured innovations are all stated as IBM
Corporation design results. It seems better to analyze them in
terms of design constraints and implementation results. It
appears that the design constraints, from marketing and man-
agement directions, were compatibility (item 4 above) and the
use of common peripheral equipment (item 2 above). Thus we
can measure the 360 design in terms of how well it meets these
constraints. With some minor exceptions, all the peripheral
components existed at the time of the design and had been
used with other IBM computers; thus a goal was already real-
ized. A measure of the design can also be based on a compari-
son with alternative designs. In the following sections we sug-
gest that several forms of multiprocessing would yield higher
performance at lower cost. A difficult and important constraint,
though not mentioned above, is the necessity of program com-
patibility with almost all earlier IBM computers.

It should be noted that, at the outset of the IBM System/360
announcement, another company, RCA, adopted the 360 ISP
as a design constraint for its own future computer development.
Although some price-performance characteristics appear to be
better in the RCA series, the implementation scheme is similar.

The term nrchitecturr is used here to describe the attributes of a system as seen
by the programmer, i.e., the conceptual structure and functional behavior, as
distinct from the organization of the data flow and controls, the l o g m design,
and the physical implementation.

The lower RCA prices do not reflect entirely implementation and
technology but include RCA marketing and profit strategy. In
addition, of course, there should have been lower development
costs.

An interesting aspect of the design is the method used to
implement the individual computer models (of the range) and
their associated costs. From the standpoint of innovation, the
360 was the first computer series to cover a wide range. The
more basic P’s (Models 20 - 65) were implemented via a
microprogrammed processor. This is based on a computer
program within an M(read only), i.e., a Read Only Storage/ROS,
to interpret the common ISP. A payoff from this implementation
strategy is a solution to the “compatibility design constraint,”
which is the ability to provide compatibility with the customer’s
previous (IBM) machine, which of course was not a member
of the 360 series. This is undoubtedly the most difficult con-
straint to meet in the P designs, and probably the most signifi-
cant real innovation. From the marketing viewpoint, it provided
the user with a crutch to go from a former IBM computer to
the System/360. This is accomplished through “emulation,”
which (as defined by IBM) means the ability of one C to inter-
pret another’s programs at a reasonable performance leeel.
These emulations are realized by various microprogrammed P’s
being designed to interpret both the 360 ISP and one or more
of IBM 704, 709, 1401, 1410, 1440, 1460, 1620, 7010, 7040,
7044, 7070, 7074, 7090, 7094.

Most of the above ISP’s have a different structure from the
360 ISP. For example, the 1401 (Chap. 18) series instructions
and data are variable-length character strings; the 1620 has
variable-length data strings; the 704 series process fixed- and
floating-point data with single-address instructions; and the
7070 is a fixed-word decimal computer. Thus the 360 C’s repre-
sent the first machines to be two logical processors in the same
physical implementation.

The emulated speeds are often better than that of the origi-
nal hardwired computer. This is not surprising, considering the
change in technology; it is a very attractive feature. The 360
Mp performance is often a factor of 5 to 10 times the “emu-
lated” computers; and the M(R0S) data rates are a factor of
25 times the Mp’s. For example, the Model 65 emulating a 7090
runs faster than a hardwired 7090 (Table 1). The use of an
M(R0S) for defining an ISP is questionable if we ignore the
emulation constraint. Note, by way of evidence, that the hard-
wired models 9 1 and 44 have the lowest cost-to-performance
ratios in the series.

There are minor deviations in the particular models, but all

Table lt IBM System/JCO Models, IBM 1130, and IBM 1800 computer characteristics

Parameter 11300 1 8 W 2ob 25 30 40 44 50 65167 75 85 91

Pc (technology: (hybrid/hlp.rolp.rw)); h;h h;h
Pi0 (technology)

size w; . . .
M (rol rw; t.cycle: ps/w;

. b/w;
technology: (ind lcaplcore);

ISPs implemented in P.microprogram

S (concurrency: (Mp;Pc))
Mp (i.width: (by); (8, 1 parity) b/by;

t.cycle: ps/w;
size: log,(by),
i.avg: log,(by);
i.rate: b/ps;
t.1-bit: ps;
t.64-bit: ps)

C(t.matrix.q: ps;
t.sqrt.q. ps;
t field-scan.q: ps;
t.scientific-mix.q.ps;
t.al1.q: ps;
t.avg.q: ps;

power ' p \ (l , t.avg.q);
power 'p2(l /t.64-bit);
power/p,[Stevens, 1964]';
power/P,[Conti, 19681,
Mp utilization efficiency/

(t.bd-bit/t.avg.q))
Pc(cost:$/s)
Mp(cost.avg:$/s)
C(cost.min: $)s)
C(cost.ava: $/s)

1;l 1.1
2 2
3.6 214
13-14; 13-16;
13.5 14.5
4.45 814
0.22 0.12510.25
14. 8116

.
420 241480

2.9 5.012.5
4.2 7.213.6
.
.
.

p.ro

?

. . .

1;l
1
7.2
12-14;
13
1.1
0.9
58.

. . .

. . .

. . .

. . .
148
120

1.0
1.0
. . .
. . .
0.49

rw

(MP)
. . .
. .
core
1401c

1;l
2
0.9
14-15;
14.75
17.8
0.056
3.6

. . .

. . .

. . .

...
110
80

1.5
16.
. . .
. . .
0.045'

p.ro p.ro

1.0 0.625
4096 4096
60 60
cap ind
14011 14011
1620d 1410e
1;1 1;l
1 2
1.5 2.5
13-16, 14-18
14.5 16
5.3 6.4
0.19 0.16
12.1 10

71 23.4
118 26.8
35 12.8
47 15
88 25.4
60 20

2.0 6.0
4.8 5 8
2.0 7.0

0.2 0.5
.

h;h

. . .

. . .

. . .

. . .

1;l
4
1.0
15-18
6.5
32
0.031
2

. . .

. . .

. . .

. . .
5.7
4

30
29
. . .
. . .
0.5

h; h h.p.ro.p.rw,h h; h p.ro p.ro;h

0 5
2816
90

1410)
70701
1,l
4
2 0
16-19,
17 3
16
0 063
4 0

cap

/-

0.2
4000
100

7070 1
70900
1;218;5
8
0.75
17-(20 124);
18.5
(85-170)1425
0.017 10.0025
0.75.0.375 10.147

cap

. . . 0.08

. . . 2000.500

. . . 108
ro,rw

. . . 7090

. . .

1.2.4;l (4.1) 1 ~ 1 . 1)
8 16
0.75
18-20; 19-22;
19 20.5
85,170.340 -51211600
0.017
0.75.0.375,0.18 0.125)0.04

(0.96.1.04) 10.08h

2 x 10-316.3 x 10-4

7.35 1.8 1.02 . . .
6.8 1.97 1.24 . . .
5.8 1.8 1.64 . . .

1.45 . . . 8.0 2.4
8.5 2.3 1.55
8 1.912.2 1.3 0.5k

16;1
8
0 75
20-22;
21
1370
7.3 x 10-4
0.047

0.4k

15 63154 92,1001 2521 314, range: 1-314
14 77,1551394 77,155,310 46511450 1230 range: 1-1450

range: 2-100 20 42-60 100
. . . 1 1.58 3.9-4.3 m 5 range: 1-5

0.2 0.5 0.37-0.18 0.54-0.27 0.25/0.08

0.00064 0.0019)0.0016 0.00049 0.00050 0 0013 0.0030 0.0041 0.012 0.02210.029 0.037 0.087 0.091' range: 1-186
0.00049 0.0014)0.0012 0.00065 0.0027 0.0023 0.0049 0.0050 0.0084 0.02310.032 0.031 0.080 0.069 range: 1-123
0.00096 . . 0.0019 . . . 0.0043 0.008 0.008 0 022 0.0541 0.075 . . . 0.20 range: 1-105
0.0018 0.0077 0.0045 0.0085 0.0130 0.027 0.024 0.051 0.081 0.128 0.18 0.30 range: 1-65

Pc(cost) + Mp(cost avg) 000113 00033~00028 000114 00032 00036 00079 00091 0020 0 04510061 0068 0 167 0160 range 1-160

C(cost min $ s) p, 0 00069 0 0038 00043 0003 000053 00029 00017 0 0016 0 0013

Pc(c0st) 5p, 000046 00008l00013 000098 0 00067 00013 00010 000028 00016 00007l00011 00008 0 00069 0 00058
C(cost avg $/SIP, 00013 00031 0009 0011 00130 0009 00016 00068 000251 0 0028 0 00143 0 0019

C(cost.min)/C(cost.avg.) 0.5 . . . 0.42 . . . 0.32 0.3 0.33 0.43 0.681 0.59 . . .
Pc(cost)/Mp(cost.avg.) 1.3 1.411.3 0.75 1.85 0.57 0.61 0.82 1.4 0.9610.91 1.2 1.1
Pc(cost)/C(cost.avg.) 0.35 0.25 0.11 0.06 0.10 0.11 0.17 0.24 0.281 0.29 0.47

0.66 avg: .47
1.3 avg: 1.1
0.3 avg: 0.23

tTh is table is presented as PMS expressions.
" Not IBM System, 360 compatible. but made with hybrid technology
bSimilar. but not identical to System 360 ISP.
?C('IBM 1401, 1440. 1460).
dCC('IBM 1620).
?C('IBM 1410, 7010)
'C('IBM 7070, 7074)
"C('IBM 709. 7040. 7044. 7090, 7094).

"wo M's; an M(content addressable) working with Mp
' Estimated. see Chap. 44.
'See Conti [1968], based on running many programs.
kModels 85. and 91 are too difficult to predict because of instruction buffering based on Conti [1968]
'Cost derived from purchase cost,45.

"Meaningless per sei Mp is used by microprogram defining Systemi360 ISP.
" 1130 and 1800 are not program-compatible. The very high penalty factor of 3 is used to compare them to System, 360 ISP

Varies depending on buffering and multiply options.

564 Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range

implementations belong to a common ISP subset. The Model
20 and the Model 91, the extremes of the series, deviate most
from the standard 360 ISP. The range of models (Table 1)
shows the comparative effects of implementation on the actual
processing times. For example, the designers of the various C’s
were constrained by memory bandwidths. Since the core mem-
ories have about the same cycle time (0.75 - 2.0 microsec-
onds), variation in bandwidth is obtained by increasing the data
path width from 8 to 64 bits and by increasing the number of
independent Mp’s. By looking at just Mp bandwidth, for models
30 - 65, we obtain a range of 5.3 to 85 megabits/s, corre-
sponding to a performance range of about 1 to 16. By doubling
the number of independent memories, this factor can be in-
creased to 32. These models correspond to a Pc performance
range of 1 to 32. Although we might expect a narrower range
(based on Mp speed), the range can be increased by perform-
ance suppression (at the low end). Power range can be in-
creased by lowering the absolute performance of Model 30. This
is accomplished by making performance tradeoffs to lower cost.

Logic technology

The logic of the 360 series is realized in a hybrid technology,
composed partly of integrated-circuit techniques and partly of
the solid-state techniques standard in second-generation ma-
chines. lt is a “thick-film’’ technology that deposits the circuitry
on a ceramic substrate. This is called Solid Logic Technology
(SLT) and is used solely by IBM. This production technique
allows only for the fabrication of passive circuit elements on
the substrate. The semiconductor elements (diodes and tran-
sistors) are produced independently, using standard semicon-
ductor production techniques on a wafer. The semiconductors
are then cut and bonded to the substrate, and the complete
SLT logic unit is encapsulated. The substrates correspond
roughly to logic elements (gates, inverters, flip-flops, etc.). The
SLT units are placed on larger printed-circuit boards.

Although SLT differs fundamentally from integrated-circuit
technology, the overall size of the final printed-circuit boards
is about the same. At the time the decision was made to develop

nology of the 360 series is outstanding, perhaps surpassed only
by the 360 marketing plan.

The Instruction-set processor

The following discussion covers only the Pc. The instruction set
consists of two classes, Scientific ISP and Data Processing ISP,
which operate on the different data-types. These data-types
correspond roughly to the IBM 7090 (Chap. 41) and IBM 1401
(Chap. 18). For the scientific ISP they are half- and single-word
integers, address integers, single, double, and quadruple (Model
85) floating point, and logical words (boolean vectors); for the
data-processing ISP they are address or single-word integers,
multiple byte strings, and multiple digit decimal strings. These
many data-types give the 360 strength in the minds of its various
types of users. The many data types may be of questionable
utility and constrain the ISP design by having to perform few
operations, rather than having a more complete operation set
for a few basic data types. The viewpoint taken here is a biased
one; we feel that, unless a particular data-type adds significant
processing and storage capability, it should not be fundamental
to the ISP. The decimal-string integers appear to cost in storage
and processing time. Their redeeming virtues are that little or
no conversion is required at input or output time, and their
internal representation is easily recognized by people.

Advantages of general-registers organization

The ISP uses a general-register organization. The ISP power
can be compared with several similar general-register ISP
structures such as those of the UNIVAC 1107, 1108; the DEC
PDP-6, PDP-10; the SDS Sigma 5, Sigma 7; and the early
general-registers-organized machine Pegasus (Chap. 9). Of the
above machines the 360 Scientific ISP appears to be the
weakest in terms of instructions and the completeness of the
instruction set.

For example, in Pegasus, PDP-6, and the UNIVAC 1107
symmetry is provided in the instruction set. For any binary
operation b the following are possible:

the technology, it was unclear that integrated-circuit technology
would reach mass-production state. Thus the SLT program was
an intermediate design prior to integrated-circuit technology.
The two approaches are about the same from the standpoint
of reliability, especially when one considers the soldered
printed-circuit mounting. The number of connections to the
printed-circuit board are about the same. The production tech-

GR t G R b Mp
GR c G R b GR
Mp c G R b Mp
M p t M p b Mp

The 360 ISP provides only the first two. Additional instructions
(or modes) would increase the instruction length.

Section 3 1 The IBM System/36O-a series of planned machines which span a wide performance range 565

In the System/360 the only advantage taken of general
registers is to make them suitable for use as index registers,
base registers, and arithmetic accumulators (operand storage).
Of course, the commitment to extend the general-purposeness
of these general registers would require more operations. Chap-
ter 3 (page 61) suggests advantages for general register
organizations.

The 360 has a separate set of general registers for floating-
point data. This provides more processor state and temporary
storage but again detracts from the general-purpose ability of
the existing registers. Special commands are required to ma-
nipulate the floating-point registers independent of the other
general registers. Unfortunately the floating-point instruction
set is not quite complete (e.g., fixed- to floating-point conver-
sion), and several instructions are needed to move data be-
tween the fixed and floating registers.

When multiple data-types are available, it is desirable to have
the ability to convert among them unless the operations are
complete in themselves. The System/360 might use more data
conversion instructions, for example, between the following:

1

2

3

4

Fixed precision integers and floating-point data

Address-size integers and any other data

Half-word integer and other data

Decimal and byte string and other data (decimal string
to and from byte string conversion is provided)

Some of the facilities are redundant and might be handled
by better but fewer instructions. For example, decimal strings
are not completely variable-length (they are variable up to 3 1
digits, stored in 16 bytes), and so essentially the same arith-
metic results could be obtained by using fixed multiple length
binary integers. This would remove the special decimal arith-
metic and still give the same result. If a large amount of fixed
field decimal or byte data were processed, then the binary-
decimal conversion instructions would be useful.

The communication instructions between Pc and Pi0 are
minimal. The Pc must set up Pi0 program data, but there are
inadequate facilities in Pc for quickly forming Pi0 instructions
(which are actually yet another data-type). There are, in effect,
a large number of Pio's as each device is independent of all
others. However, signaling of all Pio's is via a single interrupt
channel to Pc.

The Pc state consists of 26 words of 32 bits each:

1 Program state word, including the instruction counter (2
words)

Sixteen general registers (16 words)

Four 2-word floating-point general registers (8 words)

2

3

Many instructions must be executed (taking appreciable time)
to preserve the Pc state and establish a new one. A single
instruction would be preferable; even better would be an in-
struction to exchange processor states, as in the CDC 6600
(Chap. 39).

Addressing and multiprogramming

The methods used to address data in Mp have some disad-
vantages. It is impossible to fetch an arbitrary word in Mp in
a single instruction. The address space is limited to a direct
address of only 212 bytes. Any Mp access outside the range
requires an offset or base address to be placed in a general
register. Accesses to several large arrays may take significant
time if a base address has to be loaded each time. The reason
for using a small direct address is to save space in the in-
struction. We know of no published attempt to analyze the
tradeoffs, even of instruction efficiency alone, although un-
doubtedly such comparisons were made within IBM.

Another difficulty of the 360 addressing is the inhomogeneity
of the address space. Addressing is to the nearest byte, but
the system remains organized by words; thus, many addresses
are forced to be on word (and even double-word) boundaries.
For example, a double-precision data-type which requires two
words of storage must be stored with the first word beginning
at a multiple of an 8-byte address. (However, the Model 85,
which is a late entry in the series, allows arbitrary alignment
of data-types with word boundaries.) When a general register
is used as a base or index register, the value in the index register
must correspond to the length of the data-type accessed. That
is, for the ith value of a half integer, single integer, single
floating, double floating (long), and quadruple floating (ex-
tended), i must be multiplied by 2, 4, 4, 8, and 16, respectively,
to access the proper element.

A single instruction to load or store any string of bits in Mp
(as provided in the IBM Stretch) would provide a great deal of
generality. Provided the length were up to 64 bits, such an
instruction might eliminate the need for the more specialized
data-types.

A basic scheme for dynamic multiprogramming is nonexist-
ent (i.e., although static multiprogramming is done, relocation

566 Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range

hardware is not present). Only a simple method of Mp protec-
tion is provided, using protection keys (see Chap. 43, page 597).
This scheme associates a 4-bit number (key) and a 1-bit write
protect with each 2 kby block, and each Pc access must have
the correct number. Both protection of Mp and assignment of
Mp to a particular task (greater than 24 tasks) are necessary
in a dynamic multiprogramming environment. Although the
architects of System/360 advocate its use for multiprogram-
ming, the operating system does not enforce conventions to
enable a program to be moved, once its execution is started.
Indeed, the nature of the 360 addressing is based on absolute
binary addresses within a program. The later experimental
Model 67 does, however, have a very nice scheme for protection,
relocation, and name assignment to program segments [Arden
et al., 19661.

PMS structures and implementations of the computer

The PMS structures of the various models in System/360 are
basically similar, except for the upper end of the series and for

the Model 44 (complete compatibility can be purchased as an
option). We take up the main group first and then discuss the
others i nd ividua I ly .

Models 30, 40, 50, and 65

The PMS of Models 30, 40, and 50 is the tree-structured Mp-Pc
shown in Fig. 2.l They all use a P.microprogram, although
with different ISP's. Some gross characteristics are given in
Table 1. The Pc of Model 65 is also microprogrammed, but it
has hardwired Pio's. A PMS diagram of Model 65 (and Model
75) is given in Fig. 3.

The C structures with M(R0S) use a single physical P.mi-
croprogram to realize the Pc, the Pio('Mu1tiplexor Channel),
and the Pio('Se1ector Channel). This technique of using a single
shared physical P for multiple logical P's with fast changing
of P.state is the same one that Pio('Mu1tiplexor) uses. The

'The structure of the Mp's does not include the local M's used for access control,
i.e., the storage protect key mechanism, which it is hoped the student will forget
about (forever).

T. conso l e -

=See Tab le 1 f o r parameters .

L (Se I e c t o r ,Mu I t i p l e x o r Russes) -

Mp(read o n l y : microproqram: ' 3 6 @ I S P p rograr

Mp(workinq)

3Present o n l y i n Model 50

4See Figures I 1 t o 16.
" ~ ~ (' 2 3 6 1 - 2 Large Capac i ty Store/LCS: R ~ s / w : t a : 3 .2 p,s: 262144 w: 8 by/w;

(8.1 p a r i t y) b/by)

" O n l y 8 p h y s i c a l K ' s .

"See Chapter 44 f o r parameters .

Fig. 2. IBM System/360 Models 30, 40, and 50 PMS diagram.

Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 567

T.console-

ic(("2065; microprogramed)1 '2075; ,s?e "&ZP I)

K('Direct)
M P (#O: 3)

Pio(#l :192)4- Stm- -K(#0:19I7)" Mp(#0:3)?.- P('2870) := [-ST

pi o (#I : 4)5-

P('2860) := [-S--Pio(#l:3)"-- Sfx-] - K(#0:7)'

P('2860) := ES-Pio(#l:3)6- Sfx-] -K(#0:7)'

Sfx- -K(#0:7)' 3
'Mp('2365-3) := (Mp(#O,l; '2365-2; core: .75 us/w; 8 by/w; 16 kw; (8 , l parity) b/by)-S-)
"Mp('2361-2 Large Capacity Store/LCS; 8 us/w: t.access: 3.2 u s ; 262 kw: 8 by/w; (8 , l parity)

b/by)
3 S (8 M: 4 P: time multiplexed; concurrency:l: 'Bus Control Unit/BCU)

4Pio('2870 10 Multiplexor Channel)

5Pio(12870 IO Selector Subchannel)

oPio('2860 Selector Subchannel)

70nly 8 physical K's

'See Figures 1 1 to 16.

Fig. 3. PMS structure for IBM System/360 Models 65 and 75 PMS diagram.

Pio('Multip1exor) is equivalent to multiple Pio's. Within the
physical P both interrupts and polling are used to switch among
the P's. Polling is used to service the several P's since the main
program loop of the ISP interpreter returns to a common point
each time the next instruction is fetched. That is, the interpre-
tation cycle for the 360 ISP starts by fetching the instruction,
proceeds to fetch the operands, executes the instruction, and
then returns results to Mp. The instruction-interpretation proc-
ess takes only a few Mp references for most instructions.

A few instructions require a long (or indefinite) interpreta-
tion time, e.g., character translate, edit, etc., since the opera-
tions are on character strings. Here, the iterative program loop
which operates on each character of the string must test the
attached K's to detect when the Pi0 interpreter is to be run for
data transfers. The long instructions can take several hundred
microseconds and cannot be interrupted; thus the response
time for an interrupt can be very poor. Figure 4 gives a simpli-
fied picture of the registers organization of a Model 50, but it
is also typical of Models 30, 40, and 65.

The actual System/360 ISP interpretation program in each
of the models is different. In addition, each model has micro-
programs for interpreting other ISP's through emulation. Tucker
[1967] discusses how the models were changed as the emula-
tion constraint was added. Table 1 gives the computers which
each of the models can emulate. A register structure of the
C('30) and the operation for the P.microprogram ISP are given

in Chap. 32, page 386. Tables 2 and 3 in Chap. 44 give the
additional parameters which influence the instruction inter-
pretation rate of the P.microprogram. The significant param-
eters for a P.microprogram are the M(R0S) hardware char-
acteristics (speed, size, and information width); the number
of fields in the M(R0S) instructions, which gives an indication
of the number of control functions performed in parallel; the
M(genera1 register) rates and their location in the structure;
the Mp data rate; and the characteristics of M(temporary)
within P. The activity of transferring data from a K, via the
Pio('Selector), is done concurrently with normal instruction
interpretation in Models 30, 40, and 50. A program in M(R0S)
sets up the data transmission with Mp, and transmission is
controlled by an independent hardware control.

Model 20

This model is a subset of the System/360. It has eight 16-bit
general registers. It is possible to write programs which will run
on both the Model 20 and other models. Model 20 does not
have Pio's, and Pc issues instructions to control the attached
K's.

Model 25

The Model 25 is an interesting C. Perhaps some of the interest
of the authors is caused by the mystery (to the authors) as to
what its ISP is. Its ISP is no doubt described in maintenance

568 Part 6 1 Computer families

Main Storoge -
Multiplexer Channel

Control Storage

0

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range

General registers

Floating-point registers

Adder

Local storage

R e d only storage

Boric machine cycle

Multiplexer channel
Burst mode
Mult iplex mode

Selector channel

Doto tronsfen
Processor to storage
Storage to rtomge
Selector channel to procersar
Multiplexer channel to processor
Control unit to channel

ROS
Reod Only Storoge
Micro-Coded Sequencing
Control

Local Storage

General Regirten
Floating-Point Registerr
Selector Channel

Control Storage
Working Registers

Arithmetic
Logic Unit

L

Capacity/Number

16

4

Doto Width

4 bytes

8 bytes

4 bytes

1 byte
1 byte

4 bytes

4 bytes
4 bytes
4 bytes
1 byte
1 byte

@
A = One byte wide dato path
B = Four byte wide data path

Accers/Speed/Rate

0.5 microsecond
R / W cycle/4 bytes

0.5 microsecond
R / W cycle/4 bytes

0.5 microsecond

0.5 microsecond
R / W cycle/4 bytes

0.5 microsecond
Rd cycle

0.5 microsecond

Fig. 4. IBM System/360 Model 50 data-flow diagram and system characteristics. (Courtesy of International
Business Machines Corporation.)

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 569

manuals. We can make the following observations based on its
characteristics taken from its manual of Functional Character-
istics. These appear in Table 1. The observations are:

1 It has a very high-performance Mp, namely, Mp(core;
.9 pslw; 16124132148 kby; 2 by/w); the Mp power is al-
most that of a Model 50.

2 There is a relatively straightforward Pc which is micro-
programmed. The Pc uses Mp for its memory. The Sys-
tem/360 ISP is defined in conventional M(read,write).
Of the Mp(48 kby) 16 kby is reserved for a microprogram.

3 Its performance is between that of Models 20 and 30,
performing a 360 ISP instruction in about 80 p s .

4 The penalty paid (slowdown factor) to interpret the 360
ISP is therefore 8011.8 N 45.

5 A small 180-nanosecond local store is used for operands.

6 The Pc cost appears to be about the lowest in the series.

We should ask ourselves:

1 Why do we want an intermediate-level P.microprogram
with its own M.read-only, as in the other processors?
These P's just seem to waste power.

2 Why should we bother to implement an intermediate-level
360 ISP? We know the final user will write programs in
a much higher level language. Thus two levels of inter-
pretation are required instead of one. It is assumed that
to program a given task will take, say, x p s if using the
360 ISP. We assume the same task programmed directly
in the Pc could take as short a time as x /45 ps if the Pc
were used directly.

We assume that if the P.microprogram, which is used to define
the System/360 ISP, were used to interpret a FORTRAN ISP,
the speed for a Model 25 FORTRAN ISP might easily approach
that of the Model 50.

Model 44

Model 44 does not use M(ROS), but its Pc and Pi0 are hard-
wired (Models 75 and 9 1 are also hardwired). The PMS structure
of the Model 44 is given in Fig. 5. Model 44 (and 91) stand
out as having better performance per unit of cost than their
nearest neighbors, which are implemented with M(ROS), as can
be seen from Table 1. It must be noted that Models 44 and
9 1 are not strictly compatible with the 360 ISP since they do
not process variable-string and variable-decimal-data formats,
although Model 44 options can make it completely compatible.
(Subroutines will probably perform satisfactorily for most ap-
plications.)

The PMS structure of the Model 44 (Fig. 5) is a tree. The
C('44) structure indicates 2-Pio('High Speed Multiplexor Chan-
nels/HSMPX) which are between a P('Se1ector) and P('Multi-
plexor) in power, since a single physical P('HSMPX) with four
subchannels can behave as four independent Pio's. The orga-
nization of the Model 44 Pc registers is given in Fig. 6, which
reveals a straightforward implementation. The heavy lines in
Fig. 6 indicated an ORing of register outputs to form a single
data bus (usually 16 or 32 bits wide). The 16-bit crossover
function box allows the right and left halves (16 bits) of the
input to be exchanged when output. Almost all the units are
registers (except the adders, parity generators, and ORers). The
A, Ax, B, and Bx registers are used as the M.working for per-
forming instructions, where the x indicates an extension regis-
ter used in the 64-bit floating-point operations. The C register

T . consol e-

Mp core ; l us/w; 8192 .- - S t m

32768 w; 4 by/w; (8.1 P i o (l M u l t i p l e x o r Channel)-Stm -K(#0:63l) 7

1 : 4 : ' H i g h Speed M u l t i - S f x - K (# O : I) ' -

Sfx-K(#O:1)2 -
[a r l t y) b/by] e F ' i o p P i o (# l p l e x o r : 4 ; ' H S P M X) Channel/HSPMX 1

'On ly 8 logical K ~ S

'See F i g u r e s 1 1 t o 16.

Fig. 5. IBM System/360 Model 44 PMS diagram.

570 Part 6 1 Computer families Section 3 I The IBM System/360-a series of planned machines which span a wide performance range

System Model Byte, Words
E44 32,768 8,192
F44 65,536 16,384

Procerror Storage G44 131,072 32.768
ti44 262,144 65,526
I T

M ~ Y o I Dato Entry from System Contml Panel- .~

Doto Out to
Channelr

Sixteen-bit

I 1 1 1

I I Function 7

L
FPR = Flmting-Point Registel
GR = General Register
I C = In.truction Counter

__tt_ Doto

Address Entry 1

} From HSMPX - Address

Op = Operotion Code
SAR = Storoge Mdreir Register
SDR ~ Stormge Dota Register

8,4,32,etc. = B i t width of the clrcult

21-23, ets = B i t numbers

* Includes por;h/
f High-Speed Generol R e g i s t e r s

t Con be dirploved on system control panel

Fig. 6. IBM System/360 data flow in Model 44 CPU. (Courtesy of International Business Machines Corporation.)

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 571

is a second operand register used for arithmetic and logical
operations.

Model 75

The PMS structure of Model 75 is given in Fig. 3. Models 65,
67, 75, and 9 1 all use the same basic Mp('2365; core). The S(n
Mp; mP), which switches between the n Mp modules and the
m Pc and Pio's, varies with model, however. C('65) and C('75)
use a simple time-multiplexed S in Pc, called the S('Bus Control
Unit/BCU). This S makes decisions about which P is to use
which Mp, rather than having each Mp arbitrate the P request-
ing service locally. When the memories are all about the same
speed, such an S is all right; however, it has severe limitations
when slow speed (8 microseconds for the large core store) and
high-speed memories (0.75 microsecond) are intermixed. The
principal difference between Models 65 and 75 is that C('75)
is hardwired and, depending on the size of the configuration,
may have lower cost/performance.

The simplified functional unit diagram of C('75) (Fig. 7) is
more abstract than the register interconnection diagram of a
C('44) (Fig. 6). From this description (Fig. 7) of the logic design,
one is able to conjecture what is necessarily within the instruc-
tion, execution, variable field length, and decimal functional
units. The diagram is presented at a nonuniform level at both
the PMS and register-transfer levels. There is somewhat more
detail than in the PMS structure (Fig. 3). The Model 75 is
possibly the first System/360 to require an intermediate-level
diagram between a PMS structure and a register-transfer dia-
gram. The instruction unit contains the instruction location
counter (part of the ISP) and is responsible for obtaining the
next instruction and the operands. Since there can be overlap
in the instruction fetching process, this unit is responsible for
holding a number of instructions and stores up to 128 bits
(2 double words) of instructions at a time. The execution unit
and the variable field and decimal units carry out operations
on data. The execution unit processes floating-point and
fixed-point data.

Model 67

The Model 67 was introduced in April, 1965, for the purpose
of time sharing. The entry was prompted by M.I.T.'s project
MULTICS. M.I.T. had ordered a GE 645 for experimental re-
search in time sharing. IBM formed a group for the development
of a time-shared computer and responded with the Model 67.
The Model 67 is essentially a Pc('65) with adequate S's for
multiprocessing and a K between Mp and Pc for multiprogram-

ming and memory mapping. Because of software uncertainties,
the Model 67 ran as a Model 65 in most installations (in 1968).
The University of Michigan and M.I.T.'s Lincoln Laboratory, the
first two customers having considered the MULTICS proposal,
were instrumental in outlining the specifications [Arden, et al
19661. Several 67's have been delivered, and the software con-
tinues to evolve and be scheduled for completion (see Fig. 1).
Questions of costs per console must wait unti l the system is
stable enough to test and evaluate, although in April, 1969
IBM considered the system attractive (operational) enough to
market. The most significant outcome of the experiment to
date is:

The hardware seems capable of supporting a straight-
forward time-sharing system [Corbato et al., 19621. Had
IBM first developed a simple system based on proved
concepts, they would be capable of undertaking research
into more complex systems like the version to which they
originally committed themselves. (Vendors should have
some basis of actual operating experience before com-
mitting a product to market.)

The problems of building really large-scale software sys-
tems are not fully understood yet.

The idea of a virtual memory with a large address space
(232w) is excellent. Many storage allocation problems are
simplified by this concept. Unfortunately, the system
software builders seem well on their way to filling such
a memory. Thus the new freedom allows relaxation in
this level of programming.

There is a problem of getting users into Mp.core so that
Pc can be kept busy. Thus a swapping system is often
found waiting for Ms.drum or Ms.disk information. Work
at Carnegie-Mellon University using a Mp('LCS; core;
.5 - 1 mw; 8 by/w; 8 ps/w) seems to indicate that a
large number of users can have adequate response from
the Model 67 if the users reside in core and are not
subjected to swapping [Lauer, 1967; Fikes et al., 19681.

The above items relate to the software. The hardware (Fig.
8) is interesting from several aspects. First, there are adequate
facilities for memory mapping and program segmentation. This
general scheme is outlined in Fig. 9. In the Model 67 a user's
segment and page maps are in Mp, and these maps point to
physical Mp blocks of the program. Each time a reference is
made, the map is checked for the actual reference. In order
to avoid the accesses to Mp for each Mp reference, a K, with
an M(content address), is located between Pc and Mp to trans-

572 Part 6 I Computer families

Multiplexor
Channel

Section 3 1 The IBM System/36O-a series of planned machines which span a wide performance range

Selector Selector
Channel Chonnel

One Bvte Eoch One Bvte One Byte

Eight

99999 Q 9

Bytes

2365 Processor Storage
(Main Storage)

I I

Eight
Byter

F~~~ Bytes Eight Bytes
* One byte oddreir byparr

~~~h~ 
' 

Bytes . 

Exponent 
Adder 

16 General 
Regirterr 

I 
I One Byte 

Four Floating- 
Point Regirterr 

1 
Eight Eight Bytes 
Byter 

1 
one Byte 

Eight 
Bytes 

Comment 

Instruction Unit 

A l l  models 
A l l  models 
I 6  Genera l  regirteNr 
4 Floating-point iegiiteli 

I 
I Variable Field 

1 Decimal Unil 
Execution Unit I Length and 

8 biter to i to iage 
8 bytes to rtoroqe 

2365 Procerror Storoge 
2361 Core Storage 
Generol registers 
Flooting-point vegirterr 
Addressing odder 
Porallel odder 
Exponent odder 
Serial adder 
Boric mochine c y c l e  
2860 selector channel 
2870 Multiplexor channel 

Burst mode 
Multiplex mode 
Selector rubchannel 

Fig. 7. IBM System/SCO Model 75 data-flow diagram and system statistics. (Courtesy of International Business 
Machines Corporation.) 

Data Width Arceir/Speed/Rote 

8 bytes 
8 byter 
I word 200 nanoseconds 
2 words 200 nanoseconds word 
3 bytes 200 nanoseconds 
8 bytes 200 nonorecondi 

200 nanoseconds 
200 nonoiecondr 
200 nonoseconds 
I 3 m i l l i on  bytes per second 
I I O  kb to 450 kb 
50-1 I O  kb 

' 50-110 kb 
IO0 kb, eoch 

I byte 
I byte 

i byte 
I byte 
I byte 
I byte 
I byte 

.75 microsecond storage c y c l e  
8 microsecond storage c y c l e  



Section 3 I The IBM Systern/360-a series of planned machines which span a wide performance range 573 

addressable; taccess: 150 ns; 8 w ;  

address: 20 b: data: 9 b 1 1  T.console - 

M integrated circuit; content 

P io('2870: # (0 : 191 ) , ( 1  : 4 )  )? 
pio('2860; #1:3)- -E pio(I2860; # I  :3) - 

I[ 
K(#O:I; 'Dynamic Address Translation1 -Pc(#O:I; ' 2 0 6 7 ) - ~ ( t n i ~ ~ ~ ~ )  - 

S(#O:l; *2846 Channel Controller) 

IMP (12365-12) := (M ( # O :  1 ; '2365-2: .75 us/w; 16 kw; 8 by/w; ( 8 , l  parity b/by))-S-) 
"Mp('2361-2 Large Capacity Store/LCS; 8 us/w; taccess: 3,2 ps/w;  262 kw; 8 by/w; 

' S ( 8  M ;  (4  - 6) P; cross-point; concurrency: 8; t.delay: . I  
bus) 

(8.1 parity) 

distributed; location: M ;  

4 S ( 4  M ;  2 P ;  cross-point; concurrency: 2; t. delay: I ~ 1 5 ;  distributed; location: M ;  bus)  

'See Figure 3 for Model 65. 

Fig. 8. IBM System/360 Model 67 PMS diagram. 

form a 24- or 32-bit virtual address in Pc into an actual 19- to 
22-bit physical address in Mp. This K is not shown in Fig. 9 
because it is not logically necessary. The scheme suggested 
in Fig. 9 uses control bits in the map to determine legal Mp 
accesses. In the Model 67 the storage key mechanism holds 
whether a given page can be accessed by a given numbered 
user (instead of associating the control with the mapping as 
shown in Fig. 9). 

Second, the Model 67 is the first acknowledgment by IBM 
of multiprocessor computers, since it provides adequate 
switching to allow multiple Pc's. The C('65) multiprocessing 
configuration has been introduced based on Model 67 structure. 
Multiprocessors are necessary for reliability, not solely for per- 
formance reasons. 

The PMS structure of C('67) in Fig. 8 does not have to use 
the S('Bus Control Unit/BCU),I as in the C('65). The C('67) can 
have an S in each Mp, so that four P's can communicate with 
an Mp, as shown in Fig. 8. Each Mp makes the decision about 
the P request to be honored next. Thus the problem of having 
an "all knowing" S('BCU) is solved by allowing each Mp to do 
local scheduling, rather than having a dialogue with another 
component (with time delays). The S('BCU) in a duplex C('67) 
is still present, but with less power, in the form of the S('2846 

' A  system with only one port at Mp, controlled by BCU, is called a simplex. A 
system with multiport Mp is called a duplex. 

Channel Controller). It is used to arbitrate the Pi0 accesses to 

Without multiprocessing, the Pc seems very badly mis- 
matched with respect to Mp. Consider, for instance, the data 
rates on the C('67). From Fig. 8 its maximum possible Mp 
data rates are: 

MP. 

For 1 Mp('2365-12): 

64 bits = 171 megabits/sec 
0.75 p~ 

and for 1 Mp('2361 Large Core Store): 

____- 64 bits - 8 megabits/sec 
8 PS 

Thus the total data rate is 

171 x 8 + 8 x 4 = 1,368 + 32 megabitslsec 
= -1,400 megabits/sec 

The processing rate is approximately 

~- 64 bits - 29 megabits/sec 
2.2 ps 

An Ms.drum rate is approximately 

8b '" = 10 megabits/sec 
P 



574 Part 6 1 Computer families Section 3 I The IBM System/36O-a series of planned machines which span a wide performance range 

~ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ _ _ _ _ _ _ _  
Logical ( v i r t u a l )  address f rom processor 

User segment table register L. --- Segment tableZ 1 I 

Segment 

----- - ' Page tables for segments2 

table 
length 

Address translation (user maps) 

Primary memory component 

within page - 
"+'an addition operation 

access and act iv i ty infoimation(read,write,read or ly,etc)  
located in pr imary memory during execution 

Fig. 9. Memory allocation using pages and segments. 

Thus, for the several P's, an effective Mp request rate of 100 
megabits/sec might be needed. The data-flow mismatch (be- 
tween Mp and the P's) occurs because of the P's, the S (the 
L's connecting P and Mp), the lack of P's, and the fact that 
t.access = - '/z t.cycle. 

The Pio('2870), used in Model 65 and above, is described 
at two structural levels in Fig. 3. The Pi0 includes a large 
M.working to store the state of each of the logical Pio's. This 
Pi0 state includes the instruction location counter, the control 
state bits (active, running, interpreting an instruction, process- 

ing data, etc.), and buffering (one 8-byte word). By having an 
M.buffer, the demands on Mp from the Pio's are reduced by 
a factor of 8. Although the expected data rate from many K's 
does not require the extra M, there are possible times when 
the uncertainty of the access times for Mp might cause data 
loss. Since the M.working is necessary to store the Pi0 state, 
the additional space for buffering is not expensive. An alterna- 
tive design might use Mp for this buffering. 

The four Pio('2860 Selector Channel)'s are implemented as 
independent Pio's, using conventional hardwired logic and 
buffering. However, they are packaged as one unit. 

Model 85 

The Model 85 was announced in February, 1968, with the goal 
of being the highest-performance Model 360 in production. The 
performance is -(3 - 5) times the Model 65 and in some cases 
outperforms a Model 9 1  [Conti et al., 19681. 

The PMS diagram of the Model 85 is shown in Fig. 10. The 
Pio, T, Ms structure is identical to that of Models 65 and 75 
(Fig. 3). The two interesting aspects of the structure in Fig. 10 
are the M(content addressable; 'Buffer Storage; 16 I32 page; 
1024 bylpage) and the Pc. The pages are filled in groups of 
64 bytes, as references to a particular physical block in Mp.core 
are made. Conti [1968] gives running times for various pro- 
grams as a function of buffer memory size. Multiprogramming 
may degrade the performance more than any other case. This 
process, which has been referred to as "look aside," or a "slave 
memory," was suggested by Wilkes [1965]. It is completely 
analogous to  the Model 67 M(content,addressable; 8 w) which 
is used to hold the segment-page map for a multiprogrammed 
time-sharing system. It is also analogous to a one-level storage 
system (Atlas; see Chap. 23) which is formed from two physical 
M's whose performance differs significantly. Here, the effect 
is to try to approximate a computer with a large Mp(80 ns/w) 
by using a large Mp(1 p / w )  and a small Mp(80 ns/w). The 
CDC 7600 (page 475) has a similar structure, but the Mp-Ms 
migration is under programmed control. 

The P.microprogram used for controlling the Pc(K('Exe- 
cution Unit)) allows for great flexibility in the definition of ISP's. 
An Mp(500 w) is available for the user: this may be loaded by 
a program, and it specifies an ISP. One standard option is to 
emulate the 704-7094 series. 

The Model 85 removes the restriction of aligning words at 
particular boundaries. Thus any logical word, independent of 
its length, can be located at any physical location addressed 
in bytes. 



Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 57! 

K 

L L ( i n :  16 by; out: (8,16)by)-Pc6-T.consoles - 
I 
M('Buffer Storagel4 

L L('Direct) - 

Mp1-k ('Storage Control) T(#l :3)-L(#l:3)2- 

'Mp(core; ( '185;  M(ffl:2; '2365-5; 1.04 ps /w;  262 kby))I ('J85; M( # 1 : 4 ;  '2365-5; 
1.04 ~ s / w ;  262 kby))l('K85/2385 Model 
.96 ps/w; 4 mby); M('Protecti0n Key Storage Elements: 128 - 1024 w; 6 b/w) 
(16 + error) by/w; 8 b/by; s i ~ o Z r  error ,detection and correction, double error 
detection) 

I ;  .96 us/w; 2 mby)] ('L85/2385 Model 2: 

"L(#l :3; Pio(12870 Multiplexor Channel)3, Pio(#l :2; '2860 Selector Channel)3: 

8 by; ( 8 , l  parity b/by)) 
3See Figure 3 for Model 65 and 75. 
*M.buffer('Buffer Store; inteqrated circuit; (16384 - 32768) by: 80 ns/w; content 

addressable: data: 1024 by: address: 9 - 12 b) 
5T.console((CRT: display), keyboard, (microfiche; reader)) 

"Pc := 

-L 
Mps(4 w; 8 by/w) 

1 

M.pararneter(read on ly ;  80 nsfw: 2000 w) 
M. buf fer 

M.parameter(read wci te; 80 ns/w; 500 w) I L 
7 
C .mi croprogrammed 

Fig. 10. IBM Systern/360 Model 85 PMS diagram. 

The Pc's data operation performance is impressive. A fixed- 
point multiply is done in 0.4 ps, and a floating-point multiply 
takes 0.56 ps (not including accesses). 

The data-type, extended floating-point number, is used in 
Model 85. Thus a 24-, 56-, or 112-bit fraction part can be used. 

Model 91 

This model has a very low cost/performance ratio (see Table 
1). Only about 20 Model 91's were produced before it was 
withdrawn from the market. It has the highest performance of 
the series. The Mp is 0.75 ys, but 16 are overlapped to provide 
a theoretically maximum bandwidth of 16 X 64/0.75 = 1,370 
megabits/s. About 2.5 mega-instructions/s are executed; thus, 
a total of 160 megabits/s of Mp are absorbed by Pc. 

There are other interesting models in the '90 series; the 

Model 92 was a paper machine,l and the Model 95 was unan- 
nounced but produced, a version of the Model 91 with an Mp(in- 
tegrated circuit; 60 ns/w; 8 by/w). The Model 91 is not covered 
in any detail here because of space limitations. It is similar to 
other very large computers in that many techniques are em- 
ployed to obtain parallelism. The January, 1967, IBM Joournul 
of Research1 is devoted to design issues of the Model 91. 

Models 1130 and 1800 

These computers are presented as reference points and have 
nothing to  do with the C('360). They are implemented outside 
the System/360 framework but use its technology, and so cost 
com pa risons are sti I I somew hat mean i ngf u I. These com puters 

'See bibliography a t  the end of this chapter 



i76  Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

are straightforward, and for a given task which does not use 
floating-point arithmetic, they should perform as well as any 
System/360 model. The arguments we use for the intermediate 
Pc for the Model 25 apply equally well here, too. Namely, why 
have such a complex ISP when simple ones will do just as well? 

The programmed floating-point arithmetic times for a 4-ps 
1800 and the "hardwired" (microprogrammed) System/360 
Model 30 are compared in Table 2. We would expect the 2-ps 
1800 to be better by a factor of 2. Note that the times are about 
the same for Model 30 and the slower 1800. The cost/perform- 
ance is especially low with the 1130 (Table 1). In  Chap. 33 we 
discuss the 1800. It is interesting to speculate why the 1130 
and 1800 cannot be implemented within the System/360 frame- 
work. Are they "loss leaders"? Are they in response to more 
sophisticated, performance-oriented users? 

The PMS structure of the controls, terminals, secondary memories, 
and special processors 

There are many common components which attach to the C's 
(Figs. 11 to 17). Most of the components which attach to a Pi0 
are not especially interesting, but they give an idea of the 
behavior and parameters. For example, the expression T('1403 
Model 3; line; printer; 1100 line/min; 132 char/line; 8 bits/ 
character; 64 - 240 character set) pretty well describes a 
typical line printer. From the above description one can de- 
duce the data rate of a T(line printer). It is 132 char/line X 

1100 line/min X 1/" min/s  X 8 b/char = 19.4 kb/s. 

The channel-to-channel adapter control. The most interesting 
group of components (outside the C structures) are the special 
components shown in Fig. 11. The K('Channe1 to Channel 
Adapter) allows two P's, either on the same or a different C, 
to communicate with one another. This K is used in the con- 

Table 2 
point arithmetic timing 

IBM 1800 (4 ps)  and IBM System/360 Model 30 floating 

Operation times (ps) 

Operation 1mo (4  w) System/360 Model 30 

+ (sf); + (df} 460; 440 75; 115 
x{s f ) ;  (df) 560; 790 320; 1060 
- {sf} 766 600 
K { f )  4500 2965 
sin {f} 3000 3876 
exponential (f) 2000 4173 

- ; Cc 0' i 0 )  ) 

K(IChannel t o  Channel Adapter .  

I used t o  trans,fer da ta  among 2 c f s )  

- L  ( C  ( ? i o ) )  

a. I n t e r c o n n e c t i o n  of 2 computers ( o r  w i t h i n  a comvuter)  

f o r  t r a n s m i s s i o n  o f  I n f o r m a t i o n  

- L ( S ( ' S e l e c t o r  Channel: 

1 use8 in place a f  regular channel ) )  

P(b1ock t r a n s f e r ;  'S to raqe t o  Storaqe Channel) 

b .  Processor f o r  t h e  t r a n s m i s s i o n  o f  i n f o r m a t i o n  ( v e c t o r s )  

w i t h i n  Mp 

'2903 Spec ia l  C o n t r o l  Unit/SCU)-X' 

5 - h ;  'SCU)-X' 

c .  I n t e r c o n n e c t i o n  t o  o t h e r  c o n t r o l s  and computers 

- L ( S ( ' S e l e c t o r  Channel, Models 44,  65, 75: 

used in place  of regular Channel) 
P ( a r r a y :  '2938:  microprogrammed: Mps(- 64 w; 32 b/w): 

o p e r a t i o n s :  ( v e c t o r  move, v e c t o r  m u l t i p l i c a t i o n ,  

v e c t o r  i n n e r  p r o d u c t ,  sum o f  v e c t o r  e lements ,  sum of  

squares,  c o n v o l u t i o n ,  d i f f e r e n c e  e q u a t i o n ,  f i x e d  f l o a t  

i n g  c o n v e r s i o n ) ;  da ta  l e n g t h s ;  s c a l a r ,  v e c t o r ,  m a t r i x ;  I d a t a - t y p e s :  f i x e d ,  f l o a t i n g )  

d .  Array Processor  

Fig. 11. IBM System/360 special P's and K's PMS diagrams. 

struction of a dual C system or the N('Attached Support Proc- 
essor/ASP) in Chap. 40, page 506. A C('40 1'50) is attached to 
a C('65 1'75). The C('40 150) is used as a Cio with file processing 
capabilities. The K has M.buffer. Data can flow in only one 
direction at a time. 

The special control unit. The K('2903 Special Control Unit/SCU) 
consists of two independent K's which are physically packaged 
together and allow users to interface with the Pio's. Although 
it has not been discussed, the actual interconnection with a 
Pio, via theS(Pio; K), is via a physical 1/0 bus which is arranged 



Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 57' 

in a bus (or chained) fashion. Such a single interface to handle 
a wide range of needs (high and low response and data rates) 
via a single set of electrical conductors requires a great deal 
of control information to be passed along the link. Therefore 
a K must have a great deal of knowledge of the dialogue in 
order to communicate. The hardware to attach to the 1/0 bus 
at a K is costly and must be designed carefully. The K('SCU) 
provides a rather simplified interface to the Pio. All 1/0 bus 
synchronization control, communication protocol control, 
buffering, and electrical isolation are within K('SCU). The 
K('SCU) is fairly flexible, in that devices connected to it can 
communicate with one another without Pi0 (see Fig. 11). 

Storage-to-storage-channel processor. The P('Storage to Storage 
Channel) is a special processor which performs the sole function 
of transferring data blocks (a word vector) between one location 
in Mp to another in Mp. It qualifies as a P, since it takes an 
instruction from Mp containing the location and length, and 
once the instruction is executed, another is fetched and exe- 
cuted (if it exists). Thus the component has a well-defined 
interpretation cycle and set of operations. This P is useful in 

a multiprogrammed environment requiring programs to be 
moved. 

The 2938 array processor. The P.array('2938) is an extremely 
interesting special P (Fig. 11). It can be connected to Models 
44, 65, or 75. It has a limited instruction repertoire, but the 
instructions it interprets are more complex than those in the 
ISP of the Pc. The instructions are algorithms for operating on 
an array (a vector or a matrix). These instructions include: 

1 Vector move, similar to the P('Storage to Storage) de- 
scribed above, with conversion either way between fixed 
and floating point 

2 An element-by-element vector sum 

3 An element-by-element vector multiplication 

4 A row-by-column vector inner product 

5 A convolution multiply 

6 The solution to a step in a difference equation 

The P.array is microprogrammed, using an M(ROS), which 

-L ( # I  : 2 ) -  S f  x-K ( 2R41)- S f  x -  

- 135) m s ) :  156 kby/s:  7.25 megabyte) 

[ms: 1.2 mby/s. 4 mby: ( 4 . 1  p a r i t y )  b/by 

- L ( # l  :2)'-Sfx-K('2820)- Ms # I  : 4 ;  '2301 Para1 l e 1  Drum: taccess :  

movinq head d i s k :  

D i r e c t  Access Storaqe F a c i l i t y :  

ms); 3 1 2  kby /s ;  26 megabyte; 

( 8 , I  p a r i t y )  b/by; o n l y  8 selectable u n i t s  

- L(#l:2)2-Sfx-K- 

' - L ( P i o ( ( ' S e l e c t o r )  1 ( ' M u l t i p l e x o r ) ) )  - 
'- L ( P i 0  ( ' S e l e c t o r )  ) -  

Fig. 12. IBM System/360 Ms(drum, disk, data cell) PMS diagrams. 



878 Part 6 I Computer families 

- 
f t ) :  

J 

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

- 

M: 
- 
( '2415; maqnet ic tape:  

18.75 i n / s :  a r e a :  1.5 i n  x I800 f t )  

[model. !f: b y / i n :  b / b y ) .  ( 

( I :  1:2 :  200,556,800: (6+1),(8+1))l 
(2:  1 : 4 :  200,556,800: ( 6 + I ) , ( X + I ) ) /  

(3 .  I :6 :  200,556,Rno: ( h + l ) ,  (8+1)) 

( 4 ;  1 :2 :  200,556,800,1600: (8+1))1 

(5:  I : 4 :  200,556,R00,1600: ( 8 + 1 ) ) (  

(6 :  1 : 6 ;  200,556,800,1600; (R+I))) - 
- L -K('2802)-Sfx4-Ms 

K ( ' 2 4 0 3 )  := ( 

- L -  K('2803)--SfPrM5(#I: '2401" 1 '24023)  - 

K( '2404)  := ( 

- L- K('2804)-Sfx4 M s ( # l :  '2401") '2402') - 

Ms(#2:R: '2401" 1'2402') - 1 

TMs(12:R: I240l2 1 ' 2 4 0 9 )  - ) 

- L ( # l : 2 ) - S S F x - K ( ' 2 8 0 7 ) - - S f x ~ M s  

I : R :  '2401" 1 '24023 : - 1 K #1:2;  -S x :  

[2804) I n :  IT magnet ic  tape 

- L ( # l : 2 )  - 

o u t :  

" -  Mr 
- L(to:Pio('Selectorl'Multiplexor)) - 

'2401: maanet ic  tape:  a r e a : ( . 5  i n  x IROO 
(model ;  i n / s :  b y / i n :  b / b y ) :  ( 

( I :  37.5; 200,556,ROO: (6+ l ) , ( f i+ l ) )  I 
(2;  75: 200,556,800; (6+1),(R+l)) 1 
( 7 :  1 1 2 . 5 :  20n,556,~00:  (~+I),(R+I)) 1 
(4:  37.5; 200,556,800,1600: ( X + I ) )  I 
(5;  75; 200,556,800,1600; ( R + I ) )  I 
(6: 112.5, 2oo,556,Roo,16oo; ( 1 ( + 1 ) ) )  

" M s l  2402) := ( M s ( # l : 2 :  p2401: magnet ic  tape u n i t ) )  

4 S f x  := ( S ( f x ;  I K: 8 M s ) I S ( f x :  2 K:  8 Ms: concur rency :  2 )  1 
S ( fx :  4 K :  I 6  Ms: concur rency :  4 ) )  

Fig. 13. IBM System/360 Ms(magnetic tape) PMS diagrams. 

makes it possible to construct complex algorithms in a flexible 
manner. The hardware logic is capable of doing a combined 
floating-point multiplication and addition in 200 nanoseconds. 
The impressive results this P achieves in the interpretation of 
the algorithms are principally because the time to access the 

algorithm has gone to zero. A measure we might apply to a 
P is the ratio of the time it spends fetching the algorithm's data 
to  the total t ime it spends executing the algorithm. In a con- 
ventional computer Pc we suggest that a ratio of nearly % is 
very good. Two fetches are usually required-one for data, one 



Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 579 

for the instruction. This P has a ratio near one, as it is always 
accessing data (and rarely instructions). 

Secondary-memory structure. Figures 12 and 13 present the Ms 
PMS structures. All the K's have an optional S, which can be 
placed between the K and the S(P;K) to allow two Pio's to access 
a common K (from either of two C's or two Pio's of the same 
C). The K('2841 Storage Control) is interesting only in being 
able to control a series of quite disparate devices, on a one-at- 
a-time basis. 

Figure 13 presents all the M(s; magnetic tape)'s. The 
switch is interesting as it can be used for up to four K's to 
access simultaneously any of 16 M.tapes. (The vast array of 
very similar devices is due undoubtedly to marketing rather than 
production or engineering reasons.) It should be noted that 
there are two distinct M.tapes: conventional magnetic tape and 
Hypertape. Hypertape is explicitly addressed and has built-in 
error-correction coding. 

Terminal structure. Figure 14 shows the T(cathode ray tube; 
display) and T(audio; output). There are terminals for writing 
and reading from photographic fi lm (35 mm). The two ap- 
proaches used for audio (vocal) output are noteworthy. One 
uses an M.drum to record a fixed vocabulary of words; the other 
uses an encoding mechanism to allow digital information stored 
in Mp to be transferred via the K('7772 Audio Response) to 
transforming a coded voice back to an audio output form. The 
S at the output of the T(audio) provides for audio signals to 
be switched on a word-by-word basis to any of several output 
telephone lines. 

The structure of the vast array of printing devices that can 
attach to  the C('360) is shown in Fig. 15. Some of the devices 
are interesting, such as the one that reads pencil-marked or 
typewritten paper. The main parameters of significance to  PMS 
are the rate the device reads paper together with the kind of 
paper. 

The T and K's which connect to external processes are given 
in Fig. 16. The K('1827) is used to connect with analog proc- 
esses and is actually part of the IBM 1800 computer system 
(Chap. 33). The other K's are important, though not especially 
interesting, since they provide the K to T(Teletypes), K(tele- 
phone lines), and T(typewriters). The K('2701) and K('2702) 
are built to  transform unsynchronized parallel data from the 
C into the synchronized serial form required by the telephone 
line. The K('2701) controls a small number of lines of high data 
rates; the K('2702) controls a large number of lines at low data 

- L- K('2848)- S t m  

T ( # l  :24;  t y p e w r i t e r  p r i n t e r ) +  

M ( b u f f e r ;  16384 by)  
I 

-L2-K('2840-1)-Stm T # 1  : 6 ;  '2250-2: (CRT: 1 [~::PF d i s p l a y ;  a rea :  1024 x 12 1024 x 12  

p o i  n t /page)  ; (keyboard : 

T ( # 1 : 6 ;  l i g h t ;  pen: i n p u t ) +  

T '2280; f i l m ;  w r i t e r ;  35 - 
rnm; 4096x 4096 point /page.  

T ( ' 2281 :  f i l m ;  r eader  35 mm) 

M ( b u f f e r :  analog;  32 - 128 words)  

Response j 

f r o m : d i q i t a l :  

J L t o :  ana I og 

' L  := (L(Pio('Selector1'Multiplexor)) I L( (1200 - 4800) b /s ;  

Dataphone)) 

* L ( P i 0  ( ' S e l e c t o r  1 'Mu1 t i  p l e x o r )  ) 

L ( P  i o  ( 'Mu1 t i p l  exo r )  ) 

Fig. 14. IBM System/360 T(audio, display) PMS diagrams. 

rates. The K('2702) is actually an array of up to 31 K's that 
are time-multiplexed, using an M.core to hold the state of 
each K. 

Peripheral switching. For performance, communications, and 
reliability reasons it is necessary to provide access to K's, M's, 
or T's from several C's or Pio's. A sample structure of a pos- 
sible configuration, using the above components, is given in 
Fig. 17. The PMS diagram also shows the physical structure of 
S(from:Pc; to:K). 

Performance and costs 

The System/360 series is perhaps the only group of computers 
for which a valid comparison of performance and cost can be 



580 Part 6 1 Computer families Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 

- L1-KT('1442-N2; card; punch: 160 c01/5)+ 

-L -KT('1442-N1: card; (reader; 400 card/rnin), (punch; 160 co l / s ) ;  h a l f  duplex)- 

-L -K?(card: reader, ('2501-81: 600 card/min) I('2501-82; IO00 card/min))i 

- L  -KT('2520-81; card; reader, punch; 500 card/min; half duplex)- 

- L --?(I25201 card: punch; 

- L - K('282l)- '2671-1; paper tape; reader; I kchar/s; c 

('model 82; 500 card/min)](Vmdel 63; 300 card/min))i 

I 5,6,7,8 b/char: area: - 1 x .1 in2/char 1 
-L -K('2821)--5(3T) 

punch; 300 card/min): f u l l  duplex 

KT( '1053; character; printer; 14.8 char/s)-i 

1 
-L 

- L-KT '1231-NI; optical; pencil mark page; reader; area: (8.5 x 1 1 )  in*/page; 1- [I 1.8 s/page 
C 'n: 22 char/col: 300 char/s 
c area: (2.25 x 3 in2) j(5.91 x 9 in2) 

[288 - 420 docurnents/min 

- L-KT '1285; optical; printed character roll paner; reader; width: (.9375 w 3.5) t I 
1-  - L -KT '1287 Models 1 and 2: optical: rnader: handprinted; roll, document: 

- L -KT '1418, 1428 'Models 1,2,3; optical; typewritten character; reader; area: t 3 2 
(2.75 x 3.66 in2) i(5.875 x 8.75 i n  )1(2.33 x 4.18 in2)1(3 x 8.75 in2); 

- C -K?('1445 Printer-N1; magnetic character line; printer; 190,240,525 lin/min)-, 

- L -KT magnetic; character; reader; bank checks; ('1412; 950 document/min)1('1419; <- c 1600 docurnent/min) I 
L(Pio((Se1ector ('Multiplexor)) 

Fig. 15. IBM System/360  T(printer, reader, punch) PMS diagrams. 

made. The models use essentially the same technology, imple- 
ment the same ISP, and are probably constrained by a common 
corporate profit goal. Even here, as we noted earlier, compari- 
sons are difficult to make. 

In Table 3 we present the costs for various PMS component 
primitives. From this table, costs (relative to other components) 

can be obtained. These costs are expressed as dollars per 
second ( $ I s )  to rent the equipment. They have been derived 
from the IBM monthly rental prices. The computer prices are 
based on estimates of minimum, average, and maximum con- 
figurations in the Adams Computer Characteristics (kurterly 
[Adams Associates]. The conversion factors are 



Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 581 

- L'-K(#l:2; ' 2 7 0 1 ) - S - K ( # l : 2 ) - L ( # l : 2 ;  f u l l  d u p l e x ,  te lephone 1 i n e ) -  

asynchronous; t o :  T(Dataphone) 1- -L(#1;2)*- Stm-K('2702)-Stm-T(#l :?,I) -L Telephone L i n e ;  

M b u f f e r ;  50 .- 600 b /s ;  s t n r t ,  ptcp ,  

'[3l w 1 
- L2 - K(' 1827)- Stm T(ana1oq; i n p u t ,  o u t p u t )  - 

--((Dataphone; d i g i t a l ;  s t a ~ t  ,clor row+r~oZ)--T 12740112741 Communications - 
Termina l ;  t y p e w r i t e r ;  133 b /s ,  

14.8 char /s :  9 b /char ;  

(44 x 2 )  symbol/char 1 
9 b/char 

- L #1:14;  - S  '2712 Remote - L - 2 kb/s ;  -S '2712 Remote - L # I  14: - 
134.5 b / s :  L u l t i p l c x o r  I] [ f u l l  duplex] [ M u l t i p l e x o r ]  L 3 4 . 5  b/s] 

[9 b /char  ] 
' L ( P i o ( ' S e l e c t o r l  'MUI t i p l e x o r ) )  

"L (P io ( 'Mu1 t i  p l e x o r ) )  

3 K  '=  ( K T ( ' B i t  Synchronous Data Adapter :  1 . 2 -  40 .8  k b / s ) I  

KT('Te1ephone L i n e  Adapter:  0 

K T ( ' P a r a l l e 1  Data Adapter ,  (16, 48) b/w))  

600 b / s )  I 

Fig. 16. IBM System/360 T(te1ephone line, analog, typewriter) PMS diagrams. 

$ / s  = 1 / [ (173 .3  hour/month) x 3,600 s/hour] 
= 1.6 x 10V $/month 

$/month = 0.625 x lo6 $ / s  

The cost to buy, in dollars, is approximately 

$ = 45 x ($/month) 

$ = 45 X 0.625 X lofi ($/s) = 2.82 X lo7 X ( $ / s )  

Table 1 is written as a single, large PMS expression, thus, the 
attributes are: 

Pc(cost: ($/s i$))  : = c.Pc : = cost of Pc alone 

Mp(cost.avg) : = c.Mp.avg : = cost of average-size Mp for 

C(cost.min:) : = c.C.min : = cost of minimum-size com- 

C(cost.avg:) : = c.C.avg : = cost of average-size computer 

a model 

puter configuration 

configuration 

Primary memory 

The graph of Fig. 18 gives the Mp costs, c, (in $ / s )  versus 
memory size (information/i). The line i = 1.43 x IO7 X c is 

I T T  
L' t - s x -  

- X S  -,-KS 

r - L - r  7 -xs  J 

' S y s t e d 3 6 0  l/O I n t e r f a c e  Bus 

"x := ( T ~ M S )  

Fig. 17. IBM System/360 peripheral-switching PMS diagram. 



582 Part 6 I Computer families 

Table 3 IBM System/360 component costs 

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

component 

Mp (core; cost: $/(kby x s)) 

Mp ('Large Capacity Storage/LCS; 
cost: $/(kby x s)) 

Pc ('20125~30~401441501651671 
75 1851 91) 

P.array ('2938) 
Pi0 ('2860) 
Pi0 ('2870) 

Ms ('2415; magnetic tape) 
K ('2415) 

Ms ('2401; magnetic tape) 
K ('2803 12804) 

Ms ('7340 Hypertape) 
K ('2802) 

Ms ('2311; removable disk) 
K ('2814; #1:8) 

KMs ('2314; #1:9, removable 
disk) 

Ms ('2321 Data Cell) 
K ('2814; #1:8) 

Ms ('2303; drum) 
K ('2814; #1:8) 

Ms ('2301; drum) 
K ('2820) 

S ('2816; Ms.magnetic-tape; K) 
T ('2741; typewriter) 
T ('2260; display) 

KT ('2250; display) 

T ('2761; paper tape; reader) 

KT ('7772/7770; audio) 
T ('1403/1404 line; printer) 

K ('2848; #1:8, 16, 24) 

K ('2822) 

K ('2821; #1:3) 
KT ('1443 11445; line; printer) 
T ('2540; card; reader 1 punch) 

KT ('1442 I2501 12520; card; 

K ('2701 Data Adapter) 
K ('2702; typewriter; Teletype) 

K ('2821; #1:3) 

reader I punch) 

4 

I 

8 
O.( 

I 

01 

I 

I 
I 

I 

I 

I 
I I  
I I  

1 1 1  

I 

8 
0 

cost ( U s )  - 

I 

I 

I I  
I I  I 

I 

I I  
II 

I 

I I  

I 

H 
2 

1 

I I 

I I  

I I I  

I 

0.01 

I I 



Section 3 I The IBM System/36O-a series of planned machines which span a wide performance range 583 

0.0 1 - I 
v) .. 

89 - 
r 

0 " 

0.1 

. (30)-1.5psec-  1 by 

"Square" coincide 
I for which size = 

t t  
I 1  I 

100,000 1000  4096 10,000 

12 13 14 15 16 17 18 19 20 21 22 23 24 Mp(l:logn(by 

. 

current Mp 
, and n =even) 

C(65,75)- 0.75 1 

C' 

<4 psec- 1800 

3 psec- 1130 

3 1 0 ~ ~ ~  

k 5 0 ) -  2.0 psec/4 bytes 

''words 

)-1.O psec-4bytes 

-5 psec- 2 bytes 

t 

Fig. 18. Graph of IBM System/360 core-memory cost versus core-memory size. 

plotted in terms of $/(by/s) and allows us to compute the 
purchase cost of a bit. The purchase cost of most Mp.core is 
$0.25/bit, according to the line. The 8-ps Large Capacity Stor- 
age/LCS cost is $0.032/bit. There appear to be slight cost 
savings for large Mp's and a significant saving for lower per- 
formance in the case of LCS, a factor of 8. A reasonable formula 
for Mp cost is: c = (7 x 10" x i)/[t.cycle: ( , U S ) ] .  This formula 
would account for Model 50 Mp and LCS costs, but not Model 
25 and 30 Mp costs. We really need an i l l 2  term in the formula 
to make a good f i t  (and also a constant). The value i l l 2  should 
be present, if purchase prices are relcted to manufacturing 
costs, because coincident current selecrion cost is inherently 
proportional to i l l z .  

An odd pricing point is the Model 44; it was developed after 
the other models and is either implemented better or priced 
differently. The anomalies in Mp('65; P4 words), Mp('30; P4 
words), Mp('40; 217 bytes), and Mp('44) are undoubtedly due 
to pricing-strategy differences. In the case of the Model 30 the 
incremental cost to increase the Mp size from 213 to 2lcj bytes 
is the addition of only a different core array (with no change 

in electronics), at a small incremental manufacturing cost of 
goods. 

The Mp size range within a model varies by a factor of 8 
for Models 30, 40, 44, 50, 65, and 75, although by only a factor 
of 4 at the ends of the line (Models 20 and 91). The Mp imple- 
mentation is usually a single common set of electronics to drive 
214 (16,384) words in a square or coincident-current-selection 
system of z7 by P. These square points are indicated on the 
graph, and they should be the most economical memories. 
Smaller Mp's are implemented simply by using smaller core- 
memory arrays, but with the same basic electronic configura- 
tion, e.g., the Model 30 above. Larger Mp's are obtained by 
replicating the whole Mp system including the core array and 
the electronics. 

An Mp size range of 8 for a given model presupposes a 
certain structuring of problems. That is, the models assume 
a fixed relationship between Pc capacity and Mp size require- 
ments. An ideal system might let Pc power, Pc quantity, Mp 
power, and Mp size be completely variable. These parameters 
would all be selected independently to match the work load. 



584 Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

Central processors 

The relative Pc powers (in 360 instructions/s) and costs are 
given in the graph of Fig. 19 and in Table 1. The most signifi- 
cant fact from the graph is that the cost/power ratio is roughly 
constant for each of the Pc’s (especially if we ignore Model 44 
and Model 50). Figure 19 gives the relative computing power 
versus cost for various configurations. Table 1 also shows a 
number of relationships. One interesting relationship (Table 1) 
is the ratio of actual Pc power to maximum possible Pc power 
for a model. This can be based on Mp utilization: 

- Mp cycles utilized by Pc 
Mp cycles available 

- -  Actual Pc power 
Maximum Pc power 

This ratio must be less than 1 unless there are many Pc’s or 
a single Pc has more power than Mp. In every case, the Pc is 
far from fully utilizing the Mp. The technique of buffering in- 
structions in a local Pc memory can increase this ratio to be 
>1 (although no computers ever do so). In the higher model 

numbers the utilization is low because a large number of cycles 
have to be available in order to avoid conflicts when a given 
cycle is requested-using an Mp with a long txycle. In the case 
of Model 25, the cycles are lost because the microprogram is 
being executed from Mp. (A ratio of 0.045 indicates 21  cycles 
are used for microprograms to every 1 of program.) 

In the case of the Model 30 the power is limited by holding 
the general registers in Mp. For example, by using an additional 
fast M to  hold the general registers and working data, the Pc 
power could increase. Unfortunately, such a change might 
cause the cost of other parts of the system to be increased, 
so that it would not be just a simple incremental addition. The 
C(’30) performs well for the field-scan problem [Solomon, 19661 
(see Table 1). The data structure for the field-scan problem 
coincides with the 1-byte Mp organization. C(’65) and C(’75) 
perform the worst for field scan because of the mismatch 
between Mp organization (8 bytes) and program data (1 byte). 

C(’65) and C(’75) have the same Mp structure and hence 
have the same potential power available from Mp. In the case 

a, 

0 

oi c 
Y) 
Y) a, 

.- 

e 
a, 

+ 0 

\ + 
0 V 

.- 

- 
Lu 

0.1 

- 
a 
\ 
9 I 

2 0 01 
e 

30 1 

0.000 I 

2,O 

25 G? 
+I13 

I 
x Average size C 
e Minimum size C 
+ Pc only 

30 

0.0001 0.001 0.0 1 0.1 

Cost: ( $/see ) 

Fig. 19. Graph of IBM System/360 cost/processing power ratio versus cost. 



Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 585 

of C(’75) the power of the Mp is more nearly utilized. Unfortu- 
nately for the more complex Mp structures, which have more 
potential Mp cycles, the Pc is not able to utilize them. The C(’65) 
and C(’75) have several registers concerned with obtaining the 
next instruction and holding it for execution while other in- 
structions are obtained (look-ahead). The hardwired Model 75 
Pc may account for the improvement over the Model 65 P.mi- 
croprogra m med. 

The performance of C(’20) is inaccurately high since it is 
a limited subset of the 360 ISP. (C(’20) does not have float- 
ing-point or fixed-point multiply and divide instructions, and it 
has only eight 16-bit general registers.) The hardwired Model 
44 has a better cost/power characteristic than any of the other 
C’s, by any measured criteria (see Fig. 19). In the case of the 
Model 44, the Pc price also includes Ms.disk. Perhaps the Model 
44, designed initially for real-time scientific problem solving, 
is priced more competitively with similar machines (DEC PDP-10 
and SDS Sigma 5, 7), whereas the other models compete in 
a performance-insensitive, competition-free market for gen- 
eral-purpose business data processing. Thus its anomalous 
position may be due to external market pressures and not 
manufacturing cost. 

The design of the IBM System/360 models is undoubtedly 
predicated on the basis that performance or computing power 
is proportional to the cost raised to some power, g, greater than 
1: power = k x costg; where g > 1.’ Almost all models follow 
the above relationship with g > 1. When g > 1 there is an 
advantage to have large configurations since the cost/computa- 
tion will decrease. If g 5 1, then an alternative implementation 
for the 360 C’s would simply use multiple C’s or Pc’s to obtain 
the same power. Unfortunately, such an approach does not 
provide for the interconnection of the components to function 
as a single unit. In many cases a single task cannot be broken 
into a number of parallel and independent subtasks. If the 
performance for the system varied by a factor of 100, then 100 
Pc’s or C’s would be placed together. From Table 1 we see a 
power range of about 314 corresponds to a cost range of 65 
to 114 (which tells us g < 2). 

The following discussion takes computing power to be 
measured by instructions per second and Mp (size; t.cycle). 
Costs are measured in dollars per second of rental time. The 
graph (Fig. 20) shows the relationship to computing power p 
and costs. The power (actually p.Pc) is taken from the meas- 
ures of instruction times for certain fixed work. Solomon ob- 

‘Herb Grosch [Grosch, 19531 first noted this relationship and estimated g to be 
2: thus we use g for this exponent. Adams suggested g = y2 [Adams. 19621. 
See also The Economics of Computers [Sharpe, 19691. 

served Grosch’s law to hold for Models 30, 40, 50, 65, and 75. 
This line is drawn in Fig. 20 for C(cost.average). Considering 
Models 20, 25, 44, 85, and 91, a line with a less steep slope 
might f i t  the points better. If we consider C(cost.minimum), 
g < 2; considering only Pc, a g = 1 might be appropriate (see 
Fig. 20) in which the power/cost is essentially constant with 
cost. 

Pc(cost)/Mp(cost.avg) : = c.Pc/c.avg.Mp = - 1.1, the ra- 
tio of processor to memory cost 

C(cost.min)/C(cost.avg) : = c.min.C/c.avg.C = - 0.47, the 
ratio of the smallest computer configuration to an average 
configuration 

Pc(cost)/C(cost.avg) : = c.Pc/c.avg.C = - 0.23, the ratio 
of processor to computer cost 

These are averages over all the series and can be rather 
misleading. For example, in higher-numbered models the 
C(cost.min)/C(cost.avg) : = c.min.C/c.avg.C is about 0.6. 
whereas in lower-numbered models the ratio is 0.3. We might 
have expected this, since it indicates that a higher proportion 
of system cost is in Ms and T on lower-number models. 

An alternative computer series based on multiprocessing 

In this section we suggest an alternative design providing a wide 
range of computing power but using multiprocessing. That is, 
rather than building a higher-performance model, we would 
have multiple lower-performance models. On the surface, this 
appears feasible only if the cost of the processor is a relatively 
small part of the computer, and if for a particular configuration 
there are memory cycles available in the system (so that a more 
costly memory system is not required). It is also desirable that 
the proposed multiprocessor configurations have rather large 
Mp’s so that it can be assumed there will be several jobs in 
Mp waiting to run; i.e., we should be able to multiprogram rather 
than do parallel processing. These conditions are satisfied with 
the System/360 models. Although we do not address the ques- 
tion of development cost, it is clear that a multiprocessor 
system would have a lower development cost because fewer 
processors would be required. Within IBM we can assume that 
the development cost tends to go to zero because of the large 
production; unfortunately, even for IBM, the training cost for 
servicemen and salesmen does not go to zero but is propor- 
tional to the number of products. Thus, we would anticipate 
savings by having a smaller line. 

The multiprocessor view is presented in Table 4; namely, we 
suggest dropping Models 20, 30, 40, 50, 65, 75, 85, and 91. 



586 Part 6 1 Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

'0.0001 0.001 0 01 0.1 1 .0 

See Table 1 for deflnlt lon Cost :  ( $/set) 

Fig. 20. Graph of IBM System/360 relative processing power versus cost. 

These would be replaced with only Models 25 and 44. Note there 
are Pc's in Table 4 (other than 25 and 44) which when multi- 
processed can perform better for lower cost, e.g., 2 Model 65's 
are >1 Model 75, for about the same cost. Admittedly there 
are major problems in multiprocessing with 11 Pc's, but other 
existence proofs [Anderson, 19611 have shown that two to four 
Pc's can be effective (Chap. 36). If we ignore Models 85 and 91, 
the worst case is for a maximum of four Pc's needed to obtain 
the power of model 40. Note that in the above cases the proces- 
sor cost is about one-half the cost of a single Pc. This factor 
of 2 might be used to answer critics of the scheme. The reasons 
against the scheme are: There have to be good switches be- 
tween Mp and Pc's; there has to be communication among the 
Pc's (which is about the same as what the Pc-Pi0 communica- 
tion should be); and there has to be knowledge of the program 
environment to split tasks apart to  run in parallel. 

A less radical suggestion is also presented in Table 4: 
namely, examining the number of processor models which can 
be used to provide processing power for the next highest model. 

Actually, if we carry this view further and were forced to build 
such a system, the view that the ideal machines are the Model 
25 and 44 would undoubtedly change. Model 25 and 44 exist 
and can be used for the argument. The reader should note that 
there is a major flaw in our argument using a Model 25. The 
microprogrammed Model 25 Pc cost should include a 16-kby 
memory for the microprogram (actually one Mp should be 
included for each Pc to avoid memory-request conflict). Alter- 
natively, if we use the Model 25 directly without a microprogram, 
we would lose performance range. With our present knowledge 
of multiprocessors, a responsible engineer would hardly suggest 
building a multiprocessor system with 11 processors as a sure- 
fire money-making venture. A more reasonable alternative 
would be to use the multiprocessor Model 75 as an alternative 
to Models 85 and 91. A reasonably safe alternative would be 
three basic processors and a four-processor multiprocessor 
structure. For a power range of 320:1, then the processors 
could be 1, 20, 80, giving powers of 1, 2, 3, 4, 20, 40, 60, 80, 
160, 240, 320. This structure would leave a gap of a factor of 



Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 587 

Table 4 IBM System/360 Pc (power: cost) and an alternative design based on multiprocessors 

Given 

Pc.mode1 Pc.power Pc.cost Quantity.Pc 

Proposed multiprocessor alternatives 

Pc.model Pc.power Pc.cost 

20 
25 
30 

40 

44 
50 
65 
75 

85 
91 

1 
1.5 
2 

6 

30 
15 
63 
92 

252 
314 

0.00049 
0.00050 
0.0013 

0.003 

0.0041 
0.012 
0.022 
0.037 

0.087 
0.091 

1 
1 
2 
2 
4 
6 
1 
1 
2 
3 
2 
8 

11 

25 
25 
25 
20 
25 
20 
44 
44 
44 
44 
65 
44 
44 

1.5 
1.5 
3 
2 
6 
6 

30 
30 
60 
90 

126 
240 
330 

0.0005 
0.0005 
0.001 
0.00098 
0.002 
0.00294 
0.0041 
0.0041 
0.0082 
0.012 
0.044 
0.033 
0.045 

5 between a 4 x 1 
The largest gap in 
Models 30 and 40. 

power processor 
the System/360 

and 20 power processor. 
is a factor of 3 between 

Conclusions 

The IBM System/360, by achieving a production record, has 
fulfilled its principal design objective. The technical goals, how- 
ever, are of interest to us here. The most interesting aspect 
of the design is achieving a performance range of 314 to 1 over 
a series of models, with a primary-memory size range of 2,048 
to 1 for various computer configurations. Thus a user is given 
a very large set of configuration alternatives. The SLT technol- 
ogy, though not integrated-circuit, is certainly of the third gen- 
eration. Using SLT the fabrication of the models is superb. 

There is a vast array of secondary-memory and terminal 
devices to couple with almost any other system. The Sys- 
tem/360 is the first computer to make extensive use of micro- 
programming. Microprogramming is used for the definition of 
the System/360 instruction-set processor, but, more important, 
microprograms define previous IBM computers so that a user 
can operate satisfactorily during the interim period when older 
programs are being updated to use the System/360. There are 
provisions for multicomputer structures. Within a single com- 
puter structure there is adequate means of peripheral switching 
so that reliable and high-performance structures can be as- 
sembled. Early structures do not provide multiprocessing; we 
have suggested multiprocessing as a technique to achieve the 
same performance-range objectives. The io processor, though 
rather elaborate, provides a certain commonality. 

The instruction-set processor for the System/360, based on 
a general-registers structure, appears to be overly complex, yet 
incomplete, because there are so many data types. The address- 
ing mechanism and lack of multiprogramming ability make 
the System/360 a hard machine to appreciate fully. Although 
we praise microprogramming as a means of accomplishing 
compatibility with the past, it appears to stand in the way of 
getting the most performance from the hardware. Perhaps of 
most significance, the System/360 may have a greater lifetime 
than any past computer. 

Selected Bibliography 

Architecture and logical structure: AmdaG64a (TeagH65)’, Blaa664a2, 
BlaaG64b’; General implementations: AmdaG64b2, CartW64, PadeA64l, 
StevWH4’; Microprogramming: GreeJ64, TuckSH7, WebeH67; Formal de- 
scription of Pc5; FalkA642; Performance and reviews: HillJ66, SoloM66; 
Model 40 modifications for multiprogramming: LindA66; Model 67: 
ArdeB66, FikeR68, GibsC66, LaueH67; Model 85: C0ntC68~, L i ~ t J 6 8 ~ ,  
PadeA6s3; Model 91 architecture and technology: AndeD674, AndeS674, 
B0laL67~, Fl~nM67~a,  La11gT67~, Ll0yR67~, Se~hR67~,  T0maR67~; Model 
92 (proposed): ContC64 (GrimR65a), AmdaG64c (GrimRH5b), ChenT64 
(GrimR65c); Serviceability: CartW64; Other references: AdamC62, 
CorbF62, GrosH53, SharW69, WilkM65; IBM reference manuals: IBM 
System/360 Functional characteristics manuals for each model, IBM Sys- 
tem/3ri0 Confiyrator (diagram) for each model, A22-6821-4 IBM Sys- 

tem/360 Principles of Operation, A22-6810-8 IBM System/360 System 
Summary 

’( ) denotes the review of previous article. 
‘ I B M  Systems Journal, vol. 3, nos. 2 and 3, 1964. 
‘ I B M  Systems Journal, vol. 7, no. I ,  1968. 
41BM Journul of Research and Devclopment, vol. 11, no. 1, January, 1967. 
“Given in A Programming Language/APL [Iverson, 1962j. 



Chapter 43 

The structure of SYSTEM/36O1 

Part I-Outline of the logical structure 

G .  A .  Blaauw / F. P .  Brooks, Jr. 

Summary A general introductory description of the logical structure of 
SYSTEM/36O is given. In addition, the functional units, the principal regis- 
ters and formats, and the basic addressing and sequencing principles of 
the system are indicated. 

In the  SYSTEM/^^^ logical structure, processing efficiency and 
versatility are served by multiple accumulators, binary addressing, 
bit-manipulation operations, automatic indexing, fixed and variable 
field lengths, decimal and hexadecimal radices, and floating-point 
as well as fixed-point arithmetic. The provisions for program 
interruption, storage protection, and flexible CPU states contribute 
to effective operation. Base-register addressing, the standard in- 
terface between channels and input/output control units, and the 
machine-language compatibility among models contribute to flex- 
ible configurations and to orderly system expansion. 

SYSTEM 360 is distinguished by a design orientation toward 
very large memories and a hierarchy of memory speeds, a broad 
spectrum of manipulative functions, and a uniform treatment of 
input/outpiit functions that facilitates communication with a 
diversity of input/output devices. The overall structure lends 
itself to program-compatible embodiments over a wide range of 
performance levels. 

The system, designed for operation with a supervisory pro- 
gram, has comprehensive facilities for storage protection, program 
relocation, nonstop operation, and program interruption. Privi- 
leged instructions associated with a supervisory operating state 
are included. The supervisory program schedules and governs the 
execution of multiple programs, handles exceptional conditions, 
and coordinates and issues input/output (I/O) instructions. Relia- 
bility is heightened by supplementing solid-state components with 
built-in checking and diagnostic aids. Interconnection facilities 
permit a wide variety of possibilities for multisystem operation. 

The purpose of this discussion is to introduce the functional 
units of the system, as well as formats, codes, and conventions 
essential to characterization of the system. 

Functional structure 

The  SYSTEM/^^^ structure schematically outlined in Fig. 1 has 
seven announced embodiments. Six of these, namely, Models 30, 
40, 50, 60, 62, and 70, will be  treated here.l Where requisite 1/0 
devices, optional features, and storage capacity are present, these 
six models are logically identical for valid programs that contain 
explicit time dependencies only. Hence, even though the allow- 
able channels or storage capacity may vary from model to model 
(as discussed in Chap. 44), the logical structure can be discussed 
without reference to specific models. 

Znput/output 

Direct communication with a large number of low-speed terminals 
and other 1/0 devices is provided through a special multiplexor 
channel unit. Communication with high-speed 1/0 devices is 
accommodated by the selector channel units. Conceptually, the 
input/output system acts as a set of subchannels that operate 
concurrently with one another and the processing unit. Each 
subchannel, instructed by its own control-word sequence, can 
govern a data transfer operation between storage and a selected 
1/0 device. A multiplexor channel can function either as one or 
as many subchannels; a selector channel always functions as a 
single subchannel. The control unit of each 1/0 device attaches 
to the channels via a standard mechanical-electrical-programming 
interface. 

Processing 

The processing unit has sixteen general purpose 32-bit registers 
used for addressing, indexing, and accumulating. Four 64-bit 
floating-point accumulators are optionally available. The inclusion 
of multiple registers permits effective use to be made of small 
high-speed memories. Four distinct types of processing are pro- 

'A seventh embodiment, the Model 92, is not discussed in this paper. This 
model does not provide decimal data handling and has a few minor differ- 
ences arising from its highly concurrent, speed-oriented organization. A 
paper on Model 92 is planned for future publication in the IBM Systems 
Journal. 

588 



Chapter 43 I The structure of SYSTEM/360 589 

- 

STORAGE 

PROCESSING UNIT 

ARITHMETIC AND LOGIC 

M A I N  
STORAGE 

A N D  
LARGE 

CAPACITY 
STORAGE 

INPUT/OUTWT 

CHANNELS CONTROL UNITS DEVICES 

,--Ja---_T 
(MULTIPLE 
LOW SPEED 

SUBCHANNELS)  

I - 
SELECTOR 

(SINGLE 
HIGH-SPEED 

SUBCHANNEL)  

I 
I 

L----: --__ 

(SINGLE 
HIGH-SPEED 

SUBCHANNEL) 

Fig. 1. Functional schematic of System/360.  

vided: logical manipulation 01 individual bits, character strings and 
fixed words; decimal arithmetic on digit strings; fixed-point binary 
arithmetic; and floating-point arithmetic. The processing unit, 
together with the central control function, will be  referred to as 
the central processing unit (CPU). The basic registers and data 
paths of the CPU are shown in Fig. 2. 

The CPU’s of the  various models yield a substantial range in 
performance. Relative to  the smallest model (Model 30), the in- 
ternal performance of the largest (Model 70) is approximately 50:l 
for scientific computation and 15: 1 for commercial data processing. 

Control 

Because of the extensive instruction set, SYSTEM/36O control is 
more elaborate than in conventional computers. Control functions 
include internal sequencing of each operation; sequencing from 
instruction to instruction (with branching and interruption); gov- 
erning of many 1/0 transfers; and the monitoring, signaling, tim- 
ing, and storage protection essential to total system operation. The 
control equipment is conibined with a programmed supervisor, 
which coordinates and issues all 1/0 instructions, handles excep- 



590 Part 6 1 Computer families 

r--------- 
I 
I 
I 
I 
I 
I COMWTER I, INDEXED FIXED-POINT 
I SYSTEM OPERATIONS 
I CONTROL I ADDRESS 

'k INSTRUCTIONS 
I 
I 
1 

I 

Section 3 I The IBM System/360-a series of planned machines which span a wide performance range 

b 

11 

FLOATING-WINT 
OPERATIONS 

VARIABLE 
FIELD-LENGTH 
OPERATIONS 

I 
I I 

I I 
I I 
L -------- 1 I t  

16 
GENERAL 

REGISTERS 

Fig. 2. Schematic of basic registers and data paths. 

b 

tional conditions, loads and relocates programs and data, manages 
storage, and supervises scheduling and execution of multiple pro- 
grams. To a problem programmer, the supervisory program and 
the control equipment are indistinguishable. 

The functional structure of SYSTEM/360, like that of most 
computers, is most concisely described by considering the data 
formats, the types of manipulations performed on them, and the 
instruction formats by which these manipulations are specified. 

Information formats 

The several  SYSTEM/^^^ data formats are shown in Fig. 3. An 8-bit 
unit of information is fundamental to most of the formats. A 
consecutive group of n such units constitutes a field of length n. 
Fixed-length fields of length one, two, four, and eight are termed 
bytes, halfwords, words, and double words, respectively. In many 
instructions, the operation code implies one of these four fields 
as the length of the operands. On the other hand, the length is 
explicit in an instruction that refers to operands of variable length. 

The location of a stored field is specified by the  address of the 
leftmost byte of the field. Variable-length fields may start on any 
byte location, but  a fixed-length field of two, four, or eight bytes 

must have an address that is a multiple of 2, 4, or 8, respectively. 
Some of the various alignment possibilities are  apparent from 
Fig. 3. 

Storage addresses are represented by binary integers in the 
system. Storage capacities are always expressed as numbers of 
bytes. 

Processing operations 

The SYSTEM/360 operations fall into four classes: fixed-point arith- 
metic, floating-point arithmetic, logical operations, and decimal 
arithmetic. These classes differ in the data formats used, the 
registers involved, the operations provided, and the way the field 
length is stated. 

Fixed-point arithmetic 

The basic arithmetic operand is the 32-bit fixed-point binary word. 
Halfword operands may be  specified in most operations for the 
sake of improved speed or storage utilization. Some products and 
all dividends are 64 bits long, using a n  even-odd register pair. 

Because the 32-bit words accommodate the 24-bit address, the 
entire fixed-point instruction set, including multiplication, division, 



Chapter 43 I The structure of SYSTEM1360 591 

4 WORD - -  WORD - -t-  

8 
CHARACTER 

BYTE 

1 1- 
- BYTE+ BYTE -1' 

HALFWORD FIXED.POINT NUMBER 

S 15 
INTEGER 

_-______________-___--------- - - - - - - - - - - - -  
8 8 

CHARACTER CHARACTER 

I FULLWORD FIXED-AINT NUMBER I I I 

I I I 

31 
INTEGER S 

I LONG FLOATING-POINT NUMBER I I I I 

HALFWORD 

-- BYTE- - 

7 56 '1 CHARACTERISTIC I FRACTION 

71 
DECIMAL NUMBER I 6 

shifting, and several logical operations, can be used in address 
computation. A two's complement notation is used for fixed-point 
operands. 

Additions, subtractions, multiplications, divisions, and com- 
parisons take one operand from a register and another from either 
a register or storage. Multiple-precision arithmetic is made con- 
venient by the two's complement notation and by recognition of 
the carry from one word to  another. A pair of conversion instruc- 

tions, CONVERT TO BINARY and CONVERT TO DECIMAL, 
provide transition between decimal and binary radices without 
the use of tables. Multiple-register loading and storing instructions 
facilitate subroutine switching. 

Fzoating-point 

Floating-point numbers may occur in either of two fixed-length 
formats-short or long. These formats differ only in the length of 



592 Part 6 I Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

the fractions, as indicated in Fig. 3. The fraction of a floating-point 
number is expressed in 4-bit hexadecimal (base 16) digits. In the 
short format, the fraction has six hexadecimal digits; in the long 
format, the fraction has 14 hexadecimal digits. The short length 
is equivalent to seven decimal places of precision. The long length 
gives u p  to 17 decimal places of precision, thus eliminating most 
requirements for double-precision arithmetic. 

The radix point of the fraction is assumed to be  immediately 
to the left of the high-order fraction digit. To provide the proper 
magnitude for the floating-point number, the fraction is considered 
to be multiplied by a power of 16. The characteristic portion, bits 
1 through 7 of both formats, is used to indicate this power. The 
characteristic is treated as an excess 64 number with a range from 

- 64 through + 63, and permits representation of decimal numbers 
with magnitudes in the range of 

Bit position 0 in either format is the fraction sign, S. The 
fraction of negative numbers is carried in true form. 

Floating-point operations are performed with one operand from 
a register and another from either a register or storage. The result, 
placed in a register, is generally of the same length as the operands. 

Logical operations 

Operations for comparison, translation, editing, bit testing, and 
bit setting are provided for processing logical fields of fixed and 
variable lengths. Fixed-length logical operands, which consist of 
one, four, or eight bytes, are processed from the general registers. 

to 

4 4567 

0000 

o001 

0010 

0011 

0100 

0101 

0110 

0111 

lo00 

1001 

1010 

1011 

1100 

1101 

1110 

11 1 1  

00 01 10 11 

NULL 

1 I I I 

PF Punchon BS Backspace SM Setmode 
HT HOrizOntal1ab IL Idle PN Punchon 
LC Lowercar* BYP Bypass RS Reader slop 

RES Restore EOB End of b l x k  EOT End of transmission 
DEL Delete LF LineleM uc uppetcare 

NL Newline PRE Prefix SP space 

00 01 10 1 1  

0 

N 

Fig. 4. Extended binary-coded-decimal interchange code. 



Chapter 43 I The structure of SYSTEM/360 593 

4 4 3 2 1  

m 

0001 

0010 

001 1 

0100 

0101 

0110 

0111 

lo00 

1001 

1010 

101 1 

1100 

1101 

1110 

1111 

00 01 10 11 00 01 10 1 1  00 01 10 11 00 01 10 11 

wd IS0 dnR prOmaI  lor 6 and 7 bit coded Character lets lor mlorm~tlon processing Interchange Internrtlonal Standards Orgsnlzrtmn June 1964 

Null/ldlc 
Start 01 headmi 
start a1 t e n  
End 01 text 

Dc2 Dewce Control 
DC3 Device control 
Dc4 D t V l C C  control latloD1 
NACK Negative achnaledgc 
SYNC Synchronous idle 
ET0 End 01 transmlmon block 
CNCL Cancel 
EM End of mcdwm 
ss start 01 *PCI.I sequence 

ESC Escape 
FS File separator 
GS Group separator 
RS Record separator 
u s  U"lt .sp.ntor 
SP SP~EI. normallynon printing 
CS2 Currency symWl 

DEL Delete 
Graveaccent 

Fig. 5. Eight-bit representation for proposed international code. 

Logical operations can also be  performed on fields of up  to 256 
bytes, in which case the fields are processed from left to right, 
one byte at  a time. Moreover, two powerful scanning instrnctions 
permit byte-by-byte translation and testing via tables. An impor- 
tant special case of variable-length logical operations is the one- 
byte field, whose individual bits can be  tested, set, reset, and 
inverted as specified by an 8-bit mask in the instruction. 

Character codes 

Any 8-bit character set can be processed, although certain restric- 
tions are assumed in the decimal arithmetic and editing operations. 
However, all character-set-sensitive 1/0 equipment assumes either 
the Extended Binary-Coded-Decimal Interchange Code (EBCDIC) 

of Fig. 4 or the code of Fig. 5,  which is an eight-bit extension 
of a seven-bit code proposed by the International Standards Orga- 
nization. 

Decimal arithmetic 

Decimal arithmetic can improve performance for processes re- 
quiring few computational steps per datum between the source 
input and the output. In these cases, where radix conversion from 
decimal to binary and back to decimal is not justified, the use of 
registers for intermediate results usually yields no advantage over 
storage-to-storage processing. Hence, decimal arithmetic is pro- 
vided in S Y S T E M / 3 6 0  with operands as well as results located in 
storage, as in the IBM 1400 series. Decimal arithmetic includes 



594 Part 6 1 Computer families Section 3 I The IBM System/36O-a series of planned machines which span a wide performance range 

addition, subtraction, multiplication, division, and comparison. 
The decimal digits 0 through 9 are represented in the 4-bit 

binary-coded-decimal form by 0000 through 1001, respectively. 
The patterns 1010 through 1111 are not valid as digits and are 
interpreted as sign codes: 1011 and 1101 represent a minus, the 
other four a plus. The sign patterns generated in decimal arithme- 
tic depend upon the character set preferred. For EBCDIC, the 
patterns are 1100 and 1101; for the code of Fig. 5, they are 1010 
and 1011. The choice between the two codes is determined by 
a mode bit. 

Decimal digits, packed two to a byte, appear in fields of variable 
length (from 1 to 16 bytes) and are accompanied by a sign in the 
rightmost four bits of the low-order byte. Operand fields can be 
located on any byte boundary, and can have lengths up to 31 digits 
and sign. Operands participating in an operation have independent 
lengths. Negative numbers are carried in true form. Instructions 
are provided for packing and unpacking decimal numbers. Packing 
of digits leads to  efficient use of storage, increased arithmetic 
performance, and improved rates of data transmission. For purely 
decimal fields, for example, a 90,000-byte/second tape drive reads 
and writes 180,000 digits/second. 

Instruction formats 

Instruction formats contain one, two, or three halfwords, depend- 
ing upon the number of storage addresses necessary for the opera- 
tion. If no storage address is required of an instruction, one half- 
word suffices. A two-halfword instruction specifies one address; a 
three-halfword instruction specifies two addresses. All instructions 
must be aligned on halfword boundaries. 

The five basic instruction formats, denoted by the format 
mnemonics RR, RX, RS, SI, and SS are shown in Fig. 6. RR denotes 
a register-to-register operation, RX a register and indexed-storage 
operation, RS a register and storage operation, SI a storage and 
immediate-operand operation, and SS a storage-to-storage opera- 
tion. 

In each format, the first instruction halfword consists of two 
parts. The first byte contains the operation code. The length and 
format of an instruction are indicated by the first two bits of the 
operation code. 

The second byte is used either as two 4-bit fields or as a single 
8-bit field. This byte is specified from among the following: 

Four-bit operand register designator (R) 

Four-bit index register designator (X)  

Four-bit mask (M)  

Four-bit field length specification (L) 

Eight-bit field length specification 

Eight-bit byte of immediate data (I)  

The second and third halfwords each specify a 4-bit base 
register designator (B), followed by a 12-bit displacement (D). 

Addressing 

An effective storage address E is a 24-bit binary integer given, 
in the typical case, by 

E = B + X + D  

where B and X are 24-bit integers from general registers identified 
by fields B and X, respectively, and the displacement D is a 12-bit 
integer contained in every instruction that references storage. 

The base B can be used for static relocation of programs and 
data. In record processing, the base can identify a record; in array 
calculations, it can specify the location of an array. The index X 
can provide the relative address of an element within an array. 
Together, B and X permit double indexing in array processing. 

The displacement provides for relative addressing of up  to 4095 
bytes beyond the element or base address. In array calculations, 
the displacement can identify one of many items associated with 
an element. Thus, multiple arrays whose indices move together 
are best stored in an interleaved manner. In the processing of 
records, the displacement can identify items within a record. 

In forming an effective address, the base and index are treated 
as unsigned 24-bit positive binary integers and the displacement 
as a 12-bit positive binary integer. The three are added as 24-bit 
binary numbers, ignoring overflow. Since every address is formed 
with the aid of a base, programs can be readily and generally 
relocated by changing the contents of base registers. 

A zero base or index designator implies that  a zero quantity 
must be used in forming the address, regardless of the contents 
of general register 0. A displacement of zero has no special signifi- 
cance. Initialization, modification, and testing of bases and indices 
can be carried out by fixed-point instructions, or by BRANCH 
AND LINK, BRANCH ON COUNT, or BRANCH ON INDEX 
instructions. LOAD EFFECTIVE ADDRESS provides not only a 
convenient housekeeping operation, but also, when the same 
register is specified for result and operand, an immediate register- 
incrementing operation. 

Sequencing 

Normally, the CPU takes instructions in sequence. After an in- 
struction is fetched from a location specified by the instruction 



Chapter 43 I The structure of SYSTEM1360 595 

RR FORMAT 

FIRST HALFWORD SECOND HALFWORD THIRD HALFWORD 

REGISTER 
OPERANDS 
1 

OP CODE R R 

I c A 
/ 1 

RX FORMAT OP CODE R X B D 

I REGISTER I STORAGE 
OPERAND 

1 I OPERAND 2 I 

R S  FORMAT OP CODE R R B D 

REGISTER I STORAGE I 
OPERANDS I OPERAND I 

2 
h 

d L  1 1 h 

\ 

L L B D B D 

I 
SS FORMAT OP CODE 

I IMMEDIATE 
OPERAND I 

2 

STORAGE 
OPERAND 

1 
I h', ,. I 

SI FORMAT OPCODE I B D 1 
7 8  

OPERAND I 
LENGTHS 1 

STORAGE 
OPERAND 

STORAGE 
OPERAND 

Fig. 6. Five basic instruction formats. 

counter, the instruction counter is increased by the number of 
bytes in the instruction. 

Conceptually, all halfwords of an instruction are fetched from 
storage after the preceding operation is completed and before 
execution of the current operation, even though physical storage 
word size and overlap of instruction execution with storage access 
may cause the  actual instruction fetching to be  different. Thus, 
an instruction can be  modified by the instruction that immediately 
precedes i t  in the instruction stream, and cannot effectively modify 
itself during execution. 

Branching 

Most branching is accomplished by a single BRANCH ON CON- 
DITION operation that inspects a 2-bit condition register. Many 

of the arithmetic, logical, and 1/0 operations indicate an outcome 
by setting the condition register to one of its four possible states. 
Subsequently a conditional branch can select one of the states 
as a criterion for branching. For example, the condition code 
reflects such conditions as non-zero result, first operand high, 
operands equal, overflow, channel busy, zero, etc. Once set, 
the  condition register remains unchanged until modified by 
an instruction execution that reflects a different condition 
code. 

The outcome of address arithmetic and counting operations 
can be  tested by a conditional branch to effect loop control. Two 
instructions, BRANCH ON COUNT and BRANCH ON INDEX, 
provide for one-instruction execution of the most common arith- 
metic-test combinations. 



596 Part 6 I Computer families 

SYS MASK K t Y  

Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

( MWP I NT L R R II 6'1 COO F 

R A A 16 

ILc INSTRUCTION ADDRESS PROG 
cc MASK 

SYSTEM MASK- MPX channel 
SEL channels 1-6 
External 

ILC- lnrtructlon length code 

CC- Condilion code 

PROGRAM MASK-- Fixed mint overllow 
KEY- Storage p r o t ~ t i o n  key 

CMWP- Character set rnode 
Mach check 
Wal l  *talc 
Problem state 

Fig. 7. Program status word format. 

Program status word 

A program status word (PSW),  a double word having the format 
shown in Fig. 7 ,  contains information required for proper execution 
of a given program. A PSW includes an instruction address, con- 
dition code, and several mask and mode fields. The active or 
controlling PSW is called the current PSW. By storing the current 
PSW during an interruption, the status of the interrupted program 
is preserved. 

Interruption 

Five classes of interruption conditions are distinguished: input/ 
output, program, supervisor call, external, and machine check. 

For each class, two PSW's, called old and new, are maintained 
in the main-storage locations shown in Table 1. An interruption 
in a given class stores the current PSW as an old PSW and then 
takes the corresponding new PSW as the  current PSW. If, a t  the 
conclusion of the interruption routine, old and current PSW's are 
interchanged, the system can be  restored to its prior state and the 
interrupted routine can be  continued. 

The system mask, program mask, and machine-check mask bits 
in the PSW may be used to control certain interruptions. When 
masked off, some interruptions remain pending while others are 
merely ignored. The system mask can keep 1/0 and external 
interruptions pending, the program mask can cause four of the 
15 program interruptions to be  ignored, and the machine-check 
mask can cause machine-check interruptions to be ignored. Other 
interruptions cannot be  masked off. 

Appropriate CPU response to a special condition in the chan- 
nels and 1/0 units is facilitated by an 1/0 interruption. The 

addresses of the channel and 1/0 unit involved are recorded in 
the old PSW. Related information is preserved in a channel status 
word that is stored as a result of the interruption. 

Unusual conditions encountered in a program create program 
interruptions. Eight of the fifteen possible conditions involve over- 
flows, improper divides, lost significance, and exponent underflow. 

Table 1 Permanent storage assignments 

Address Byte length Purpose 

0 8 Initial program loading PSW 
8 8 Initial program loading CCW 1 

16 8 Initial program loading CCW 2 
24 8 External old PSW 
32 8 Supervisor call old PSW 
40 8 Program old PSW 
48 8 Machine check old PSW 
56 8 Input/output old PSW 
64 8 Channel status word 
72 4 Channel address word 
76 4 Unused 
80 4 Timer 
84 4 Unused 
88 8 External new PSW 
96 8 Supervisor call new PSW 

104 8 Program new PSW 
112 8 Machine check new PSW 
120 8 Input/output new PSW 
128 Diagnostic scan-out areat  

t The size of the diagnostic scan-out area is configuration dependent. 



Chapter 43 I The structure of SYSTEM/36O 597 

The remaining seven deal with improper addresses, attempted 
execution of privileged instructions, and similar conditions. 

A superuisor-cull interruption results from execution of the 
instruction SUPERVISOR CALL. Eight bits from the instruction 
format are placed in the interruption code of the old PSW, per- 
mitting a message to be associated with the interruption. SUPER- 
VISOR CALL permits a problem program to switch CPU control 
back to the supervisor. 

Through an external interruption, a CPU can respond to signals 
from the interruption key on the system control panel, the timer, 
other CPU’s, or special devices. The source of the interruption 
is identified by an interruption code in bits 24 through 31 of the 
PSW. 

The occurrence of a machine check (if not masked off) termi- 
nates the current instruction, initiates a diagnostic procedure, and 
subsequently effects a machine-check interruption. A machine 
check is occasioned only by a hardware malfunction; it cannot 
be caused by invalid data or instructions. 

Interrupt priority 

interruption requests are honored between instruction executions. 
When several requests occur during execution of an instruction, 
they are honored in the following order: (1) machine check, (2) 
program or supervisor call, (3)  external, and (4) input/output.  
Because the program and supervisor-call interruptions are mutu- 
ally exclusive, they cannot occur at the same time. 

If a machine-check interruption occurs, no other interruptions 
can be taken until this interruption is fully processed. Otherwise, 
the execution of the CPU program is delayed while PSW’s are 
appropriately stored and fetched for each interruption. When the 
last interruption request has been honored, instruction execution 
is resumed with the PSW last fetched. An interruption subroutine 
is then serviced for each interruption in the order (1) input/output,  
(2) external, and (3)  program or supervisor call. 

Program status 

Overall CPU status is determined by four alternatives: (1) stopped 
versus operating state, (2) running versus waiting state, (3) masked 
versus interruptable state, and (4) superuisor versus problem state. 

In the stopped state, which is entered and left by manual 
procedure, instructions are not executed, interruptions are not 
accepted, and the timer is not updated. in  the operating state, 
the CPU is capable of executing instructions and of being inter- 
rupted. 

In the running state, instruction fetching and execution pro- 
ceeds in the normal manner. The wait state is typically entered 

by the program to await an interruption, for example, an 1/0 
interruption or operator intervention from the console. In the wait 
state, no instructions are processed, the timer is updated, and i/O 
and external interruptions are accepted unless masked. Running 
versus waiting is determined by the setting of a bit in the current 
PSW. 

The CPU may be interruptable or masked for the system, 
program, and machine interruptions. When the CPU is interrupt- 
able for a class of interruptions, these interruptions are accepted. 
When the CPU is masked, the system interruptions remain pend- 
ing, but the program and machine-check interruptions are ignored. 
The interruptable states of the CPU are changed by altering mask 
bits in the current PSW. 

In the problem state, processing instructions are valid, but all 
I /O  instructions and a group of control instructions are invalid. 
In the supervisor state, all instructions are valid. The choice of 
problem or supervisor state is determined by a bit in the PSW. 

Supervisory facilities 

Timer 

A timer word in main storage location 80 is counted down at a 
rate of 50 or 60 cycles per second, depending on power line 
frequency. The word is treated as a signed integer according to 
the rules of fixed-point arithmetic. An external interrupt occurs 
when the value of the timer word goes from positive to negative. 
The full cycle time of the timer is 15.5 hours. 

As an interval timer, the timer may be used to measure elapsed 
time over relatively short intervals. The timer can be set by a 
supervisory-mode program to any value a t  any time. 

Direct control 

Two instructions, READ DIRECT and WRITE DIRECT, provide 
for the transfer of a single byte of information between an external 
device and the main storage of the system. These instructions are 
intended for use in synchronizing CPU’s and special external 
devices. 

Storage protection 

For protection purposes, main storage is divided into blocks of 
2,048 bytes each. A four-bit storage key is associated with each 
block. When a store operation is attempted by an instruction, the 
protection key of the current PSW is compared with the storage 
key of the affected block. When storing is specified by a channel 
operation, a protection key supplied by the channel is used as the 



598 Part 6 I Computer families Section 3 1 The IBM System/360-a series of planned machines which span a wide performance range 

comparand. The keys are said to match if equal or if either is zero. 
A storage key is not part of addressable storage, and can .be  
changed only by privileged instructions. The protection key of the 
CPU program is held in the current PSW. The protection key of 
a channel is recorded in a status word that is associated with the 
channel operation. 

When a CPU operation causes a protection mismatch, its 
execution is suppressed or terminated, and the program execution 
is altered by an interruption. The protected storage location 
always remains unchanged. Similarly, protection mismatch due to 
an 1/0 operation terminates data transmission in such a way that 
the protected storage location remains unchanged. 

Multisystem operation 

Communication between CPU’s is made possible by shared control 
units, interconnected channels, or shared storage. Multisystem 
operation is supported by provisions for automatic relocation, 
indication of malfunctions, and CPU initialization. 

Automatic relocation applies to the first 4,096 bytes of storage, 
an area that contains all permanent storage assignments and 
usually has special significance for supervisory programs. The 
relocation is accomplished by inserting a 12-bit prefix in each 
address whose high-order 12 bits are zero. Two manually set 
prefixes permit the use of an alternate area when storage malfunc- 
tion occurs; the choice between prefixes is preserved in a trigger 
that is set during initial program loading. 

To alert one CPU to the possible malfunction of another, a 
machine-check signal from a given CPU can serve as an external 
interruption to  another CPU. By another special provision, initial 
program loading of a given CPU can be initiated by a signal from 
another CPU. 

Input/output 

Devices and control units 

Input/output devices include card equipment, magnetic tape 
units, disk storage, drum storage, typewriter-keyboard devices, 
printers, teleprocessing devices, and process control equipment. 
The 1 / 0  devices are regulated by control units, which provide 
the electrical, logical, and buffering capabilities necessary for 1 / 0  
device operation. From the programming point of view, most 
control-unit and 1/0 device functions are indistinguishable. 
Sometimes the control unit is housed with an 1/0 device, as in 
the case of the printer. 

A control unit functions only with those 1 / 0  devices for which 
it is designed, but all control units respond to a standard set of 

signals from the channel. This control-unit-to-channel connection, 
called the 1/0 interfucr, enables the CPU to handle all 1/0 
operations with only four instructions. 

110 instructions 

Input/output instructions can be executed only while the CPU 
is in the supervisor state. The four 1/0 instructions are START 
I/O, HALT I/O, TEST CHANNEL, and TEST I/O. 

START 1/0 initiates an 1 / 0  operation; its address field speci- 
fies a channel and an 1/0 device. If the channel facilities are free, 
the instruction is accepted and the CPU continues its program. 
The channel independently selects the specified 1/0 device. HALT 
1/0 terminates a channel operation. TEST CHANNEL sets the 
condition code in the PSW to indicate the state of the channel 
addressed by the instruction. The code then indicates one of the 
following conditions: channel available, interruption condition in 
channel, channel working, or channel not operational. TEST 1/0 
sets the PSW condition code to indicate the state of the addressed 
channel, subchannel, and 1/0 device. 

Channels 

Channels provide the data path and control for 1/0 devices as 
they communicate with main storage. In the multiplexor channel, 
the single data path can be time-shared by several low-speed 
devices (card readers, punches, printers, terminals, etc.) and the 
channel has the functional character of many subchannels, each 
of which services one 1 / 0  device at a time. On the other hand, 
the selector channel, which is designed for high-speed devices, has 
the functional character of a single subchannel. All subchannels 
respond to the same 1 / 0  instructions. Each can fetch its own 
control word sequence, govern the transfer of data and control 
signals, count record lengths, and interrupt the CPU on exceptions. 

Two modes of operation, burst and multiplex, are provided 
for multiplexor channels. In burst mode, the channel facilities are 
monopolized for the duration of data transfer to or from a particu- 
lar 1 / 0  device. The selector channel functions only in the burst 
mode. In multiplex mode, the multiplexor channel sustains several 
simultaneous 1/0 operations: bytes of data are interleaved and 
then routed between selected 1 / 0  devices and desired locations 
in main storage. 

At the conclusion of an operation launched by START 1/0 
or TEST I/O, an 1 / 0  interruption occurs. At this time a channel 
status word (CSW) is stored in location 64. Figure 8 shows the 
CSW format. The CSW provides information about the termina- 
tion of the 1/0 operation. 

Successful execution of START 1/0 causes the channel to 



Chapter 43 1 The structure of SVSTEM/360 599 

KEY 0 0 0 0 COMMAND ADDRESS 

STATUS 

011s 0 through 3 contain the storage protection hay used In th. 0p.ration. 
Bits 4 through 7 contain zeros 
81ts 8 through 32 specify the location of the last CCW used 
Bits 32 through 47 contdin an 110 device status byte and a channel status 

byte The s t a t ~ s  bytes provide such information as data check c h a n t  

Bits 4%through 63 contam the resodual count of the last CCW used. 
I" check. Control unlt end. oltc 

COUNT 1 

Fig. 8. Channel status word format. 

fetch a channel address word from main-storage location 72. This 
word specifies the storage-protection key that governs the I/O 
operation, as well as the location of the first eight bytes of infor- 
mation that  the channel fetches from main storage. These 64 bits 
comprise a channel command word (CCW). Figure 9 shows the 
CCW format. 

Channel program 

One or more CCW's make up  the channel program that directs 
channel operations. Each CCW points to the next one to be  
fetched, except for the last in the chain which so identifies itself. 

Six channel commands are provided: read, write, read back- 
ward, sense, transfer in channel, and control. The read command 
defines an area in main storage and causes a read operation from 
the selected I/O device. The write command causes data to be  
written by the selected device. The read-backward command is 
akin to the read command, but the  external medium is moved in 
the opposite direction and bytes read backward are  placed in 
descending main storage locations. 

The control command contains information, called an order, 
that is used to control the selected 1/0 device. Orders, peculiar 
to the particular 1/0 device in use, can specify such functions 
as rewinding a tape unit, searching for a particular track in disk 
storage, or line skipping on a printer. In a functional sense, the 
CPU executes 110 instructions, the channels execute commands, 
and the control units and devices execute orders. 

The sense command specifies a main storage location and 
transfers one or more bytes of status information from the selected 
control unit. It provides details concerning the selected 1/0 de- 
vice, such as a stacker-full condition of a card reader or a file- 
protected condition of a magnetic-tape reel. 

A channel program normally obtains CCW's from a consecu- 
tive string of storage locations. The string can be  broken by a 
transfer-in-channel command that specifies the location of the next 
CCW to be  used by the channel. External documents, such as 
punched cards or magnetic tape, may carry CCW's that can be  
used by the channel to govern the reading of the documents. 

The input/output interruptions caused by termination of an 

COMMAND CODE DATA ADDRESS 

0 7 8  31 

811s 0 through 7 rpscity the command code 
Brits 8 through 31 specity the location of a byte In main storage 
Bots 3 2  through 36 am 11.18 bits 

Bit 34 causes a possible incorrect length indication to be suppressed 
Bit 35 suppresses the fraiirfer al information to main storage 
Bit 36 causes an interrwtion 

Bits 37 through 39 must contain zeros 
Bits 40 through 47 are igiiored 
Bits 4 8  through 63 ~ p e c l l y  the number of bytes on the operation 

Bit 32 causes the address wrtion of the next CCW to be used 
811 33 causes the command code and data address in the next 

ccw to be "Sed. 

Fig. 9. Channel command word format. 



Table 2 System/JBO instructions 
~ ~~~ 

RR F m t  

0100 
0101 
0110 
0111 
1000 
1001 
1010 

Branching and 
status switching 

DOOOxxxr 

SPM SET PROGRAM MASK 
BALR BRANCH AND LINK 
BCTR BRANCH ON COUNT 
BCR BRANCH/CONDITION 
SSK SET KEY 
ISK INSERT KEY 
SVC SUPERVISOR CALL 

Floating-point 
shmt 

001 I X X X Z  

Fixed-point f i i l l w d  
and logical 

-0ooln;xx 

LOAD POSITIVE 
LOAD NEGATIVE 
LOAD AND TEST 
LOA0 COMPLEMENT 
AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 
LOAD 
COMPARE 
ADO 

u x x  - 
LPR 
LNR 
LTR 
LCR 
NR 
CLR 
OR 
XR 
LR 
CR 
AR 

LPER LOAD POSITIVE 
LNER LOAD NEGATIVE 
LTER LOAD AND TEST 
LCER LOAD COMPLEMENT 
HER HALVE 

LER 
CER 
ALR 
SER 
MER 
DER 
AUR 
SUR 
- 

LOAD 
COMPARE 
ADD N 
SUBTRACT N 
MULTIPLY 
DIVIDE 
ADD U 
SUBTRACT U 

1011 
1100 I SR SUBTRACT 

MR MULTIPLY 
DR DIVIDE 
ALR ADD LOGICAL 
SLR SUBTRACT LOGICAL 

SDR SUBTRACT N 
MDR MULTIPLY 
DDR DIVIDE 
AWR ADD U 
SWR SUBTRACT U 

RX Fonnnt 

Fixed-point halfword 
and branching 

xxxx ni wrxr* 

Fixed-point fullword 
and logical 

01 Olxxxx 

Floating-point 

01 1 oarxx 
long 

Floating-point 
shmt 

Ol1lxxxx 

ST STORE STD STORE STE STORE STORE 
LOAD ADDRESS 
STORE CHARACTER 
INSERT CHARACTER 
EXECUTE 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH/CONDITION 
LOAD 
COMPARE 
ADD 
SUBTRACT 
MULTl PLY 

STH 
LA 
STC 
IC 
EX 
BAL 
BCT 
EC 
LH 
CH 
AH 
SH 
M H  

N AND 
CL COMPARE LOGICAL 
0 OR 
X EXCLUSIVE OR 
L LOAD 
C COMPARE 
A ADD 
S SUBTRACT 
M MULTIPLY 
D DIVIDE 
AL ADD LOGICAL 
SL SUBTRACT LOGICAL 

LD LOAD 
CD COMPARE 
AD ADD N 
SD SUBTRACT N 
MO MULTIPLY 
DD DIVIDE 
AW ADO U 
SW SUBTRACT U 

LE LOAD 
CE COMPARE 
AE ADD N 
SE SUBTRACT N 
ME MULTIPLY 
DE DIVIDE 
AU ADD U 
SU SUBTRACT U 

1101 
1110 1 CVD CONVERT-DECIMAL 
11 11 CVB CONVERT-BINARY 

RS, SI  F o m t  

Branchtng 
status switching 

and shifting 

1 o m x x x  

Fixed-point 
logical and 

inputloutput 

I W l x r n  xxxx 

0000 
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

IOllxxxr 

SSM SET SYSTEM MASK STM STORE MULTIPLE 
TM TEST UNDER MASK 
MVI MOVE 
TS TEST AND SET 
NI AND 

LPSW LOAD PSW 
DIAGNOSE 

WRO WRITE DIRECT 
RDD READ DIRECT 
BXH BRANCHlHIGH 
BXLE BRANCH/LOW.EQUAL 
SRI. SHIFT RIGHT SL 
SLL SHIFT LEFT SL 
SRA SHIFT RIGHT S 
SLA SHIFT LEFT S 

CLI COMPARE LOGICAL 
01 OR 
XI EXCLUSIVE OR 
LM LOAD MULTIPLE 

SRDL SHIFT RIGHT DL 
SLDL SHIFT LEFT DL 
SRDA SHIFT RIGHT D 
SLDA SHIFT LEFT D 

S I 0  START 1/0 
T I 0  TEST 1/0 
H I 0  HALT 1/0 
TCH TEST CHANNEL 

SS Fmmat 

xxxx 1 I m r x x  

Decimal 

1 1  1 lxxxr 1 I IV***X 

MVN MOVE NUMERIC 
MVC MOVE 
MVZ MOVE ZONE 
NC AND 
CLC COMPARE LOGICAL 
OC OR 
XC EXCLUSIVE OR 

MVO MOVE WITH OFFSEl 
PACK PACK 
UNPK UNPACK 

ZAP ZERO AND ADD 
CP COMPARE 
AP ADD 
SP SUBTRACT 
MP MULTIPLY 
DP DIVIDE 

TR TRANSLATE 
TRT TRANSLATE AND TEST 
ED EDIT 
EDMK EDIT AND MARK 

NOT€ N = NORMALIZED DL = DOUBLE LOGICAL S = SINGLE 
SL = SINGLE LOGICAL U = UNNORMALIZED D = DOUBLE 



Chapter 43 1 The structure of SYSTEM/360 601 

I/O operation, or by operator intervention at the 1/0 device, 
enable the CPU to provide appropriate programmed response to 
conditions as they occur in 1/0 devices or channels. Conditions 
responsible for 1/0 interruption requests are preserved in the 1/0 
devices or channels until recognized by the CPU. 

During execution of START I/O, a command can be rejected 
by a busy condition, program check, etc. Rejection is indicated 
in the condition code of the PSW, and additional detail on the 
conditions that precluded initiation of the 1/0 operation is pro- 
vided in a CSW. 

Manual control 

The need for manual control is minimal because of the design of 
the system and supervisory program. A control panel provides the 

ability to reset the system; store and display information in main 
storage, in registers, and in the PSW; and load initial program 
information. After an input device is selected with the load unit 
switches, depressing a load key causes a read from the selected 
input device. The six words of information that are read into main 
storage provide the PSW and the CCW’s required for subsequent 
operation. 

Znstruction set 

The SYSTEM/36O instructions, classified by format and function, 
are displayed in Table 2. Operation codes and mnemonic abbrevi- 
ations are also shown. With the previously described formats in 
mind, much of the generality provided by the system is apparent 
in this listing. 



Chapter 44 

The structure of SYSTEM/3601 

Part I l-System implementations 

W Y. Stevens 

Summary The performance range desired of  SYSTEM/^^^ is obtained by 
variations in the storage, processing, control, and channel functions of the 
several models. The systematic variations in speed, size, and degree of 
simultaneity that characterize the functional components and elements of 
each model are discussed. 

A primary goal in the SYSTEM/360 design effort was a wide range 
of processing unit performances coupled with complete program 
compatibility. In keeping with this goal, the logical structure of 
the resultant system lends itself to a wide choice of components 
and techniques in the engineering of models for desired perform- 
ance levels. 

This paper discusses basic choices made in implementing six 
 SYSTEM/^^^ models spanning a performance range of fifty to one. 
It should be emphasized that the problems of model implementa- 
tion were studied throughout the design period, and many of the 
decisions concerning logical structure were influenced by  difficul- 
ties anticipated or encountered in implementation. 

Performance adjustment 

The choices made in arriving at  the desired performances fall into 
four areas: 

Main storage 

Central processing unit (CPU) registers and data  paths 

Sequence control 

Input/output (I/O) channels 

Each of the adjustable parameters of these areas can be  subordi- 
nated, for present purposes, to one of three general factors: basic 
speed, size, and degree of simultaneity. 

lIBM Sys. J, vol. 3, no. 2, 136-143, 1964. 

602 

Main storage 

Storage speed and size 

The interaction of the general factors is most obvious in the area 
of main storage. Here the basic speeds vary over a relatively small 
range: from a 2.5-psec cycle for the Model 40 to a 1.0-psec cycle 
for Models 62 and 70. However, in combination with the other 
two factors, a 32:l range in overall storage data rate is obtained, 
as shown in Table 1. 

Most important of the three factors is size. The width of main 
storage, Le., the  amount of data  obtained with one storage access, 
ranges from one byte for the Model 30, two bytes for the Model 
40, and four bytes for the Model 50, to 8 bytes for Models 60, 
62, and 70. 

Another size factor, less direct in its effect, is the total number 
of bytes in main storage, which can make a large difference in 
system throughput by reducing the number of references to exter- 
nal storage media. This number ranges from a minimum of 8192 
bytes on Model 30 to a maximum of 524,288 bytes on Models 60, 
62, and 70. An option of up  to eight million more bytes of slower- 
speed, large-capacity core storage can further increase the 
throughput in some applications. 

Znterleaved storage 

Simultaneity in the core storage of Models 60 and 70 is obtained 
by overlapping the cycles of two storage units. Addresses are 
staggered in the two units, and a series of requests for successive 
words activates the two units alternately, thus doubling the 
maximum rate. For increased system performance, this technique 
is less effective than doubling the basic speed of a single unit, since 
the  access time to a single word is not improved, and successive 
references frequently occur to the same unit. This is illustrated 
by comparing the performances of Models 60 and 62, whose only 
difference is the choice between two overlapped 2.0-psec storage 
units and one single 1.0-psec storage unit, respectively. The per- 
formance of Model 62 is approximately 1.5 times that of Model 60. 



Chapter 44 1 The structure of SYSTEMl360 603 

Table 1 System/360 main storage characteristics 

Model 
30 

Cycle time (psec) 2.0 
Width (bytes) 1 
Interleaved access no 
Maximum data rate (byteslpsec) 0.5 
Minimum storage size (bytes) 8,192 
Maximum storage size (bytes) 65,536 
Large capacity storage attachable no 

Model Model 
40 SO 

2.5 2.0 
2 4 

no no 
0.8 2.0 

16,384 65,536 
262,144 262,144 

no Yes 

Model Model 
60 62 

Model 
70 

~~~~~ 

2.0 1.0
8 8

yes no
8.0 8.0

131,072 262,144
524,288 524,288

Yes Yes

1.0
8

16.0
262,144
524,288

yes

yes

CPU registers and data paths

Circuit speed

 SYSTEM/^^^ has three families of logic circuits, as shown in Table
2, each using the same solid-logic technology. One family, having
a nominal delay of 30 nsec per logical stage or level, is used in
the data paths of Models 30,40, and SO. A second and faster family
with a nominal delay of 10 nsec per level is used in Models 60
and 62. The fastest family, with a delay of 6 nsec, is used in Model
70.

The fundamental determinant of CPU speed is the time re-
quired to take data from the internal registers, process the data
through the adder or other logical unit, and return the result to
a register. This cycle time is determined by the delay per logical

Table 2 System/360 CPU characteristics

circuit level and the number of levels in the register-to-adder path,
the adder, and the adder-to-register return path. The number of
levels varies because of the trade-off that can usually be made
between the number of circuit modules and the number of logical
levels. Thus, the cycle time of the system varies from 1.0 psec for
Model 30 (with 30-nsec circuits, a relatively small number of
modules, and more logic levels) and 0.5 psec for Model SO (also
with 30-nsec circuits, but with more modules and fewer levels)
to 0.2 psec for Model 70 (with 6-nsec circuits).

Local storage

The speed of the CPU depends also on the speed of the general
and floating-point registers. In Model 30, these registers are located
in an extension to the main core storage and have a read-write

Model Model Model Model Model
30 40 SO 60/62 70

Circuit family: nominal delay per logic level (nsec)
Cycle time (psec)
Location of general and floating registers

Width of general and floating register storage (bytes)
Speed of general and floating register storage (psec)
Width of main adder path (bits)
Width of auxiliary transfer path (bits)
Widths of auxiliary adder paths (bits)
Approximate number of bytes of register storage
Approximate number of bytes of working locations in local

storage

Relative computing speed

30
1 .o

main
core

storage
1

2.0
8

12
45

(main
storage)

1

30
0.625
local
core

storage
2

1.25
8
16

15
48

3.5

30
0.5
local
core

storage
4

0.5
32
8

30
60

10

10
0.25
local

transistor
storage

4
0.25
56

8
50
4

21/30

6
0.2

transistor
registers

4 or 8

64

8, 8, and 24
100

50

604 Part 6 1 Computer families Section 3 I The IBM System/360-a series of planned machines which span a wide performance range

time of 2.0 psec. In Model 40, the registers are located in a small
core-storage unit, called local storage, with a read-write time of
1.25 psec. Here, the operation of the local storage may be over-
lapped with main storage. In Model 50, the registers are in a local
storage with a read-write time of only 0.5 psec. In Model 60/62,
the local storage has the logical characteristics of a core storage
with nondestructive read-out; however, it is actually constructed
as an array of registers using the 30-nsec family of logic circuits,
and has a read-write time of 0.25 psec. In Model 70, the general
and floating-point registers are implemented with 6-nsec logic
circuits and communicate directly with the adder and other data
paths.

The two principal measures of size in the CPU are the width
of the data paths and the number of bytes of high-speed working
registers.

Data path organization

Model 30 has an 8-bit wide (plus parity) adder path, through which
all data transfers are made, and approximately 12 bytes of working
registers.

Model 40 also has an 8-bit wide adder path, but has an addi-
tional 16-bit wide data transfer path. Approximately 15 bytes of
working registers are used, plus about 48 bytes of working locations
in the local storage, exclusive of the general and floating-point
registers.

Model 50 has a 32-bit wide adder path, an 8-bit wide data path
used for handling individual bytes, approximately 30 bytes of
working registers, plus about 60 bytes of working locations in the
local storage.

Model 60/62 has a 56-hit wide main adder path, an 8-bit wide
serial adder path, and approximately 50 bytes of working registers.

Model 70 has a 64-bit wide main adder, an 8-bit wide exponent
adder, an &bit wide decimal adder, a 24-bit wide addressing adder,
and several other data transfer paths, some of which have incre-
menting ability. The model has about 100 bytes of working registers
plus the 96 bytes of floating point and general registers which, in
Model 70, are directly associated with the data paths.

The models of SYSTEM/^^^ differ considerably in the number
of relatively independent operations that can occur simultaneously
in the CPU. Model 30, for example, operates serially: virtually all
data transfers must pass through the adder, one byte a t a time.
Model 70, however, can have many operations taking place at the
same time. The CPU of this model is divided into three units that
operate somewhat independently. The instruction preparation unit
fetches instructions from storage, prepares them by computing
their effective addresses, and initiates the fetching of the required
data. The execution unit performs the execution of the instruction

prepared by the instruction unit. The third unit is a storage bus
control which coordinates the various requests by the other units
and by the channels for core-storage cycles. All three units nor-
mally operate simultaneously, and together provide a large degree
of instruction overlap. Since each of the units contains a number
of different data paths, several data transfers may be occurring
on the same cycle in a single unit.

The operations of other SYSTEM/360 models fall between those
mentioned. Model 50, for example, can have simultaneous data
transfers through the main adder, through an auxiliary byte trans-
fer path, and to or from local storage.

Sequence control

Complex instruction sequences

Since the SYSTEM/360 has an extensive instruction set, the CPU’s
must be capable of executing a large number of different sequences
of basic operations. Furthermore, many instructions require se-
quences that are dependent on the data or addresses used. As
shown in Table 3, these sequences of operations can be controlled
by two methods; either by a conventional sequential logic circuit
that uses the same types of circuit modules as used in the data
paths or by a read-only storage device that contains a micro-
program specifying the sequences to be performed for the different
instructions.

Model 70 makes use of conventional sequential logic control
mainly because of the high degree of simultaneity required. Also,
a sufficiently fast read-only storage unit was not available at the
time of development. The sequences to be performed in each of
the Model 70 data paths have a considerable degree of independ-
ence. The read-only storage method of control does not easily lend
itself to controlling these independent sequences, but is well
adapted where the actions in each of the data paths are highly
coordinated.

Read-only storage control

The read-only storage niethod of control is described elsewhere
[Peacock, 19??]. This microprogram &rol, used in all but the
fastest model of SYSTEM/360, is the only method known by which
an extensive instruction set may be economically realized in a
small system. This was demonstrated during the design of Model
60/62. Conventional logic control was originally planned for this
model, but i t became evident during the design period that too
many circuit modules were required to implement the instruction
set, even for this rather large system. Because a sufficiently fast
read-only storage became available, it was adopted for sequence
control a t a substantial cost reduction.

Chapter 44 I The structure of SYSTEM/360 605

Table 3 System/360 sequence control characteristics

Model Model Model Model Model
30 40 50 60/62 70

TY Pe read-only read-only read-only read-only seq uentia I
storage storage storage storage logic

Cycle time (psec) 1 .o 0.625 0.5 0.25 0.2
Width of read-only storage word (available bits) 60 60 90 100
Number of read-only storage words available 4096 4096 2816 2816
Number of gate-control fields in read-only storage

word 9 10 15 16

The three factors of speed, size, and simultaneity are applicable
to the read-only storage controls of the various SYSTEM/^^^ models.
The speed of the read-only storage units corresponds to the cycle
time of the CPU, and hence varies from 1.0 psec per access for
Model 30 down to 0.25 psec for Models 60 and 62.

The size of read-only storage can vary in two ways-in width
(number of bits per word) and in number of words. Since the bits
of a word are used to control gates in the data paths, the width
of storage is indirectly related to the complexity of the data paths.
The widths of the read-only storages in SYSTEM/^^^ range from
60 bits for Models 30 and 40 to 100 bits for Models 60 and 62.
The number of words is affected by several factors. First, of course,
is the number and complexity of the control sequences to be
executed. This is the same for all models except that Model 60/62
read-only storage contains no sequences for channel functions. The
number of words tends to be greater for the smaller models, since
these models require more cycles to accomplish the same function.
Partially offsetting this is the fact that the greater degree of
simultaneity in the larger systems often prevents the sharing of
microprogram sequences between similar functions.

SYSTEM/360 employs no read-only storage simultaneity in the
sense that more than one access is in progress at a given time.
However, a single read-only storage word simultaneously controls
several independent actions. The number of different gate control
fields in a word provides some measure of this simultaneity. Model
30 has 9 such fields. Model 60/62 has 16.

Inputloutput channels

Channel design

The SYSTEM/36O input/outpnt channels may be considered from
two viewpoints: the design of a channel itself, or the relationship
of a channel to the whole system.

From the viewpoint of channel design, the raw speed of the
components does not vary, since all channels use the 30-nsec family
of circuits. However, the different channels do have access to

I .

different speeds of main storage and, in the three smaller models,
different speeds of local storage.

The channels differ markedly in the amount of hardware de-
voted exclusively to channel use, as shown in Table 4. In the Model
30 multiplexor channel, this hardware amounts only to three
1-byte wide data paths, 11 latch bits for control, and a simple
interface polling circuit. The channel used in Models 60, 62,
and 70 contains about 300 bits of register storage, a 24-bit wide
adder, and a complete set of sequential control circuits. The
amount of hardware provided for other channels is somewhere in
between these extremes.

The disparity in the amount of channel hardware reflects the
extent to which the channels share CPU hardware in accomplish-
ing their functions. Such sharing is done at the expense of increased
interference with the CPU, of course. This interference ranges
from complete lock-out of CPU operations at high data rates on
some of the smaller models, to interference only in essential
references to main storage by the channel in the large models.

Channel/system relationship

When the channels are viewed in their relationship to the whole
system, the three factors of speed, size, and simultaneity take on
a different aspect. The channel is viewed as a system component,
and its effect on system throughput and other system capabilities
is of concern. The speeds of the channels vary from a maximum
rate of about 16 thousand bytes per second (byte interleaved mode)
on the multiplexor channel of Model 30 to a maximum rate of
about 1250 thousand bytes per second on the channels of Models
60, 62, and 70. The size of each of the channels is the same, in
the sense that each handles an %bit byte at a time and each can
connect to eight different control units. A slight size difference
exists among multiplexor channels in terms of the maximum num-
ber of subchannels.

The degree of channel simultaneity differs considerably among
the various models of SYSTEM/^^^. For example, operation of the
Model 30 or 40 multiplexor channels in burst mode inhibits all

606 Part 6 I Computer families Section 3 I The IBM System/360-a series of planned machines which span a wide performance range

Table 4 System/360 channel characteristics

Model Model Model Model Model
30 40 50 60/62 70

Selector channels
Maximum number attachable
Approximate maximum data rate on one channel in

KbY PS t
Uses CPU data paths for:

initiation and termination
byte transfers
storage word transfers

chaining
CPU and 1/0 overlap possible

Multiplexor channels
Maximum number attachable
Minimum number of subchannels
Maximum number of subchannels
Maximum data rate in byte interleaved mode (Kbyps)
Maximum data rate in burst mode (Kbyps)
Uses CPU data paths for all functions
CPU and 1/0 overlap possible in byte mode
CPU and 1/0 overlap possible in burst mode

2
250

Yes
no
no

Yes
Yes

1
32
96
16

200
Yes
Yes
no

2
400

yes
no

low speed
only
Yes
Yes

1
16

30
200
Yes
Yes
no

128

3 6 6
aoo 1250 1250

(1250 on
high speed)

Yes
regular-yes

high speed-no

1
64

256
40
200
Yes
Yes
yes

0 0

t Thousand bytes per second.

other activity on the system, as does operation of the special
high-speed channel on Model 50. At the other extreme, as many
as six selector channels can be operating concurrently with the
CPU on Models 60, 62, or 70. A second type of simultaneity is
present in the multiplexor channels available on Models 30, 40,
and 50. When operating in byte interleaved mode, one of these
channels can control a number of concurrently operating input/
output devices, and the CPU can also continue operation.

Differences in application emphasis

The models of S Y S T E M / 3 6 0 differ not only in throughput but also
in the relative speeds of the various operations. Some of these
relative differences are simply a result of the design choices de-
scribed in this paper, made to achieve the desired overall perform-
ance. The more basic differences in relative performance of the
various operations, however, were intentional. These differences
in emphasis suit each model t o those applications expected to
comprise its largest usage.

Thus the smallest system is particularly aimed at traditional
commercial data processing applications. These are characterized
by extensive input/output operations in relation to the internal
processing, and by more character handling than arithmetic. The

fast selector channels and character-oriented data paths of Model
30 result from this emphasis. But despite this emphasis, the gen-
eral-purpose instruction set of S Y S T E M / 3 6 0 results in much better
scientific application performance for Model 30 than for its com-
parable predecessors.

On the other hand, the large systems are expected to find
particularly heavy use in scientific computation, where the em-
phasis is on rapid floating-point arithmetic. Thus Models 60, 62,
and 70 contain registers and adders that can handle the full length
of a long format floating-point operand, yet do character opera-
tions one byte at a time.

No particular emphasis on either commercial or scientific
applications characterizes the intermediate models. However,
Models 40 and 50 are intended to be particularly suitable for
communication-oriented and real-time applications. For example,
Model 50 includes a multiplexor channel, storage protection, and
a timer as standard features, and also provides the ability to share
main storages between two CPU’s in a multiprocessing arrange-
ment.

References

Peac A??

Appendix

PMS and ISP notations

This appendix provides complete definitions of the notations used for the
PMS and ISP descriptions. It is intended to supplement Chap. 2, which
provides an informal description of the notations along with some comments
on motivation and underlying rationale.

The two descriptive systems are consistent with each other in two
senses. First, certain general conventions that have to do with forming
expressions and abbreviating apply to both systems. Second, the values of
certain PMS attributes are describable in ISP but not in PMS. A complete
“top down” development would thus embed ISP within PMS. Neverthe-
less, it appears appropriate to present them as two distinct notations: it
makes reference easier and permits each to be organized around its own
most important notions.

The style of presentation is moderately formal. Within a section, the
syntax is presented, followed by remarks on the interpretation to be given
to these syntactic forms (the semantics). Examples that help to pin down
the notations are furnished throughout. Although not a computer lan-
guage, we present it as if it were; thus, a number of elementary things
are provided for in the definitions. (Part of the motivation for this is to
introduce abbreviations.)

A language can be realized in many media. In this book we have taken
some advantage of printing orthography insofar as it enhances cornmuni-
cation. However, it may also be necessary to map the notations into vari-
ous restrictive character seta-e.g., those of the typewriter and the com-
puter. For the sake of brevity, we do not discuss this coding problem here.

The appendix is in three parts. The first part gives the general con-
ventions common to both PMS and ISP. The second and third parts give
PMS (page 615) and ISP (page 628), as discussed in Chap. 2.

General conventions

The conventions given in this section define the general nature of the
syntax and semantics of both PMS and ISP.

These general conventions parallel closely natural usage by technically
trained people familiar with programming languages, such as ALGOL.
There is no need to consult these sections if the brief statements and il-
histrations following each subsection title are clearly understood.

1 Basic semantics
The language can refer to any entities that are given by attributes
and values.

2 Metanotation
(There is no need for metanotation unless general conventions are
to be read in detail.)

3 Basic syntax
Expressions are built up from subexpressions and ultimately from
names. Parentheses are used to avoid ambiguity.

Commands: assignments, abbreviations, variables, forms
x := y assigns the name x to mean the same as the expression y.
x / y establishes the name y as an abbreviation or alternative
name (alias) for x.
x y := min(x - y, 0) defines a new binary operation (7) by
means of a form in the variables x and y.

4

5 Indefinite expressions
a / b 1 c means one of a or b or c.

x - y means the interval from x up to and including y.
-x means an interval around x of undetermined scope.

6 Lists and sets
(3, 5, 1, 5) is a list of digits, which also could have been written
(3; 5 ; 1; 5). Digit-list refers to all possible lists of digits. Digit-set
refers to all possible sets digits, unordered and without repetition.

7 Definite expressions
X : = (size: integer; function: (primary I secondary); control: (yes I
no)) defines X to be an entity with an attribute, size, taking any
integer as value; with an attribute, function, taking primary or
secondary as value; and with an attribute, control, taking yes or
no as value.
Y : = X(size: 12 - 20; primary; 7control) defines Y as an entity of
type X which is further specified by having size between 12 and
20, having the value of function be primary and the value of
control be no.

8 Attributes
3:Z is the third item on the list 2; - l : Z is the last item. (add-
time, store-time) can be an attribute and then has values such as
(10 p, 6 p).

9 Null symbol and optional expressions
p is the null symbol so that (x, $4, y) is the same as (x, y). *x means
that x is optional; defined as (x I p)

10 Names
Simple-names are strings of letters and digits, permitting concate-
nation with the space (-) and the hyphen (-). ‘The-big-instruc-
tion-set’ is a simple-name.
Memory.primary is a compound name, which is an abbreviation
for Memory(primary).
Classes of names can be constructed and assigned to be used for
various entities-if for an entity, X, then called X-names.

607

608 Appendix

11 Numbers
Numbers and arithmetic expressions are defined in the standard
fashion.

12 Quantities, dimensions, and units
A quantity is just a dimensionalized number-a number of units
along a given dimension.

13 Booleans and relations
Logical expressions involving and (A), or (V), not (7), implies
(3). equivalence (z), and exclusive-or (0) are defined in stand-
ard fashion, as are expressions involving the six basic relations
(=,#, <> >> I> 2).

1. Basic semantics

1 . 1
expressions in the language.

We will use the term “entity” to refer to all things designatable by

1.2
and associated values, which are themselves entities.

An entity is assumed to be fully characterizable by a set of attributes

COMMENT

within the system-that, in effect, have only a name.
There will necessarily be entities with no further specification

The semantics of the language consists in showing how expressions in the
language determine the various attributes and values.

1.3 There are three types of expressions.

1

2

A definite expression designates an entity.

An indefinite expression defines a class of definite expressions; it
designates one of the entities designated by members of this class.

A command designates the establishment of some purely linguistic
convention.

3

EXAMPLES ‘IBM 7090 is a definite expression

Mp is an indefinite expression (any primary mem-
O‘Y).

SAM := Mp is a command to give the name SAM to an Mp.

1.4 There are also English language comments, which are connected with
the language only in being associated with particular occurrences of ex-
pressions (on which they comment) and in having a punctuation convention
that allows them to be nnambiguously distinpished from expressions in
the language.

2. Metanotation

2.1 The language itself is described by giving various classes of expres-
sions and assigning meanings to the members of these classes (ie., telling
what they designate). We will generally do this in English but with a few
special notations.

2.2 Expression-variables

1 Let a, b, . . , , A , B, . , . b e variables whose domain is a set of ex-
pressions.

Let class(a) be the set of definite expressions defined by the indefi-
nite expression a. This is extended to definite expressions, x, by
defining class(x) = X.

2

COMMENT Normally lowercase variables (e.g.. a) stand for any
legal expression, whereas uppercase variables (e.g., A) stand for
any indefinite expression.

2.3 We will define the language by giving forms of expressions, that is,
by writing down sequences of expressions and expression-variables. These
forms are to be interpreted as permitting any expression that results from
replacing the expression-variables with expressions from their respective
domains.

EXAMPLE

then the expression M I P is legal.
If the form x I y is legal, where x and y range over components,

2.4 The one special notation is the expression form

x o x . . .

which is to be taken as permitting an indefinite sequence of x’s separated
by o’s, terminating with an x, where each occurrence is to be viewed as
an independent variable. That i.j, x o x . . . is equivalent to

X

or

x o x

or

x o x o x

01

x o x o x o x

etc.
1 In the book we use italics.

EXAMPLE This is an example of a comment; it may appear anywhere.
EXAMPLE

operations, could have as instances: 5, 6 + 6, 7 - 2 + 3, etc.
d a d . . . , where d ranges over digits and o over arithmetic

Appendix 609

COMMENT Note that we have used the same variable several times, even
though independently selected values are meant at each occurrence. It will
always be clear from the context when this is being done.

3. Basic syntax

3.1 An expression is either a name or a sequence of expressions.

3.2 A name is a sequence of characters written without spaces.

3.3 A character is a member of one of the following alphabets:

I Capital letters A B . . . Z

2 Small letters a b . . . z

3 Digits 0 1 . . . 9

4 Marks I ; , : + + = $ @ > V A , = f < >
- < > ? + - X / - T J , C , . - $ # ? * ' ' ' B
* P () [I (I ()

The characters of each alphabet are ordered a5 shown, from left (low) to
right (high).

3.4 One or more spaces (freely determined) occur between names. The
only exceptions are names that are single marks (alphabet 4, above) and
can be disambiguated. For these, spaces can be omitted.

EXAMPLES A, B instead of A , b

- 3 instead of - 3

(A + B) instead of (A + B)

3.5 Parentheses are used around any expression that would otherwise be
ambiguously interpreted. Conversely, parentheses can be dropped when-
ever there is no possibility of ambiguity.

3.6 To avoid excesq parentheses, an order of precedence exists for names
used as separators. The higher in the order, the greater the binding power,
i.e., the greater precedence in being interpreted first. The following order
is consistent with the alphabetical order:

: = I ~ ; l , l : l + l + / ~ & @ ~ 3 1
v I A I1 I = # I < > < 2 1 + - I x /
I - 1 f I .1 I C J 1 /(abbreviation), .-(hyphen)

3.7 Spacing on the page is freely determined (e.g., for legibility). An ex-
pression may run freely on several consecutive lines (with no explicit con-
tinuation mark).

EXAMPLE z'(0:ll) := (? ib+ z"; This ISP expression and also
this comment are on two lines. ib + M[z"])

3.8
the marks J, and t respectively.

Subscripting and superscripting may be used interchangeably with

EXAMPLE 10 1 2 is the same as 10,

x t 2 is the same as xz

4.

4.1
(CC lo)] and y is any expression, then the command

Commands: assignment, abbreviation, variables, forms

If x is a free name [as defined in General Conventions section 10

Y X : =

assigns the name x to the corresponding expression y. In particular,

class(x) = class(y)

EXAMPLE

ticular (partially specified) computer.
BILL : = C(operation-rate: 10 t 6 o/s) assigns a name to a par-

4.2 If there are several assignment expressions for a single name x:

x : = a
x := b

etc.; then x is assigned to be the name of the union of all the expressions:

class(x) = union(class(i))
i = a,b, . . .

EXAMPLE

define M.l to be memories of either 1,000 or 2,000 words.
M.l := M(size: 1000 w) and M.l := M(size: 2000 w) would

4.3 If x is any name and y is any name, then the command

X / Y

assigns y to be an abbreviation (a synonym) for x. Abbreviation may oc-
cur on any occasion and not just when x is first defined. It may occur as a
separate expression or it may occur in an expression in which x occurs,
thus establishing the abbreviation in passing. A sequence of abbreviations
may be defined in the same expression.

COMMENT

an alternative phrasing (say, one commonly known).
The abbreviation may not be a shorter phrase at all, but simply

EXAMPLE Memory / M, bit / b, second / sec 1 s
multiplex / many channeled

COMMENT / is also used for division, but no difficulties arise

4.4 If x is any name and D is any indefinite expression, then the command

x : = D-variable

610 Appendix

assigns x to be a variable with the set of entities of class(D) as the do-
main. If there are no restrictions on the domain of the variable, then the
D may he dropped.

EXAMPLES x : = number-variable

y : = component-variable

z : = variable no restricted domain

COMMENT

sions (as are the expression-variables x, y, zj.
Note that these variables are over entities, not over expres-

4 . 5 A form is any expression containing variables. If f is a form contain-
ing a single free name x (in addition to variables and defined subexpres-
sions) and g is a form, then we extend the assignment command to
include

f : = g

which is taken as defining the name x. The variables occurring in f are
called the operands of x. An occurrence of the form f with variables re-
placed hy expressions designating in the domain of the variables is equiva-
lent to the expression g with these same variables replaced by their values
from the occurrence of f. This permits the definitions of functions and
operations in which the operands (the variables in f) can be identified by
the form of their occurrence.

EXAMPLES x : = iliimber-vdriabk y : = number-variable

x y is (I fonn

abs(xj is a f o n

abs(x) :=(x 2 O+ x; x < 0 + -xj

x y := niax(x - y, 0) dejineines N y

dejines abs(xj

5. Indefinite expressions

5.1
class associated with the expression.

An indefinite expression is characterized completely by giving the

5.9

If A contains an occnrrence of another indefinite expression B, then
class(A) is the union of the classes of all the expressions formed by replac-
ing the occurrence of B by each member of class(B). In symbols,

The hasic evaluation rule is the following:

class(A(. . . B . . .) j = union(class(A(. . . b . . .)))
b in class(B)

EXAMPLE X : = M(size: 1000 w)

Y := C(M1): xj

class(Y) contains C(iMp: M(size: 1000 w; width: 12 bj)

C(Mp: M(size: 1000 w; width: 16 b)j

C(Mp: M(size: 10(M w; speed: 1000 o/s)j

etc.

6.3 Indefinite expressions can be formed in five ways:

Postulation: an expression is given in the initial definition in this
appendix.
EXAMPLE

Specialization: If A contains an occurrence of another indefinite
expression, B and x is any expression for a subset of class(B); then
the expression formed by replacing the occurrence of B in A by x
yields a legitimate expression. In symbols, if A(. , , B . . .) is legal
and x is legal and class(x) C class(B), then A(. . . x . . .) is legal.

Entity is so defined in GC 7.

EXAMPLE

bers of class(Yj are legal expressions.

Alternation: If x, y, . . , are any expressions, then x 1 y . . . is the in-
definite expression “either x or alternatively y or alternatively. . . .”
In symbols,

In the example of GC 5.2, the expressions of the mein-

class(x I y . . .) = nnion(class(i) j
I = x,y, . . .

COMMENT Note that x : = a and x : = b is equivalent to x : = a 1 b.

EXAMPLE

Range: If x and y designate members of an ordering, such that
x y, then

x-Y

number-name : = integer I decimal

is the indefinite expression containing all members of the ordering
starting with x, tip to arid including y.

EXAMPLE

Approximation: If x designates a member of an ordering, then -x
is an indefinite expression containing x plus members of the order
on both sides of x, without specification of the exact limits.

7 - 11 is equivalent to 71 8 1 9 101 11

EXAMPLE -10 i\ a set of nuinbeis around 10, posihly 8 I Y 1 10 I 11.

COMMENT In the ahove five ways of defining indefinite expressions, spe-
cialization and alternation corre\pond to the iisiial definition of a simple-
phrase structure grammar (Backus Normal Form, RNFj; BNF is often used
to define programming languages.

Appendix 611

6. Lists and sets

6.1 If x is any expression, then

x-list

is an abbreviation either for

x, x

or for

x;x . . .

x-list designates an ordered set of entities designated by x, with repetition
permitted. The choice of a comma or a semicolon for the separator is
semantically irrelevant. The two choices permit the nesting of comma
lists within semicolon lists without parentheses. (Recall the order of prec-
edence of comma over semicolon.)

EXAMPLE 4, 6, 3, 6, 9 is an instance of digit-list

(3; 2, 5; 6; 4, 3, 8; 7) = (3, (2, 5) , 6, (4, 3, 8), 7)

6.2 If x is any expression, then

x-set

is an abbreviation either for

x,x . . .

or for

x;x . . .

except that no repetition is permitted. x-set designates an unordered set
of entities designated by x. The choice of comma or semicolon is seman-
tically irrelevant, as above.

EXAMPLE (3, 6, 2) and (2, 3 , 6) are the same entity, as instances of
digit-set.

(3, 3) is not an instance of digit-set.

7. Definite expressions

7.1 All definite expressions can be defined hy specialization of the in-
definite expression entity. In the following, all names are legitimate, as
defined in GC 10. Also, any expression that occurs without expression-
variables in it is a legal expression of the language as it stands.

7.2 entity : = (parameter-set)

parameter : = attribute: value
: = value

if attribute can be inferred from value

: = attribute 1 Tattribute

: = quantity / entity
if value is binary-value

if attribute can be inferred from entity.
value : = entity 1 ?
binary-value : = boolean I (1 10) I (on 1 off) I (high I low) I

(exist I not-exist) 1 (+ I -) I (positive 1 negative)

An entity may be defined (or described) by listing its attributes and values
explicitly. There is no natural ordering on the attributes, so they form a
parameter-set rather than a parameter-list. The value may be any entity,
but for each attribute there will be a domain of possible entities. This
domain can always be given as an indefinite expression. The question mark
can be used when the value is uncertain. A parameter always defines both
an attribute and a value but may be abbreviated in several ways if the
context makes clear what the attributes and values are.

Both the attribute and value may be given explicitly

EXAMPLE M(size: 100 w)

The attribute may be dropped, if the value uniquely determines
the attribute.

EXAMPLE

ory that has a number of words as value is size.
M(1000 w) is legal because the only attribute of a mem-

COMMENT What is inferable is somewhat ill-defined, because it
depends on the information available to the reader of the expres-
sion (whether man or machine). The simplest case is when the
value is a quantity whose unit is uniquely associated with the attri-
bute, as in the example above. Another is when the value is a
member of a class (or a subset of that class) and the attribute is the
class name (see GC 8.5).

Binary-valued attributes may drop the value and use the occurrence
of the attribute to symbolize the negative sense and the negated
attribute to symbolize the negative sense.

EXAMPLE M(destructive-read) for M(destructive-read: yes)
M(7destructive-read) for M(destructive,read: no)

If the parameter gives some kind of unit quantity, then it is often
natural to state the parameter in the form of quantity per entity
(quantity / entity), where the attribute either is the attribute itself
(the unit to be defined) or permits inference of the attribute.

EXAMPLE Memory(word: 32 bits) = Memory(32 bits/word)
Control(number-devices-controlled: 3) = Control(3
devices / control)

612 Appendix

COMMENT The remark made in point 2 above on “inferable” holds
here as well.

7.3 entity : = attribute(entity)
An entity can be designated as the value of an attribute of some other entity.

COMMENT This is simply standard functional notation.

EXAMPLE Pc(speed: speed(Mp))

7.4 entity : = A(parameter-set)
An entity can be defined as having all the parameters of the indefinite
expression A, further specialized, modified, or augmented by the given
parameter-set.

COMMENT This permits one entity to be defined as an instance or further
specification of another “general” entity, allowing the equivalent of sub-
routining in building up a system of definitions. It also permits one entity
to be defined as like another except in certain specified respects.

EXAMPLE Let M : = Component(size: +integer word; color: blue)

M(size: 100 - 1000 word) further specification

M(size: 100; 0-rate: 1 0 s/word) further specification, if
Component defines 0-rate

M(co1or: red) definition by exception

M(size: 100; weight: 300 Ib) definition by augmentation

7.5 entity : = entity-set I entity-list 1 labeled-entity-set 1 labeled-entity-list
labeled-entity : = label: entity
label : = simple-name

An entity can he a set or a list of entities. It is possible to affix labels to
the entities of a set or list to make referencing easier.

EXAMPLE C(M: Mp, Ms, M.ps) declares the memory of C
T(co-components: to: L.l, from: L.2) to and fr07ll are labels

7.6 entity : = +integer entity
An abbreviation for a list of a specified number (the +integer) of entities,
as specified in the entity following the +integer. If the specifyiiig entity
is an indefinite expression, then each of the entities is independent.

EXAMPLE

specifications.
12 M(tape) where each M(tape) may have different further

7.7
Each of these possibilities is taken up in later sections.

entity : = number 1 quantity 1 predicate 1 entity-name

8. Attributes

8.1 The following gives the possibilities for attributes. It also provides for
the automatic definition of certain attributes. Throughout, let x be the
entity whose attribute is being defined and let V be the domain of values
of the attribute.

8.2 attribute : = simple-name
Simple-names provide freely definable attributes, without restriction on use.

EXAMPLE

can simply he defined and given any domain desired.
C(user,efficiency: fraction) an attribute called user-efficiency

8..3 attribute : = label
if x is a labeled-list or labeled-set

The labels of a labeled-list or labeled-set antomatically become attributes.

8.4 attribute := V
Often there exists no separate name for an attribute other than the set of
values it can take on (V), which already has an appropriate expression in
the language.

EXAMPLE

being also the domain.
C(Mp: hf(1000 w; 32 b/w)) where Mp serves as the attribute,

8.5
A sequence of attributes, interpreted as making an iterated sequence of
selections, can serve as a single attribute. The first (leftmost) attribnte
determines a value of x; the next attribute determines a value in the
parameter set of this value, and so on through the sequence.
In symbols:

attribute : = attribute: attribute. . .

a: b: . . . q(x) = q(p(. . . b(a(x)) . . .))

EXAMPLE X : = C(Mp(size: 1000 w))
size: Mp(X) = IOO() w

8.6 attribute : = a

if q: p: . . . b: a is an attribute of x and there is only
one value of x to any depth with attribute a

The front end of an attribute sequence can be dropped if the remainder
uniquely identifies the value; that is, if there is only one occurrence of a
within x and its values.

EXAMPLE x := c(PC, Mp, MS)
add-time(X) is defined, since only Pc has an add-time.
size(X) is not defined, since both Mp and Ms have size as an
attribute.

8.7 attribute : = attribute-list
The value is a value-list that corresponds one-to-one with the attributes of

Appendix 613

the attribute-list. This is an abbreviation technique that permits writing
the attribute names only once for a list of values, each of which has
several suhattributes.

EXAMPLE operation-times : = (add-time, store-time) has values
(10 p, 6 p), (20 ~ s , 20 p j , etc.

8.8 attribute : = x-name
This is a single special attribute, defined for each entity x. See GC 10.10
for definition.

8.9 attribute := index / #
where value(indexj : = +integer 1 -integer
if x is a list (more generally, of form z o z . . .)

The elements of a list (or other sequence) are automatically indexed by
their number from the front (+integer) or the end (-integer) of the list.
This index can be used as an attribute.

EXAMPLE x := (Ma, Mb, Mc, Md)
x(index: 3) = x (# : 3) = x(3) = Mc
x.4 = x.-I = Md

9.

9.1

Null symbol and optional expression

Let p be the null expression

class(p) = the null class

g may occur as the defining expression in an assignment or as a member
of an alternation:

x : = p
X l a l Y

(d may occur as a member of a set or list, in which case it may be deleted
from the set or list.

x, 8, y is equivalent to x, y

9.2 If x is any expression, define the optional expression

*x to be (xi@

Thus, if *x occurs in any expression, it means that either x can occur there
or fJ, that is, x has an optional occnrrence.

EXAMPLE (1, *2, 3, *4) = (1, 2, 3, 4)1(1, 3, 4)1(1, 2, 3)1(1, 3)

10. Names

10.1 Names are expressions distinguished by two things:

I They are composed of strings of characters, which are not them-
selves expressions.

They are written without spaces between the characters. 2

10.2
are used to define names.

There is a special class of expressions called name-expressions, which

1 Name-expressions all have names that are of the form x-name,
where x is a name.

Name-expressions are written with spaces, which are to be removed
in generating strings of characters from them.

Name-expressions occur only in conjunction with name-expression
names, either as an assignment:

x-name : = name-expression

or as an attribute-value:

x-name: name-expression

2

3

Thus, it can always he determined when a name-expression
occurs.

EXAMPLE Q-name : = A I3 (1 12) defines Q-name
AB1 and A B 2 are the two possible Q-names

10.3 Alphabets are defined as the alternate\ of their characters, e.g.,

digit := 0 (1 (2 (3 (4 (5 (6 (7 (8 (9

Capital letters, small letters, marks, and characters, as laid out in GC 3.3,
are defined similarly.

10.4 If x is any set of characters, then

x-string

is a string of such characters of indefinite length (at least one) with no
spaces between.

EXAMPLE digit-string contains 1, 1354, 65487, etc.

COMMENT Note that expression-variables are being extended to cover sets
of characters and character strings, even though these are not always
expressions.

10.5 name : = simple-name 1 compound-name 1 number-name 1 x-name

10.6 simple-name : = primitive-name 1 phrase-name I hyphen-name

primitive-name : = (capital-letter I small-letter 1 digitj-string

phrase-name : = primitive-name-primitive-name

hyphen-name : = phrase-name-phrase-name

Single-names are strings of letters and digits or phrases made up of such
strings with space concatenation marks (-) (phrase-names) or with hyphens

614 Appendix

(-) (hyphen-names), All simple-names fiinction identically: they obtain their
designations through assignment (: =) or abbreviation (/). They may thus
be definite or indefinite, corresponding to the expressions they name. Any
simple-name may be used if it has not already been used for a different
expression or is not excluded by number-name or by a previously defined
x-name (see below).

EXAMPLES AB3 SAM Baker Instruction-set input-register 13-B

ABBREVIATION

written with a space instead of the space-concatenation mark (J.
If there is no chance for ambiguity, phrase-names may be

EXAMPLE skip condition = skip-condition

ABBREVIATION If the hyphen-name x-a is used within the scope of the
definition of the entity x, then the name may be abbreviated to just a.

COMMENT This permits the use of the same name in local contexts, where
the name of the context (the expression being defined) serves to disambig-
uate the name where needed.

EXAMPLE data-type : = (. . . data-type-component: data-type . . .)
data-type := (. . . component: data-type . . .) alternatioe form

10.7 compound-name := S . v . v . . .
where S is an indefinite simple-name and the
v are simple-names.

The compound-name has the same designation as

S(v; v . . .)
where each of the v’s defines a parameter whose attribute may be dropped
because the v is self-identifying, Thus a compound-name is an abbrevia-
tion technique that constructs a name for an entity by conjoining a series
of modifying attribute values to the type of the entity.

EXAMPLE Memory.primary is an abbreviation for
Memory(function: primary)

ABBREVIATION

results.
An intervening period may be dropped if no ambiguity

EXAMPLE Mp is the same as M.p
Mprimary is the same as M.primary though poor taste

COMMENT Compound names have the desirable feature that the leading
symbol (leftmost) gives the kind of entity being designated, e.g., M.primary
is a kind of memory.

10.8 number-name. Defined in GC 11.

10.9 x-name. The names to be used in defining an immediate instance
of the entity x. If x is any entity and y is any name-expression, such that

x : = (x-name: y; . . .)

then any z which is an instance of x,

2 := x(.)

must be chosen from the name-expressions defined by y. This holds only
for a single level. If w : = z(. . .), then w is not constrained as to the name
used.

EXAMPLE component : = (component-name: capital-letter)
M := component (. . .)
SAM : = component(. . .)
SAM := M(. . .)

is legal:
is not legal;

is legal.

11. Numbers

11.1 number : = number-name I number-variable I number J base I
arithmetic-expression 1 count-expression

number-name : = integer I decimal

integer-name / integer : = *sign digit-string
recall * means optional

sign := + I -
+ integer-name / +integer : = digit-string

- integer-name / - integer : = - +integer

decimal-name / decimal : = integer . digit-string

base : = +integer

arithmetic-expression : = unary-arithmetic-operation number I

includes 0

number binary-arithmetic-operation number I
number n-ary-arithmetic-operation number , . . I
arithmetic-function(nnmber4ist)

unary-arithmetic-operation : = - I +
binary-arithmetic-operation : = - I / 1 exponentiation / exp / t 1

modulo / mod

n-ary-arithmetic-operation : = + 1 X

arithmetic-function-operation : = log J, 2 I absolute-value / abs 1
entier I maximum / max I minimum / min I average / avg I sum I
prodnct / prod

count-expression : = number(x-set) I number(x-list)

Numbers are defined in the standard way, starting with number-names
for integers (1324 or - 14) and decimals (13.23). If the base of the number

Appendix 615

system is different from 10, it may be given explicitly (for example, 10 J 2
= 10, = 2). Arithmetic expressions are formed from various arithmetic
operations with numbers as operands. Operations are classified by their
syntactic form: unary operations (- (3) or +(7)): binary operations (7 - 6,
3/8 or 3 t 2 = 37; and n-ary operations (3 + 8 + 6 or 5 x 6 x 2 x 3).
Functions are defined as taking a list of numbers as operands (abs(3) or
max(5, 7, - 12)). There is a counting function that takes any set or list of
entities as inputs and produces their number (if X : = (Ma, Mb, Mc) then
number(X) = 3). Abbreviations are introduced for many of the operations
and functions.

11.2 number-set-name : = (digit 1 @)-string

A special subset of (alternative) numbers may be defined by substituting a
@ for a digit. The Q) stands for any digit (of the base of the number).

EXAMPLE 01@ = 0101011 01@ hinary
7@ = 701711.. ,177 7@ octal

12. Quantities, dimensions, and units

quantity : = number unit

unit : = (dimension; conversion-list) 1 unit-name : = miiltiplier unit I
simple-name

conversion : = number-name unit I number-name / unit I
arithmetic-expression(unit)

multiplier : = pica / p : = 10'" 1 nano / n : = 109 1
micro / p / u : = 1OF 1 milli / m : = 103 I centi / c : = 10' I
kilo / k : = (10" 12'") I
mega : = 106 1 giga / g : = 10"

dimension : = (base-unit: unit) I [dimension-expression]

dimension-expression : = dimension 1 dimension X dimension 1
dimension / dimension

13. Boolean and relations

boolean : = true / t / l I false / f/O 1 boolean-variable 1
boolean-expression I relational-expression

boolean-expression : = unary-boolean-operation boolean 1
hoolean binary-boolean-operation boolean I
boolean 11-ary-boolean-operation boolean . . .

unary-boolean-operation : =

binary-boolean-operation : = I I E
n-ary-boolean-operation : = V I A I @

relational-expression : = number relational-operator number

relational-operation : = = 1 + 1 < I > I 5 I 2 15 I f

There are two primary boolean values, true and false. Boolean-variables,
boolean-expressions, and relational-expressions are expressions that evaluate
(potentially) to true or false. Boolean expressions are made up from the
standard operations on truth values: negation (+. implication (I), equiva-
lence (G), conjunction (A), disjunction (V), and exclusive-or (0). Relations
are defined on numbers.
COMMENT More general definitions for entities (for = and f) and for
ordered sets (for <, >, 5 , and 2) are not needed.

PMS conventions

Making use of the prior general conventions, PMS is developed systemati-
cally through the definitions of the various components: P, M, S, etc. Much
of the development repeats common abbreviations and conventions, simply
to provide a self-contained notational system.

1 Dimensions

2 General units

A quantity is a number of units of a given dimension. A unit is defined
by the dimension and the conversion between the given unit and other
units of the same dimension. Conversions can be expressed either as the
amount of the other unit for each of the given units (e.g., 1 minute is 60
seconds) or as the amount of the given unit per each of the other units
(e.g., 1 minute is 1/60 per second = .0167 / second). When conversions
are not linear, it is necessary to use functions of the other unit. Thus, for
bits the conversion to states is log,(states) (e.g., 128 states is equivalent to
log,(128) = 7 bits).

Each dimension h a a base unit (e.g., seconds for the dimension of time).
A dimension may also be given as a product of two other dimensions (e.&
[energy] is [force x distance]) or the ration of two other dimensions (e.g.,
[velocity] is [length / time]). We use the standard bracket notation to indi-
cate dimension, (e.g., [l/t] for the dimension of velocity).

3 Information units

4 Component

5 Link (L)

6 Memory(M)

7 Switch (S)

8 Control (K)

9 Transducer (T)

10 Data (D)

11 Processor (P)

12 ComDuter (C)

616 Appendix

1. Dimensions

1.1 Definition of dimension, repeated from GC 12.
dimension : = (base-unit: unit) I [dimension-expression]

1.2 Basic dimensions

time / [t] : = dimension(base-unit: second)

length / [l] : = dimension(base-unit: meter)

cost / [$I : = dimension(base-unit: dollar)

weight : = dimension(base-unit: kilogram)

power : = dimension(base-unit: watt)

temperature : = dimension(base-unit: degree-centigrade)

voltage : = dimension(base-unit: volt)

current : = dimension(base-unit: ampere)

component / [c] : = dimension

operation / [o] : = dimension

information / [i] : = dimensionjbase-unit: bit)

state : = dimension(base-unit: state)

2. General units

2.1 Definition of unit, repeated from GC 12.

unit : = (dimension; conversion-list) (unit-name : = multiplier unit 1
simple-name

conversion : = number-name unit 1 number-name / unit 1
arithmetic-expression (unit)

2.2 We give the basic units, but no variations with multipliers

second / sec / s : = unit(dimension: time)

minute / min : = unit(dimension: time; conversion: 60 s)

meter / m : = unit(dimension: length)

foot / ft : = unit(dimension: length; conversion: 3.28 / meter, 12 in)

inch / in : = unit(dimension: length; conversion: 39.37 / meter, 12 / ft)

dollar / $: = unit(dimension: cost)

operation / o : = unit(dimension: operation)

watt / w : = unit(dimension: power)

volt / v : = unit(dimension: voltage)

ampere / amp / a : = nnit(dimension: current)

kilogram / kg : = unit(dimension: weight; conversion: 2.2 / lb)

pound / Ib : = unit(dimension: weight: conversion: 2.2 kg)

3. Information units

3.1 Units

state : = unit(dimension: state; conversion: 2x bits)

binarydigit / bit / b : = unitjdimension: [i]; conversion: log,(.) states)

octal-digit / od : = unit(dimension: [i]; conversion: 3 bits)

decimal-digit / digit / d / dit rare : = unit(dimension: [i]; conversion:
log,(lO) bits, logl0(x) states)

hexa-decimal-digit / hex : = unit(dimension: [i], conversion: 4 bits)

character / char / ch : = unit(dimension: [i]; conversion: 4 - 8 bits)

byte / by : = unit(dimension: [i]; conversion: 8 bits)

COMMENT

occasional use otherwise, although not in this book.
The byte is almost standardized at 8 bits;

3.2 I-units

i-unit : = base-unit I length x i-unit I i-unit-name I (base-unit; length-
list; content: product(1ength-list) base-unit; level:number(length-list))

i-unit-name : = i-unit-prefix i-unit-name I simple-name

i-unit-prefix : = + integer1 multiple/m I quadruple/q) triple/t 1
double/d I *single/s I half/h 1 fractional/fr

base-unit : = unit(dimension: [i])

length : = +integer

The i-unit is a hierarchically organized information structure, in which
each level consists of a number of subunits, all identically organized. The
number of subunits in a level is called its length. Units eventually occur
that cannot be decomposed further. These are called base-units and are
some unit of information-e.g., the bit or the character. Thus, if the
lengths are L,, b, . . . , L, and the base unit is the bit, then the total
amount of information (the content of the i-unit) is L, x L, x . . . x L,
bits and the number of levels is n. The i-unit may be likened to an n-di-
mensional rectangular volume of information (except that the “dimensions”
-the lengths-occur in a fixed order).

COMMENT Almost all information in computer systems is organized in
terms of i-units-e.g., a memory consists of a number of words, each of a
number of characters, each of a number of bits. More exotic data structures
are invariably encoded into i-units and are not reflected in the hardware.

Appendix 617

word : = length x bits I length x character I length x base-unit This single definition of a computer component contains all of the

word-bit-length : = 12 - 64

word-character-length : = 2 - 8

block : = length x word I length x character

record : = length x word 1 length x character

file := +integer x block1 +integer x record

IBM-card / card : = column x row x card-hole

card-column / col : = 80

card-row / row : = 12

card-hold := 1 hit

print-line / line : = print-column x character

print-column / col : = 64 - 132 I 72 180 I 120 I 132

attributes common to all components. All components can thus he given
as further specifications of this definition. (Such definitions can add attri-
butes not in the higher entity.) Examples are given in succeeding sections.
We comment on some of the attribute domains below and provide an
extensive listing of values for some.

4.2 Component-name. All components that are immediate instances of
this definition are to have single-letter names-for example, P, M, S, etc.
Names of instances of P, M, S, etc., are arbitrary.

4.3 Manufacturer-names I Proper-name. We provide a very short abbrevia-
tion (') to indicate that a string of characters is a manufacturer's name,
since these names are arbitrary and need to be distinguished from other
values. A proper name can also he given to a component.

EXAMPLES 'IBM System/360 Model 50. 'I/O,Bus rarely <64

4. Component

4.1 component := (

component-name: capital-letter;

manufacturer-name / ' : *manufacturer catalog-numher;

operation-set;

operation-rate-set;

'suhcomponents: (function-attribute: component)-set;

*cocomponents: (function-attrihute: component)-set;
port-set;

function: (subcomponent-attribute j cocomponent-attribute);

logic-technology ;

*technology;

reliability: (mean-operations-between-failure / MOBF, mean-time-
between-failure / MTBF);

error-rate: (erroneous-operations / error-free operations);

cost: purchase, rental;

lineage;

history;

weight;

power;

volume;

area;

temperature)

4.4 Operation-set and operation-rate-set. A component is defined funda-
mentally by the set of operations it can perform. In PMS such operations
are defined informally and given names (e.g., read, transmit). Significant
performance parameters may be defined, but complete definitions are given
only in ISP. Each operation has a rate (number per unit time), which need
not be constant.

EXAMPLE A link might have an operation-set consisting of two transmis-
sion operations (one in each direction) of a single i-unit. The operation-
rate might be l o t 3 o/s for each operation. If the i-unit were 10 b, it
would be given an information-rate of 10 t 4 b/s.

4.5 Subcomponen&, cocomponents, function. In general, components con-
sist of PMS structures of other components, which are called its subcom-
ponents. Also, in general, a component participates in a PMS structure.
The components to which it is connected are called its cocomponents. The
connecting interface of a component and a cocomponent is called a port.
Conventional names exist that describe the roles the components play in
a PMS structure (e.g., central processor, buffer memory, address switch).
These terms are called functions and can be used to label both subcom-
ponents and cocomponents.

4.6 port := (

operations: (output I input);

operation-rate / o-rate;

i-unit : [i] ;

information-rate / i-rate: ((i-unit / operation) x o-rate [i/t]);

concurrency: +integer;

concurrency-type: (simplex I half-duplex 1 full-duplex I time-multiplex I
multiplex);

618 Appendix

direction: (from / out / output / X +) 1 (to / in / into / input / X t);

turn-around-time / t.tum: [t] only for hoZf-duplex currier;

carrier)

carrier := (

writability: (human / h 1 machine / mechanical process / In I
both machine and human / b);

readability: (human / h I machine / mechanical process / m I
both machine and human / b);

medium;

encoding)

medium : = (electrical conduction : = voltage 1 current) 1
magnetic 1 electrostatic I radiowave 1 microwave I optical light I
(mechanical movement : = tactile 1 linear position I angular position I

spatial position) I temperature / heat I

(acoustical / airpressure : = high frequency audio) 1 memory technology
see PMS 6.2

encoding / modulation : = continuous-modulation / analog I
digital / discrete-modulation

continuous-modulation : = direct / null 1 amplitude / am I

pulse amplitude modulation / pam I pulse duration modulation / pdm I

time duration modulation I frequency modulation / fm

discrete-modulation : = direct / pulse code modulation / pcm 1

frequency shift keying / fsk I digital pulse I digital level I contact

The ports are the connection points (nodes or terminals) of a compo-
nent at which cocomponents connect. A port is not a component but
simply an interface with a characteristic i-unit that crosses it in one direc-
tion or the other. One can thus associate two operations with a port,
namely, the transmission operations of its component and the cocom-
ponent. The port introduces directionality: input is from the cocompo-
nent into the port’s component; output is from the port’s component to
the cocomponent.

The i-unit subcomponents iisiially correspond to physical subparts of
the port. For conventional information-carrying structures, the base-unit
is the encoding of information on a single wire of the port, i.e., a bit.
The width is the number of wires available per unit time. The length is the
number of (width x base-unit)’s which are necessary to transmit the i-unit.
As such, the i-unit can he thought of as a message normally with length
X width x base-unit. More complex messages can have multiple dimen-
sional lengths (e.g., consider a record which is transmitted serially, where
the base-unit is a bit, the width is 1, the length is an 8-bit byte, and the
record length is 1,000 bytes).

The information rate as measured at the port is the flow of i-units per
unit of time. An equivalent measure is the time for the i-unit to pdSS

through the port. Concurrency is a measure of the number of simul-
taneous i-units the port can pass. Concurrency-type denotes both the
number of simultaneous messages and the message direction. The simplex
port allows only one message to enter or leave the port, not both. The
half-duplex port allows a message to either enter or leave the port, hut
only on a time-multiplexed basis; that is, the port is simplex for one
direction at a time. In the case of the half-duplex port, the turnaround
time is a significant attribute that denotes the time taken to go from re-
ceiving to transmitting or vice versa. A full-duplex port allows information
to flow in both directions at once (i.e., enter and leave the port simulta-
neously). Finally, the multiplex port denotes multiple ports that can be
decomposed into the more elementary structures discussed above.

Direction is usually indicated on each port of a component to denote
the direction of information flow. Direction must be specified for simplex
ports (using arrowheads t, +). Half- and full-duplex ports are shown
with no arrowheads.

Carrier characterizes the form of information at a port. The two major
attributes, writability and readability, define whether human beings, ma-
chines, or both human beings and machines are able to use (interpret) the
carrier directly. Media denotes the technology of the carrier. Information
can be carried by any of the media listed. It should be noted that memory
technology is also listed as a media to carry information. Unlike the media
that are instantaneous carriers, memory holds information over a long pe-
riod of time. For each media, it is appropriate to encode information in
particular ways. The two basic methods are continuous and discrete en-
coding (or modulation).

4.7 Logic-technology and technology. All devices have a logic technology
and almost always only a single one (though exceptions exist, especially in
compound components). They may also have other technology specific to
the type of component (e.g., disk-memory technology). The logic technol-
ogy is given here; other technologies are given with the specific component.

logic-technolop : = magnetic-core 1 cryogenic 1
electro-mechanical I fluidic I hybrid-circuit 1
monolithic integrated / integrated / ic I large scale integrated / LSI 1
mechanical I integrated metal oxide silicon / MOS I

medium scale integrated / MSI 1 optical I
transistor 1 vacuum-tube

4.8 Reliability. Although of extreme importance, we list only two values
for reliability, the mean number of operations between failures, and the
mean time between failures. In essence, one can be derived from the other
if the operation rate is known.

Appendix 619

4.9
error-free operations. Approximately l/(probability of an error).

Enor rute. Usually a ratio of the number of erroneous operations per

4.10 Cost. Only the two simplest cost numbers, purcha5e price and
(monthly) rental are listed as attributes. Conventionally, purchase price is
taken as 45 times monthly rental. In addition, one could list manufac-
turing costs, broken down into materials, labor, etc., and more elaborate
sales costs, such as lease-purchase options. Most of these quantities are not
relevant from an engineering viewpoint. Some that are important are un-
obtainable in general.

4.11 lineage := (

manufacturer: Burroughs 1
Control Data Corporation / CDC I
Digital Equipment Corporation / DEC 1
English Electric I
Ferranti I
General Electric / GE I

Honeywell I
International Business Machines / IBM 1

International Computers and Tabulators / ICT I
Hewlett-Packard / HP 1

Olivetti I
Radio Corporation of America / RCA I

Remington-Rand / UNIVAC 1
Scientific Data Systems / SDS / Xerox Data Systems / XDS I

Westinghouse;

manufacturer-type: government / g 1 industrial / i I
research-laboratory / r 1 university / u;

country: Australia / A 1 Great Britain / B I Canada / C I Denmark / D 1
France / F 1 Germany / GI Israel / HI Italy / 11 Japan / J I
Netherlands / N I Russia / R I Sweden / SI United States / *U;

*descendants: component-set;

'antecedent: component-set)

The attributes are mostly self-descriptive, We have not attempted to
list manufacturers other than the principle industrial ones. Descendants
and antecedents are necessarily vague, since no precise notion of parent-
hood can be defined. It is not limited to computers built as a series (as in
the IBM 704 being a descendant of the IBM 701) but includes any ma-
chine where the design bond is strong (e.g., IBM 709 and 7090).

4.12 history : = (

t.conception / t.start: date;

?.announcement / t.paper: date

*t.birth / t.prototype / t.operational: date;

*t.scheduled: date;

*t.exhibited: date;

't.delivery / t.production: date-list;

*t.first-delivery / t.first: date;

*t.last-delivery / t.last / t.withdrawa1: date;

*t.death / t.last-use: date;

'production: number(t.delivery))

date : = year 1 month year 1 day month year quarter year

quarter / q : = winter / I 1 spring / 2 I summer / 3 1 fall / 4

The history of the component is viewed as a series of event dates, only
the more important being given above. Often the same essential function
is served by a variety of events (e.g., the announcement of a computer to
the public can be made either by formal announcement, as happens with
commercial systems, or by a technical paper). Delivery or production re-
fers to the actual placing of systems and consists of a series of dates, one
for each instance produced. This series is normally abbreviated to the first
and last delivery, plus the number produced. None of the attributes be-
yond t.start need exist, as a computer system can be aborted at any time.
For all attributes, the dates may be known only approximately.

4.13 Weight, power, volume, area, temperature. Since we concentrate on
the informational aspects of components, other attributes are mentioned
only briefly (and others, such as decor, are left out entirely). The values of
these parameters are especially important in aerospace applications. They
also show the effects of technology on packaging and computing power
per unit volume.

5. Link

5.1 Link / L : = simple-link I compound-link

5.2 simple-link : = component (

cocomponents: (input: component, output: component, initiators:
input 1 output (both);

subcomponents: (*control; *input-buffer: M.i-unit; *output-buffer:
M.i-unit);

concurrency: 1;

620 Appendix

concurrency-type: simplex;

information-rate / i-rate: (i-unit/operation) x o-rate [i/t];

i-unit: i-unit(input) equals i-unit(output);

delay / t.delay / td: [t];

carrier)

A simple-link has the capability of moving an i-unit from the input
cocomponent to the ontpnt cocomponent. The simple-link has two simplex
ports that connect to the ports of the two cocomponents and are sepa-
rated by a delay. In essence, as the delay goes to zero, the input port and
output ports become one. Initiation of the transmission may be b e d at
one end or the other or be from either end, depending on the design of
the link. The base-unit is usually a bit (is., two states), but it may be
more. The width of the i-unit is the number of base-units transmitted in
parallel; and the length is the number of widths serially transmitted in one
operation. A simple-link permits transmission in one direction only (from
input to output cocomponent); this is normally called a simplex link. The
port-to-port delay is the time from the initiation of the transmit operation
at one port to the arrival of the i-unit at the second port. (Occasionally,
the arrival time between widths can be relevant operationally, and then
a more precise characterization of the time structure would be required.)
The rate of transmission (the information rate) may be calculated by taking
the operation rate times the information transmitted per operation (ix.,
the content of the i-unit). Links may-but need not-contain buffering at
either end for a single i-unit. There may be a distinct control involved,
especially if initiation and termination rituals must be accomplished; but
it is possible to have links that are simple wires and simply present at the
output terminal what was presented at the input.

EXAMPLE L input: register A; output: register B; width: 36 h;
[I megawords/s

5.3 compound-link : = (

simple-link(c0ncurrency: 1; concurrency-type: half-duplex) 1

simple-link(concurrency: 2; concurrency-type: full-duplex) I
siml-'le~link(concriri-en~y: +integer; concurrency-type: hroadcast;

output: component-set) 1
simple-link(concurrency: + integer; concurrency-type: network broad-

cast; input: component-set; output: component-set) 1

simple-link(concurrency: +integer; concurrency-type: star) 1
(simple-link)-set)

A compound-link is made up of several links, but such that no switch-
ing occurs. A half-duplex link permits information to flow from either
terminal to the other, but transmission is possible in only one direction at

a time-which thus leads to a turnaround delay time. A full-duplex link
permits simultaneous transmission in both directions. Broadcast links per-
mit transmission to many receivers; thus the output components can he
set. Network broadcast permits more than one terminal to be a source,
though only one at a time. The star denotes all n components of a set to
simultaneously communicate with one another via (4 2) x (n-1) full-
duplex links.

Finally, a set of disjoint links (that is, inputs disjoint and outputs dis-
joint) can be considered to be a single link. This latter is essentially a
convenience for naming a multiplex link.

EXAMPLES L Dataphone; 1800 h/s; half-duplex; i-unit: (length: 8,
[width: 1 b)

L(Te1ephone; i-rate: 110 b/s; direction: full-duplex)

Telephone : = L(110 b/s; full-duplex)

1/0 Bus := L half-duplex; i-unit: 1 w; 12 b/w;

alternative form

1 [operation-rate: 500 ko/s

L 'I/O Bus; half-duplex; i-unit: 1 w;]
alternatiue form

[I2 b/w; 500 kw/s

L 'I/O Bus; half-duplex; i-unit (length: 1 alternative form
[I2 b; width: 1 b); 6 megabits/s

6. Memory

6.1

6.2

Memory / M : = simple-memory I compound-memory

simple-memory : = component (

cocomponents: read: component, write: component;

- functions: see Table 1,

subcomponent: control;

word / w: i-unit [i];

size: 1 word [i];

operations: (read I write I read, write);

information-rate / i-rate: [i] / word x operation-rate [i/t];

.J

x access-time / ta: constant 1 -constant [t];

- cycle-time / tc: time(read; next write) [t];
c

- - -.- .-

per-mannEy: (decay I fast-read-slow-write / frsw I permanent / read-
only / ro / ros / ROS / read-only-memory / rom / ROM I
read-clestryct 1 read-regenerate / rr 1 read-write / rw 1 write-only) [t];
' A \ 1 \ (1

.- portahility: (portable / p I not portable / fixed / f) ;

technology: see Table 2)

Appendix 621

Table 1 Memory functions

Within C
primary / p

secondary / s

Within P, K
address
buffer / synchronizer

control

data operands

fixed

error detection

error accounting

instruction

processor state / ps

program state word

process map

process registers

program address /
instruction address
instruction location
counter / progr,m

working / tempors3ry
Within T, L

buffer / synchronizer
control
working / temporary

Within D
control

/

Primary memory; holds directly execut-
able programs; instructions and data
for instructions are taken from Mp
and i t must be directly accessible by P

Secondary memory, in which data acces-
sible to the ISP is stored; programs are
not executed from secondary; normally
Ms is much larger than Mp (and much
slower); Ms holds files, programs
(waiting to be executed), data, etc.

Holds operands
Holds data while synchronizing with an-

other component
Used during instruction’s interpretation;

state of a K
Holds information that are operands or

eventual operands
Used to define permanently the nature

of a processor or a control
Holds detected error information. nor-

mally hardware errors
Holds counts of errors; normally part of

Mps; two major types or errors, machine
(or hardware) errors and process (or
program) errors, are accounted

Holds parts of instruction as it is being
interpreted

Includes all registers, state bits, and in-
struction counter associated with ISP;
includes the following subcomponents:

Holds the state of the program flow, over-
flow bits, i.e., the instruction or pro-
gram counter, and any state bits
accessible to a program

Used to locate programs within Mp (and
Ms)

Specific arithmetic and indexing registers
(e.g., AC, MQ, general registers, stack)

Holds pointer to either the current or the
next instruction the processor is to
interpret

Holds intermediate results

Used for synchronizing purposes
The K part of T or L
Temporary results

K part of D

data operand D may stack operands and results,
synchronizing with some other process

instruction Current operation D is performing
working / temporary Temporary results of intermediate data

Within S
address Position of switch, i.e., the information

that holds gate-switches open or closed
Any synchronizing storage needed within

S for links
The K part of S

buffer / synchronizer

control

Table 2 Memory technology

Muehine readable; machine writable

Porta- P e m -
Access+ bilityt nencyt

capacitor
core / magnetic core

bulk core / large core storage // Ics /
extended core storage / ecs

delay line / magnetostrictive delay line
mercury delay line
optical delay line

fixed head disk
moving head disk

drum / fixed head drum
moving head drum

electrostatic storage tube
integrated circuit array
logic / technology

disk / diskpak

See PLUS 4.6 jbr
logic used to makc actioe hit, register
and arra!i memories

magnetic card e.g., Datacell
magnetic tape / tape

addressable magnetic tape
carousel magnetic tape

magnetic wire
photographic store e.g., photostore

plasma display readability: both
film (write once)

thin film

r f
r f
r f
r f
C f
C f
C f
1, c P
1, c f
C f
C f
1, c f
r f
r / content f
r f

1, c P
1 P
b P
c, 1 P
1 P
1, r P
1, r P
r f
r f

Machine reudable; read-onhi; nonportable; rundom aecess

capacitor array r f
diode array r f
inductor array r f
rope / transformer coupled braided r f

rope resistor r f

decay
rr
rr
frsw
rr
rr
rr
rw
rw

rw
rw
decay
rw
rw

rw
rw
rw
rw
rw
wlro
wlro
rw
rw

ro
ro
ro
ro
ro

622 Appendix

Memories which cannot he both read and written by a machine

Writa- Reuda- Perma-
bility bility Access nency

badge
card / punched card

cathode ray tube / CRT

garment tag
joystick
keys / pushbuttons keyboard
knobs
page / impact printed page / paper

credit card

storage CRT

braille page
handprinted page
handwritten page
magnetic ink page
thermal page
typewritten page
xerographed page

paper tape / punched paper tape
plot / incremental point plot

analog plot continuous
patchboard
switches / toggle switches

b
rnl b
b
rn
rn
m
h
h
h
rn
m
h
h
rn
m
b
m

m
m
h
h

rnl b

b
rnl b
b
h
h
b
b
b
b
b
h
b
h
b
b
b
b
ml b
h
h
b
b

1
1
1
r
r
1
r
r
r
1
1
1
1
1
1
1
1
1
1
r. I
r
r

ro
wlro
ro
decay

wlro
rw
rw
rw
wlro
wlro
wlro
wlro
wlro
wlro
wlro
wlro
wlro
wlro
wlro
rw
rw

wo

~

?See PMS 6.2 for abbreviations, also c/cylic, I/linear, r/randorn.

A simple-memory stores a single word of information by means of a
read operation and delivers that word on subsequent write operations.
There is no addressing, and the access time is a constant (or approximately
so). The memory is connected to the larger system via one component
for its read operation and one for its write operation. These are usually
links and need not be distinct. The only subcomponent that need be dis-
tinguished in a simple-M is the control (though of course the word may he
built up from a set of bit memories). The information rate is the amount
of information in a word times the operation-rate. The cycle time is the
time it takes to read the memory and then write new information into it;
the ISP expression (read; next write) implies a sequential operation. The
permanency describes what happens to information left in the memory as
a function of time. This concept is often partially covered by other no-
tions, such as reliability, volatility, destructive-nondestructive, etc. We give
the main values that arise in practice: a rate of decay with time (which
expands to an actual decay function); write-once-read-only (e.g., cards and
photographs); read-write; fact-read-slow-write (a special case of read-write);
destruction of the information upon reading; and permanent or read-only
(as long as the system remains viable). Write-only refers to the character-
istic of the memory from the point of view of the system under discussion;
always there is some other system (usually a human being) who can read
the memory. Whether the memory can he only read or only written

(readability, writability) or both read and written, and by whom (human
or machine), is derived from the port characteristics. Portability denotes
whether information can be carried away from the system or is non-
portable (fixed). Two of the parameters, function and technology, are
extensive enough to give by tables.

6.3 compound-memory : = component (

cocomponents: read: component, write: component, address:
component;

function: see Table 1;

subcomponents: control; address; switch; memory: M-set, *read-buffer:

memory, *write-buffer: memory;

word: word(M.niemory);

size: sum(word(M.memoryjj;

operations: read-set, write-set;

information-rate: [i] / word x operation-rate [i/t];

access-time: access-time(S.address) [t] randm, cyclic, etc. see PMS 7.n;

cycle-time: cycle-time(simp1e-M);

permanency: permanency(simp1e-M);

portability: portability(simp1e-M);

technology: see Table 2)

A compound-memory is a system of simple-memories, organized by an
addressing switch. Thus memory is fundamentally defined recursively as a
switch to other memories. At each switch stage the dimensionality of the
overall i-unit is reduced by one. The addressing may he provided by a
different cocomponent than those for the read and write data. All the
submemories have the same word, and the size of the compound-memory
is the sum of all these words. There may be additional subcomponent
memory within a memory, such as buffer memories and a memory con-
nected with the address switch and the control. However, none of these
are available for storage purposes and are not counted in the size. The
access time of the memory is defined by the access time of the address
switch. A classification of these can be found under the definition of switch
and is often used to classify memories (e.g., linear, random, cyclic, etc.).
Some parameters are the same as those given for a simple-memory, and
these are simply cross-referenced.

COMMENT Not all conceivable memories come under the definitions just
given (e.g., we have assumed constant word size); hut in fact all memories
used in existing digital computers do.

EXAMPLES Mp(core; t.access: 2 us/w; 4096 w; 16 b/w)
M(fixed head disk; t.access: 0 - 17 ms; i-rate: 300 kchar/s;
size: 1 megaword)

Appendix 623

7. Switch

7.1 Switch / S : = gate-switch I simple-switch I compound switch

7.2 gate-switch : = component (

cocomponents: (input: component, output: component: initiators:
component);

subcomponents: (*control; *input-buffer: M.i-unit; *output-buffer:
M.i-unit);

operation: (open I close);

concurrency: (1 12);

concurrency-type: (simplex 1 half-duplex I full-duplex / duplex);

i-rate: i-rate(1ink);

delay: delay(1ink);

hang-up-delay: [t];

access-time / ta: constant [t])

A gate-switch acts as a simple-link or as no connection. It is used to trans-
mit information conditionally between the ports of two components. It
can be used as a basic primitive to express the structure of other switches,
including the simple-switch. The parameters will be discussed under the
simple-switch.

7.R simple-switch : = component (

cocomponents: (input/from: component-set, output/to: component-set,
initiator: component-set);

subcomponents: control, links: link-set, *address: memory;

operation: access;

size: size(output(cocomponents));

concurrency: + integer;

concurrency-type:(simplex 1 half-duplex I full-duplex/duplex 1
dual-simplex 1 dual half-duplex 1 dual full-duplex / dual-duplex 1
time-multiplexed-cross-point / 1 trunk I cross-point 1 dual-cross-point 1
k-trunk);

hierarchy: (hierarchical 1 nonhierarchical / anarchical);

location: (central I distributed (cocomponent set));

distribution: (radial 1 bussed / \)us / chain / daisy chain);

accesq-time / ta: switch-type(address / a, prior-address / p)

switch-type : = (

bilinear: constant + constant x abs(a - p) (
cyclic: constant + constant x (a - p) mod (size)(
interleave: (a interleave-relation p + random)-list 1
linear: (a 2 p + constant + constant x (a - p) ;

a < p + reset-time + constant x a) 1
first-in-first-out / fifo / queue: (constant I -constant) I

last-in-first-out / lifo / stack: (constant 1 -constant) I
dequeue: (constant 1 -constant));

permanency: (decay 1 transmit-destruct I time-multiplexed / tmx / tm 1
moving I cyclic I permanent I irreversible I fixed until broken /
fixed I manual);

hang-up-delay: [t];

delay: delay(1inks);

L-initiator: initiator(1inks);

technology)

A simple-switch consists of a set of potential links between a set of
input and output components, with an operation (access) that can actual-
ize some subset of the links. This is done according to an instruction called
the address (which may or may not be held in a memory). For a switch,
the cocomponent input and output ports are sometimes listed to specify
the size of the switch.

An important parameter is the concurrency-type, which describes the
various subsets that can be simultaneously realized. The values given cor-
respond to practical alternatives-simplex, in which only a single simplex
link may be established at a time; duplex, in which a single full-duplex
link may be established; cross-point (also dual-cross-point), which permits
true simultaneity; time-multiplexed-cross-point, in which functional simul-
taneity is established for many links by means of rapid switching within
the course of transmission of an i-unit (in essence the time multiplexed-
cross-point has 1-trunk, which permits 1 conversation); and finally k-trunks
for k-simultaneous conversations. We often use a duplex switch instead of
simplex or half duplex switch in PMS diagrams, even though the latter
would be more accurate.

Hierarchy is a redundant attribute derived from the cocomponent set.
As a rule, if there are n identical cocomponents each of which communi-
cates with one another, there is no hierarchy. A telephone system is a
typical nonhierarchical structure. Usually the switches internal to a com-
puter are hierarchical in that there are n components of type a which
communicate with m components of type b. The a’s only communicate
with the b’s and vice versa: hierarchy does not determine the component
initiating the dialogue.

The location of a switch refers to whether the hardware is localized
within one of the components using the switch, whether it is separate
(called central), or whether it is distributed through all the cocomponents.

An attribute that is not completely independent is distribution, which
denotes whether the physical structure is a continuous bus or chain or is

624 Appendix

fed radially from a centralized component. See Fig. 13, Chap. 3, page 67
for common alternative physical structures.

A major way of classifying simple-switches is by their access time-
cyclic, linear, random, etc. With each is given the type of formula that
determines the actual access time. The two critical parameters in most
switches are the address being sought (a) and the prior address (p) , which
represents the existing state of the switch. Thus, in a bilinear switch the
access time consists of a start-up time plus a time proportional to the mag-
nitude of the difference between the prior address and the desired address.
This differs from a linear switch, which only permits movement in one
direction and must reset to an initial state if an address lower than the
existing address (p) is sought. An interleave memory is one that consists of
a collection of random-access memories, depending on the relationship
between a and p (usually a modular one, such as (a = p mod 4) + long
access; (1 # p mod 4+ short access). Random access means that the access
time is independent of both a and p . This constancy may be only approxi-
mate (as in using a drum with its cyclic character ignored). Queues and
stacks differ from the other switches in having a degenerate addressing
system such that the next link selected is determined by the state of the
switch itself. Dequeues allows either of the two ends of a queue to be
accessed.

Permanency refers to how long the switch maintains a link (or set of
them) after establishing the link by an access operation. The three com-
mon values are (1) the destruction of the connection with the transmission
of the i-unit across the link, (2) the maintenance of the connection perma-
nently, and (3) the autonomous movement of the connection (as in disks
and drums). The latter two give rise to the p used in the access formulas.
Rarer is a decay function, in which the link remains established for some
period of time, or an irreversible connection, which can be set just once
and from then on operates like a simple-link.

Hang-up delay is the time taken to break a connection after the appro-
priate i-unit has been transmitted. Hang-up delay is given only for certain
permanencies of fixed-until-broken and manual switches.

A number of parameters derive directly from the properties of the set
of ports or links-the size of the i-unit, the information-rate, the link de-
lay, the direction of data flow, and the component that can initiate data
transmission (as opposed to initiating accessing). Finally, there is tech-
nology, which is not given in detail, since much of it is identical to
memory technology.

EXAMPLES S('I/O BUS; location: K; from:P; to:K; half-duplex; initiators:
P, K; switch-type: random; ta: 5 p ; concurrency: 1)

S(cross-point; 16 M; 6 (P + K); concurrency; 6; location: M)

7.4 compound-switch : = simple-switch (

subcomponents: control, links: link-set, subswitches: switch-set,
*address: memory;

access-time: (cascade: sum(access-time(subswitches)) I
parallel: max(access-time(subswitches))))

A compound-switch is an array of switches whose links are connected
so that the outputs of some are inputs to others and thus effects a total
set of links, which go from output to input component-sets. It can be
defined as an extension of a simple-switch, since most parameters are
defined identically for both. Many combinations of accessing arrangements
are possible. The two most common are given above. A cascade-switch is
one in which each accessing of the next subswitch must take place after
the prior one so that the access times add. A parallel-switch makes all the
accesses simultaneously, so that the total access time is simply the access
time of the subswitch that takes longest. (In both cases, there can be ad-
ditional overhead time, but this can usually be allotted to the subswitches
and does not require separate terms in the expressions for access time.)

, I 8. Control

8.1

8.2

Control / K : = simple-control I compound-control

simple-control : = component (

cocomponents: controlled / object: component-set, *instruction:
component-set, *data: component-set;

subcomponents: *instruction: memory, working / w: memory,
operations: data-operation;

operations: evoke / -+, next-evoke / next, condition-operations;

controlled-operations: (controlled-component: operation)-list;

instruction-source: (none I data 1 instruction);

instruction-set)

A simple-control is a logical circuit (usually sequential) that evokes
operations in other components (the controlled, or object, components).
Thus, its main operations are those of evoking and evoking-next (symbol-
ized as + and next in ISP). However, it must also detect conditions on
which such evoking depends, so that it has available additional operations,
that are combined in an instruction-set (see ISP 2.1). These vary greatly
in complexity, from boolean operations to arithmetic operations (such as
counting the number of i-units processed).

A major distinction is the source of the external instructions that can
be given the control. At one extreme there may be none, as in a clock
whose function is to interrupt the system every millisecond. The common
case is that in which all the external instruction comes via the data itself.
More complex controls have a separate set of external instructions (often
called control characters or commands). A control does not obtain its own
next instruction, being dependent on an external component to set it into
action. This is the primary characteristic that distinguishes it from a proc-
essor. It does have an instruction-set, which is the ISP expression that
shows what conditions evoke what actions.

No technology is given, since controls are all realized in a logic tech-
nology, as given in the definition of component. Likewise, no function
parameter is given, since there exists no special vocabulay to designate
the different subspecies of control tasks.

, I F '

Appendix 625

EXAMPLES K(Mp; input: Pc; output: Mp)
K(D(multiply))

8.3 compound-control : = simple-control (

subcomponents: alternatives: simple-K-set, *instruction: memory,
working: memory;

instruction-source: mode-instructions)

A compound-control consists of a collection of alternative simple-controls
and can be given as an extension of the simple-control. At any time, the
control is one of these simple-controls. Determination of what simple-
control is operative (often called the mode the control is in) is by a mode-
instruction from some external component. This additional freedom re-
quires a subcomponent, the control-state, to hold the current specification.
(Thus it is possible, though rare, that the actual simple-K is determined
by a sequence of mode-instructions, each determining some part of the
control state.)

EXAMPLE K(1nstruction set processor/ISP; input:M.processor,state; out-
put: D, K(Mp), K(L('I/O Bus)); M(read-write; 40 b; working);
M(read only; 100 w; 36 b/w 1 ps/w))

9. Transducer

9. I

9.2

Transducer / T : = simple-transducer 1 compound-transducer

simple-transducer : = component (

cocomponentx input: component, output: component, initiator:
(input 1 output 1 both);

subcomponents: input: L, output: L, 'control;

functional-name: (input: reader / sensor / pen / receiver; output:
writer / punch / perforator / display / printer / transmitter;
synchronizer isolator; transducer);

operation: transduce (plus transmit) / t;

carrier See port of component;

' transduction: port(output) t port(input);

divergence: i-uni t (ou tpu t) - i-uni t (in pu t) [i] ;

divergence-rate / divergence x o-rate [i/t];

'portability: (portable I not portable / fixed);

concurrency-type: simplex;

concurrency: I;

transduction-technology : = (amplification 1 analog-digital I angular-
linear \ attentuation I electroluminescence 1 electromagnetic I
electromechanical 1 electromechanical-acoustic I electro-optical I
mechanical-indentation I photochemical I xerographic)

transducer-technology : = (analog-digital converter 1 bell 1 buzzer 1 TV
camera / vidicon I card reader 1 card punch 1 CRT display I storage
CRT display 1 plasma display 13 D display 1 printed document
reader / document reader I document printer I magnetic character
document reader(f2m reader(fi1m)writer)gongljoystick) keys)
keyboard I light gun 1 light pen I continuous line plotter I line printer /
printer 1 linear actuator 1 SRI mouse 1 paper tape reader 1 paper tape
punch I incremental point plotter I pressure transducer I speech
synthesizer I Rand tablet 1 Sylvania tablet 1 telephone dial I push
button telephone dial I thermocouple I Lincoln Laboratory Wand))

A simple-transducer is a pair of connected links that have different i-units
and/or underlying carriers. As defined above, transduction is a digital op-
eration, taking in an i-unit of the input link and producing an i-unit of the
output link. Meaning is preserved; that is, only the encoding has changed.
Preservation of meaning distinguishes transduction from data operation.
The amount of information need not be preserved, so that information
divergence is an additional characteristic of a transducer. It may be posi-
tive or negative, as the net number of bits is either increased or decreased.

A simple-transducer is called a simplex, in that information flow is in
one b e d direction only (as in a simple-link).

Knowing the function of the transducer permits an inference of whether
one interface of the transducer involves a human being. This inference
can be derived from the port characteristics.

EXAMPLE T(1ine printer; 1000 lines/m; 132 char/line; 8 bit/char)
T(paper tape; reader; 300 char/s; 8 b/char; width: 1 in.)
T(sense amplifier; i-rate: .5 w/s; 24 b/w; input: M(memory

stack))

9.3 compound-transducer : = (

simple-transducer-set :
concurrency-type: (half-duplex [full duplex);
compound-transducer-technology;

concurrency: +integer)

compound-transducer-technology : = rard reader-punch I computer
console / processor console / console 1 Dataphone I keyboard-CRT
display 1 diskpak drive I film write-reader I magnetic card transport I
magnetic tape transport 1 typewriter I Teletype I special purpose
console : = (airlines reservations I stock quotation I data collection)

A compound-transducer consists of a set of simple-transducers. The two
simplest kinds are the half-duplex and the full-duplex, which are extensions
of the simple-transducer, wherein the direction of information flow can be
either way but only one way at a time (half-duplex) or can be both ways
simultaneously (full-duplex). The more general case is simply a set of trans-
ducers with independent inputs and outputs (so that overall there is no
switching function). It is common to call this a multiplexed transducer in
which concurrency is specified by an integer.

626 Appendix

EXAMPLES T.half-duplex(typewriter; 15 char/sec; output: paper, video,

T.multiplex(conso1e; keyboard, display, printer)
audio; input: keyboard; 88 char; 8 b/char)

10. Data-operations

I O . 1 Data operations/D : = simple-data-operation 1 compound-data-oper-
ation

10.2 simple-data-operations : = component (

cocomponents: inputs: components, output: component, initiator;
input;

subcomponents: working: M-set, control: K-set;

operations: see I S P data-operations, I S P 3.1;

operation time: [t];

concurrency-type: simplex;

data-types: data-typejoperations) see ISP data-types, ISP 1.3)

A data-operation creates information (i.e., new instances of data-types)
that has new meaning. It usually does this as a function of input informa-
tion (e.g., a floating point multiply which creates a floating point number
that represents the product of the two input numbers). It may or may not
destroy some existing information (e.g., a tally operation, which modifies
the existing number in creating the new one). A data operation differs
from a transducer (T), since its output differs in meaning from its input.
The T preserves meaning, while changing representation.

The data-operation takes the data-type i-units at the input ports, oper-
ates on the data, and presents the result at the output port. The simple-
data-operation can perform only one operation at a time. The simplest D
is just a set of transfer paths between registers for performing some oper-
ation on a boolean vector (that is, A A B, A @ B, lA) or a combinational
network (that is, X = 0). Slightly more complex D's are the additive op-
erations on integers (+, -). Operations like X, / are usually constructed
from more primitive D's, +, -, and (/2), with a subcontrol (K) to step
through the various substeps of the arithmetic algorithm. Finally, a float-
ing point multiply would be formed as a sequence of simple-data-opera-
tions controlled by one or more common subcontrols.

1 EXAMPLE D operation: +; data-type: fixed; i-unit: 32 b;
[operation-time: .2 p

D floating point multiplier; data-type: f; i-unit: 36 b;
[operation-time: 2.0 ps; M.working (3 x 36 + 10)b 1

10.3 compound-data-operation : = simple-data-operation(

subcomponents: alternatives; simple-data-operation-set;

instruction: memory;

concurrency: + integer;

instruction-source: data, instructions, operator instruction)

A compound-data-operation consists of a collection of alternative simple-
data-operations. Thus, a compound-data-operation is compound either in
time, by having many varied operations which can be selected sequen-
tially, or in space, by having many separate operations which can perform
in parallel.

11. Processor

11.1

11.2 simple-processor := component (

Processor / P : = simple-processor 1 complex-processor

cocomponents: primary: M-set, *secondary: M-set, controlled:
component-set;

' function: (microprogram 1 central / general purpose / c 1 input-output /

..

io I display I array I vector move I special algorithm I language)

subcomponents: (interpreter: K; data-operations: D-set; M.processor-
state / ps: see PMS Tuhle 1; M.nou-processor-state: see PMS
Table 1;

operations: operations(data-operations), operationsjcocomponents)
see ISP;

data-types: data-type(operations) see 1%';

cycle-time / tc: cycle-time(Mp);

i-rate: i-rate(Mp);

concurrency: (a-rate / cycle-time) [o];

program-switching-time: It];

interrupt-response-time: It];

instruction-set see ISP 2.1;

instruction-efficiency: (operations / instruction) / instruction-size [o/i];

algorithm-encoding-efficiency: (sum(data i-units/[t])/
siim(data i-units + instructions)/[t]));

instruction-size: [i];

operation-code-size: [i];

address-size: [i];

Appendix 627

addresses-per-instruction: (0 address / stack 1 1 address / 11 1 + index /
(1 + x) I 1 + general register address / (1 + g) 12 address 13 address I
n + 1 address I compound))

A simple processor is always associated with a memory (its primary mem-
ory), which holds the program (and usually the data) for the processor.
In addition, there may he secondary memories and also other components
that are controlled by the processor.

The processor often functions as the main component of an essentially
isolated system (often called stand-alone); it is then a central processor, Pc.
Processors also occur as more specialized components in larger systems; e.g.,
to manage input/output (Pia) or display (P.display) or to do a subset of
data-operations efficiently (Pdata, P.vector,move, P.array, or P.specia1--
algorithm). Processors are sometimes built in hierarchy, using one processor
to perform the interpretation and operations of another. Such processors
have become known as microprogram processors.

The distinguishing feature of a processor is that it determines its own
next instruction. The control that does this is called the interpreter. The
repertoire of operations of the processor is partly a set of data-operations
performed by its own subcomponents and partly the set of operations
proper to a set of transducers, memories, links, and switches external to
the processor but incorporated into its operation code. The operations are
largely determined by the set of data-types (see the ISP section).

A processor may have considerable internal memory (called the proc-
essor state, Mps). Besides the instruction and instruction-address registers,
which are necessary for interpretation, there may be various amounts of
status information, accumulators, index registers, general registers, and
accumulator stacks. No one system has all of these memories, since they
often provide alternatives to each other (e.g., index registers and general
registers).

Each of the operations has its own operation time and its own possi-
bilities for being overlapped with other operations. Several parameters are
given that summarize this array of information: the cycle-time of Mp,
which in the long run limits the rate at which instructions and data can
be accessed (and also determines the maximum throughput); the concur-
rency, which tells how many operations can be performed per cycle time
(this requires an averaging of the various possibilities as given in the in-
struction set); and the program-switching time, which is the time required
to change context from one program to another. In simple operating re-
gimes (standard batch processing) program-switching time is not an impor-
tant parameter; it becomes so when interrupts are permitted. For inter-
rupts, the response time is critical. It is the time between when a request
is made and when the request is acknowledged by P. The instruction set
is really an entry point to the ISP description of the processor. One might
give here simply the number of instructions, but this can be a very mis-
leading number, since many variations of a basic instruction can be counted
thus giving highly erroneous results. The algorithm-encoding-efficiency is
the ratio of i-units uaed for data per unit time to the number of accesses
for data + instructions per unit time. This efficiency is strongly affected
by the address size, which is usually the address size of the Mp but need

not be if a processor use5 an incremental or relative addressing system.
The ratio can he measured at many levels of the ISP: instruction-by-
instruction, on a subroutine, or for a whole program. In a simple computer,
this ratio is near y2. Vector operations can allow a ratio much closer to 1.

Common measures for the instructions give the size of the operation
code, the address, and the instruction. The addresses per instruction is one
of the best parameters to indicate the overall structure of the instruction
set and is called the instruction-type. It ranges from 0 addresses (systems
which execute a sequence of operations) through 1,2, and 3 addresses per
instruction to variable number of addresses. Between 1 and 2 addresses lie
index register (1 + x) and general register (1 + g) machines. In a special
class is the (n + 1) organization, which involves an additional address to
obtain the next instruction; it can be added to any other organization.

EXAMPLES Pc(’DEC PDP-8; 1 address / instruction; -2 w/ instruction;

Pio(’1BM 7909; 500 kw/s; data-types: words; integer; 1 ad-
12 b/w; 1.5, 3.0, 4.5 ps / instruction)

dress / instruction: 36 b/w)

11.3 complex-processor : = simple-processor (

Mp-concurrency: (1 PI 1 P with interrupt I 1 program with multiple
concurrent subprograms 1 1 Pc - n Pi0 1 monitor + 1 user program I
monitor + 1 swapped program 1 fixed multiprogramming)
multiprogramming I segmented-programming);

multiprogramming : = (no relocation I protect only I 1 segment I
2 segment / pure 1 impure segments I > 1 segments I paging)
segmented-programming : = (fixed length page segments I
multiple length page segments I variable length page segments 1
named segments);

P-concurrency: (serial / serial by bit I parallel / parallel by word 1
multiple instruction streams I multiple data streams (arrays) I
pipeline processing I instruction-memory);

instruction-memory : = (none 1 1 instruction look ahead1 n instruction
look ahead I cache / look aside / slave memory))

A complex processor is often an extension of a simple processor along the
dimension of memory mapping, since a processor is already a highly struc-
tured and “complex” component.

Note that a collection of processors does not constitute a compound
processor in a way similar to other PMS components; hence, we denote a
general collection of processors as a computer. Thus, a complex processor
can be written in terms of a simple-P with new values. The central proc-
essor using a microprogrammed processor contains a specialized processor
as a subcomponent (P.microprogram).

Three attributes separate a simple processor from a complex processor:
Mp-concurrency, P-concurrency, and instmction-memory. In essence, the
simple processor has no Mp concurrency (interpreting a single program)
and serial or parallel P concurrency, with no instruction-memory (buffer-

628 Appendix

ing for multiple instructions). These attributes are independent of one
another and are discussed in Chap. 3.

12. Computer

12.1

12.2

Computer / C : = simple-computer 1 compound-computer 1 network

simple-computer : = component (

structure: 1Pc 1 1 Pc.interrupt;

sulxomponents: Pc, Mp-set, *controlled: component-set(Pc);

cocomponents: none:

function: (scientific 1 business data processing 1 general purpose 1 process
control / control I communication : = (switching I store and forward) 1
terminal control / input-output / io 1 display1 file processing / file
control I time-sharing);

access-time: access-time(Mp);

cycle-time: min(cyc1e-time(b1p));

access-type: access-type(Mp.min);

instruction-type: instruction-type(Pc))

A simple computer consists of a single Pc (possibly with interrupt capa-
bility) with an Mp (possibly a set of them) plus some set of transducers,
Ms’s, switches, and controls. It is a complete system that can stand alone
and accomplish processing for a wide variety of functions.

Almost all of its significant parameters are derived from those of the
Pc or the Mp (using the Mp with the minimum cycle time if there are
several Mp’s).

E.UMPI,ES C(’Whir1wind I: Mp(core; 8p /w; 2 0 4 8 ~ ; 16 b/w);
Pc(M.processor_state: -2w; 1 instruction/w; 1 address/
instruction); I948 - 1966)

C(’LGP-30; technology: vacuum tubes; power: 1500 watts;
Mp(drum, 4096 w; 31 b/w; t.access: ,260 - 16.6~1~);
Pc(1 address/instruction; 1 instruction/word; Mps: -2w))

12.3 compound-computer : = simple-computer(

structure: ((1 Pc, n Pio)((l Pc, n Pio, P.display)J(2 Pc)\(n Pc multi-
processor) 1 (n Pc, P(array) 1 (n Pc, special algorithm) 1 (n Pc parallel
processor));

siilxomponents: Pc-set, Mp-set, *controlled: component-set(Pc-set))

The essential feature of compound computers is to have more than one
processor. This is indicated primarily by the structure parameter but re-

quires augmenting the subcomponents to include a set of Pc’s. Other than
this, compoundc’s are the same as simple-C’s, although some parameters
(such as instruction-type) may not have simple values if several Pc’s differ
radically.

The simpler compound-C’s retain a single Pc, but add input/output
processors (Pio’s and then P.display’s). The next step is to limited multi-
processing, with 2 Pc’s, and on to n Pc’s operating on many programs, and
finally to parallel processing operation on many tasks of a single program.
A parallel processor is distinguished from a network; namely, there is no
way to decompose a parallel processor into disjoint C’s (with Pc’s and
Mp’s). In both multiprocessing and parallel processing there may or may
not be Pio’s, P.display’s, and other special-function processors.

EXAMPLES C(l Pc-8 Pia; ‘IBM 7094 11; Mp (32768 w; 1.4p/w; 36 b/w);
Pc(1 address; 1 instruction / w; Mprocessor state: 12 w; data-
types:(integer, word, bv, sf, suf, df, duf, fri); 1962 - 1966)

C(mu1tiprocessor; ‘Burroughs D-825; Mp(65 kw; 4.8p/w; 48
b/w); 16 (Pc, Kio); Pc(stack; 12 b/syllable; 1 - 7 syllable /
instruction; data-types: integer, floating, single character,
boolean vector))

12.4
A network is any collection of two (dual-C) or more computers not inter-
connected through primary memory. The network-C is a special case of a
single physical structure which is usually called a single C but by its
structure is a network (for example, CDC 6600). Finally, a set of inter-
connected computers that are physically separate are the most general
case of networks.

network/N : = dual-C 1 network-C I C-set.

ISP conventions

Making use of the prior general conventions and the PMS definitions, ISP
is developed systematically. We do this only for the processor and not for
controls (though the system might be adapted to that end). Several nota-
tions are added to make ISP conform with currently existing notations.

The top-level entities of ISP-data-types, operations, the interpreter,
and the instruction-set-are values of corresponding attributes in the PMS
definition of a processor. An image of all the PMS structure for a computer
system exists in the instruction set of the processors that control the PMS
components. PMS notation is assumed for this. In ISP the primary mem-
ory (Mp) is usiially named M; all other memories must be specifically
declared and named.

1 Data-types

2 Instructions

3 Operations

4 Processors

Appendix 629

1. Data-types

1.1 We give first a general definition of data-types (1.2), and then two
shorter notations, which are the ones commonly used-i-units (1.3) and
data-type-names (I .4).

1.2 data-type := (

referent: entity;

referent-expression;

*component-list ;

component: data-type;

carrier: i-unit;

format: (component: memory-expression)-list;

information-content: [i])

A data-type specifies the encoding of a meaning into an information me-
dium. The meaning of the data-type (that which it designates or refers to)
is called its referent (or value). The referent may be an entity, ranging
from highly abstract (the uninterpreted bit) to highly concrete (the pay-
roll account for a specific type of employee). The encoding of this refer-
ent either is directly understood (as when a bit encodes a bit) or must be
given by the referent expression in terms of the component data-types.

EXAMPLE binary-floating-point-number : = data-type(

referent: number;

component-list: mantissa, exponent:

referent-expression: mantissa x 2 t exponent)

COMMENT Note that in the referent expression the component data-types
are taken to designate their values, Le., a signed fraction and an exponent
is an integer. This avoids a clumsier notation in which one could write:

referent(mantissa) x 2t referent(exponent).

Associated with every data-type is an i-nnit, called its carrier, into
which all its component data-types can be mapped. The carrier is used in
storing the data-type in memories and in transmitting it over links. It must
he extensive enough to hold all the component data-types, hut it may be
larger (having error-checking and -correcting bits, or even unused bits).
It need not hold disjointly all the carriers of the component data-types,
since packing may occur. However, the component data-types must all
have their relative structures preserved (or they cannot be processed). The
mapping of the component data-types into the carrier is called the format.
It is given as a list that associates to each component a memory expression
involving the carrier (see ISP 2 for definition of memory-expression).

EXAMPLE floating-point-number : = data-type (

component-list: mantissa, exponent;

mantissa := 23 b; exponent := 0 b:

carrier: word, 32 b/w:

format:(mantissa: word(0:22), exponent: word(23:31)))

The five parameters-referent, referent-expression, component-list,
carrier, and format-determine a data-type. The information content is
simply a usefill redundant parameter, which gives the amount of variety
of the data-type. An upper hound, of course, is the amount of information
in the carrier. A better estimate is the sum of the contents of the compo-
nent data-types. A true value must take into account the dependencies
between components. The efficiency of encoding (under the constraint that
the encoding must be into the carrier and that all possible values must be
represented, no matter how low their probability of occurrence) is the
ratio of the information content to the carrier content.

1.3 data-type : = i-unit
The simplest data-types are i-units. An i-unit as a data-type implicitly
determines the five defining parameters given in ISP 1.2. The referent is
the uninterpreted i-unit itself (k, a word is to be handled only as an
uninterpreted unit of information). There is no need for a referent expres-
sion. The carrier is the i-unit itself, if it is an i-unit capable of independent
storage and transmission in the system. If not, then the carrier is the
smallest such i-unit that contains the given i-unit. The component data-
types are the first sublevel of structures of the i-unit. There are no com-
ponents if the i-unit is a base-unit (bit or undecomposable character). If
the i-unit is the carrier, no format is needed. If a larger carrier is required,
then a mapping is usually implicit (e.g., 1 bit in a word goes into the low-
order position; 1 word in a block goes into the first word, etc.). If not, a
format must then be given in the regular way.

1.4 data-type : = data-type-name

data-type-name : = i-unit-name 1 simple-name I
component-name . length-type I precision . data-type-name 1
component. component. . .

length-type : = array / a 1 string / st 1 vector / v

precision : = +integer I multiple / m 1 quadruple / q 1 triple / t I
double / d 1 *single / 7 1 half / h 1 fractional / fr

A naming scheme is provided for data-types, which can be used as a basis
for abbreviations. Some data-types have arbitrary simple names (e.g., char-
acter, floating point numbers); others are named by their value (e.g., in-
teger). Data-types that are iterations of a basic component can be named
by the component suffixed by a length-type. The length-type can be array/
a, implying a multidimensional array of fixed but unspecified dimensions;
a string/st, implying a single seqnence of variable length (on each occur-

630 Appendix

rence) or a vector/v, implying a one-dimensional array of a fixed but un-
specified number of components. The length-type need not exist, and then
this form of the name is not applicable.

Data-types are often of a given precision, especially when referring to
numbers; it has become customary to measnre this in terms of the number
of components that are used, e.g., triple-precision integers. Names can be
formed from the basic data-type-name by prefixing the precision. Note
that a double-precision integer, while taking two words, is not the same
thing as a two-integer vector; so that the precision and the length-type,
although both implying something about the size of the carrier, do not
express the same thing. Finally, it is possible to name a data-type by simply
listing its components.

The main use of the data-type-name is to permit the short abbrevia-
tions which arise by replacing every part with its abbreviation and drop-
ping the periods. Thus, double-precision integers have the data-type-name
of double.integer, which can be replaced by d.i and then by di. Similarly,
a vector of bits is bit.vector / b.v / bv. [The definition of data-type-name
is consistent in its use of period with the definition of compound name
(see GC IO)].

If a data-type is defined by giving just its name, conventions are re-
quired to define the five parameters of the data-type. The carrier is always
taken to be the smallest i-unit that can contain the data-type with the fol-
lowing mapping. The format is taken to imply that the components are
laid out in order (with no packing) into the subcomponents of the carrier
i-unit. The referent of the data-type is given by context, e.g., if the data-
type is simply an iteration of some kind of a data-type whose value is al-
ready understood, (e.g., in a vector of integers). Thus, there is no need for
a referent expression.

1.5 We give below a number of basic data-types that need to be defined
explicitly. Table 3 summarizes a large number of data-types and gives
their standard abbreviations, as above. Figure 3 of Chap. 2 shows the
lattice of data-types in which one data-type is connected to a higher one
if it can be obtained by a further specification of the higher one. This is
significant, since operations on higher data-types also apply to the lower
ones. In the definitions below, which are the standard general data-types,
we omit the referent expressions, carriers, and formats except those that
are simple. (The fully general definition of radix-complement number
representation, for example, is too extensive to be worthwhile here.)

base-data-type / radix : = data-type(referent: (binary / 2 I octal / 8 1
decimal / 10 1 hexidecimal / 16); component: i-unit: (b 1 o 1 d 1 hex))

+ integer-data-type / ui / unsigned-integer / magnitude : = data-type
(referent: +integer; component: radix)

integer-data-type / i : = sign-magnitude 1 radix-complement I
(radix - 1)-complement

number-data-type : = data-type(referent: number; normalization:
(*normalized / n I unnormalized / u); name: normalization . number-
data-type-name)

Table 3 Examples of commonly used datatypes (organized by basic
i-units)

bit / boolean / b
bitarray / ba
bitvector / bv

byte / by
byte.string / by.st
10 byte.vector / 10 by.v

character / char / ch
char.string / chard
10 char / 10 ch
4 char.vector / 4 ch.v

complex / cx

digit / d

10 digits / 10 d
digit vector / d.v
10 digit, array / 10 d.a

unnormalized floating point / uf
double floating point / df
double unnormalized floating point / duf
floating point vector / s.f.v / f.v

floating point / f / single floating point / sf

field

fraction / fr

integer / i
integer vector / iv
double integer / di

mixed / mx

word / w
half word / hw
double word / dw
triple word / tw
multiple word / mw
word vector / wv
word string / wstring
half word vector / hw.v
7 word / 7 w
8 word vector / 8 w.v

COMMENT

(normalization) to prefix the name of all numbers.
The general data-type for number introduces a new parameter

mixed / mx / fixed-point : = number-data-type (components: integer-
part, fractional-part)

floating-point / f : = number-data-type(components: mantissa, expo-
nent; value-expression: mantissa x radix ? exponent)

Appendix 631

complex : = data-type(components: real, imaginary; usually floating
complex)

field : = data-type(carrier: word; components: i-unit-list; format:
(element-range))

COMMENT A field is a subset of bits, or characters, or bytes in a word. It
is usually, though not always, an interval. See ISP.2 for element range.

EXAMPLES

12, 101, 5; + 125, - 126;

+72, -999; sign-magni tude

]()I2, 77,, AS,,;

+ 6.257; 6.257 X 10”;

(1, 2, 2.7); complex

unsigned; and signed integm

binary, octal and heridecimul

mixed, and floating point

digit set specification: stands fool

l O 2 I 1 1 , ; and 70,171, I . . . 177,
respectiuel!y

2. instruction

2.1 instruction : = data-type(referent: instruction-expression; operation-
code: field; operand-li.;t; operand: data-type)

instruction-expression : = condition + action-sequence

action-sequence : = (step I next step)-list

step : = action I condition 4 action-sequence

action : = memory-expression t data-expression

memory-expression : = (
memory *[address-rangel-list *(element-range) character-base I
memory-expressionl; memory-expression I memory-expression-list)

address-range : = address I address: address 1 address-expression I
address-range-list

address-expression : = operation-expression(address-operations)

element-range : = field 1 field-list

character-hase : = +integer

condition : = boolean I memory-expression

data-expression : = data-type I irieiiiory-expression I
operation-expression 1 data-expression{ data-type}

base i-unit

operation-expression : = (nonary-operation I
unary-operation data-expression 1
data-expression binary-operation data-expression 1

data-expression n-ary operation data-expression . . . I
function(data-expression-list) / f(data-expression-list) I
operation-expression * { operation-modifier)

operation-modifier : = data-type I name

2.2 The instruction is a data-type and thus has both a representation in
memory and a referent, which is called the instruction-expression. The
only fixed part of the instruction format is the operation-code. All the rest
are operands to be used by the instruction-expression.

See GC 10

2.3 The instrnction-expression, when interpreted, takes the processor
through a sequence of steps which result (possibly) in some change of state
of the computer system that holds past the period of interpretation, thus
constituting a new initial condition for the next instruction. The action
sequence has two structural features. First, steps (and subsequences of steps)
may he conditional on a boolean value, developed according to a condi-
tion. Second, steps may be accomplished in parallel or in series. Any set
of steps between two occurrences of the term “next,” are to have all their
data expressions developed prior to any transmission of data. Thus, all
their data is a fimction of the existing state at the start of the sequence.
At the occurrence of the term “next,” all pending transmissions are made,
so that the state for the following sequence of steps is now different (if
there were in fact transmissicns to be made).

2.4 All permanent changes in state are accomplished by means of actions,
which take data developed according to a data expression and transmit it
for storage in a memory, as designated by a memory expression.

EXAMPLES

A t B ; B t D - C ; B t B + g

x l t .x2; x2 t -xl; a t &(a); a c normalize(b)

AB t a 3 b

x l {float} t x2 {Fixed)

XI t xl + x2 {floating]

a e- a x 2“ (logical]

.fired to floating data-type

floating duta

usually called logical shift, actu-
ally a boolean tiector operation

AC, M Q t A C n MQ / M[z]

AC3MG t AC x M[z]

A c 6777 nonary operation

G +f(A, B, C) general function

A t u B general unary operation

A t B h C general binary operation

A t max(a, H, XYZ, E, 4) n-ary operation

632 Appendix

2.5 The memory expression specifies the contents of a memory (an in-
stance of a data-type) by giving the memory switch (possibly compound),
as seen from PMS. However, all that is represented in ISP is the address
that is used to control the switch. The address is a data-type, usually rep-
resented as a positive integer. The element-range is a field. In both cases
it is possible to specify an arbitrary list of contents (addresses and fields),
although in most processors this can never arise. The address-range x:y
means from address x to address y inclusive.

EXAMPLES OF REGISTERS

A, or A;

sign bit/sign,bit/sb

lb; b2; 2C1; 2C2’; C”; C’ ”; “+”; “A”

end-aroundshift or end around shift

G.3

i(2); z(a)

bc(12:8) or bc(12, 11, 10, 9, 8)

AC(P,Q,S,1:35)

X(O:7), or X(0:23), or X(0:23)

M[0:7777,](0:11) or M[0:4095](0:3),

X[O: 15][0: 15](31 :O)

M[O:7][0:31][0: 127](O: 11)

EXAMPLES OF RESTRUCTURING AND RENAMING

A(17) : = B(4); A(():]) : = B(0, 4)

op(0:2) : = i[1](9:11)

A[O:3](0:7) : = A’(O:31)

indicator[1100001,] : = sense-switch(A)

XR[1:2][1:3] (B, A, 8, 4, 2, 1) := M[87:89,
92:94](B, A, 8, 4, 2, 1)

boolean-memories;
scalar bits

identical names

ternary memory

scalar bih of an array

identical registers

38 bit register

identical registers

identical vectors

16x16 matrix

3 dimensional array

vectors formed f r u m
single bit vector

EXAMPLES OF REGISTERS FORMED BY CONCATENATION

LAC(L, 0:ll) := LCIAC(0:ll)

A B (o : ~ ~) : = ~(0:23) n ~(0:23)

EXAMPLES OF REGISTERS FORMED BY A LIST OF REGISTERS

C, D(O:4) := B(7), A(1:4)0Z(8)

2.6 An address-expression is an operation-expression on addresses, Le.,
using only the address-operations available in the processor. An address-

expression may imply the use of memory if it involves nested parentheses;
such memory is assumed to he temporary with no permanent effect on
the memory state.

2.7 A condition is given as a boolean, that is, as either true or false
(equivalently, 1 or 0), or the result of a boolean expression involving the
logical connectives or relations among data-expressions (see Table 4, ISP 3,
and also GC 13). A condition can also be given as a memory-expression,
in which case the memory contents are normally evaluated as a boolean
vector with all Os being false, and not all Os being true.

2.8 Data-expressions are either instances of data-types; the contents of a
memory, as given by a memory-expression; or the results of operation-
expressions, which is to say, the results of operating on data-types by the
data-operations available in the processor. Data-expressions may imply the
use of memory if they involve nested parentheses. Such memory is as-
sumed to be temporary, with no permanent effects on the memory state
of the processor or memory. The data-type name may sometimes follow
the data-expression, {data-type}, in order to carry more information and
avoid more complex names for memory-expressions, etc. (see Chap. 2,
page 30, and ISP 3.1).

2.9 Operation-expressions are the form used by the operations (see ISP 3).
Note that the operation-expression as a whole can be modified by an
operation modifier enclosed in braces.

EXAMPLES OF INSTRUCTIONS

add (:= op = IOl)+ integer add
(L AC t L AC + M[z])

jms (:= op = 100) -+ (M[z] t PC; next jump to subroutine
P C t z + I)

FAD (:= op = +767)+
(FAC c F A C + M[z] (s.f})

single precision
fiating point add

add 4 (A c A + M[z] {two’s complement}) the operation code
need not be given

skip (: = op = 67) + ((A > 0) + P t P + 2;
(A = O) - + P t P + 1)

add / “A” (: = ~p = 110001) -+
(Ov, M[B] t M[B] + M[A] {string})

‘3’’ (: = OP = 1) + (A t M[t][s])

((A A B) v (C > F))+ (G t G + H)

3. Operations

3.1 Operations are defined to produce results of specific data-types from
operands of specific data-types. The data-types themselves determine by
and large the possible operations that apply to them. No attempt will be
made to define the various operations here, as they are all familiar. Table
4 gives the notation for the operation-types, organized by data-types. In

Table 4 Data-operations

operation-types : = access-i-unit-operations 1 transmission-operation 1 control-operations 1 unary-arithmetic-operations 1 binary-arithmetic-operations 1
n-ary-arithmetic-operations I conversion-arithmetic-operations 1 unary-vector-operations I relational-i-unit-operations I
relational-arithmetic-operations I boolean-operations

nonary-operation : = memory-expression
unary-operation / u := unary-arithmetic-operations1 unary-boolean-operation see GC 13
binary-operation / b := binary-arithmetic-operations 1 binary-boolean-operations see CC 13
n-ary-operation : = n-ary-arithmetic-operations1 n-ary-boolean-operations see CC 13

Operation Abbreviation Result' Operution Form' Comments

access-i-unit-operations

read
write
vector element write
vector element
concatenation
extraction

transmission-operation

transmit

control-operations
evoke

next

unary-arithmetic-operations
absolute value or

negate
reciprocal
integer part
fraction part
sign
round
normalize, mantissa part
normalize exponent,

square root
square
logarithms
exponent i a I

trigonometric

magnitude

exponent part

random (parameter
for particular
distributions)

arithmetic shift
of radix, r

c

+

abs n2

sqrt n2
()2 n2

log, I n n2

trigfcn n2

e n2

xr n3
/ r n3

t l
t l
t.v,[i,I
t 3

t l t,
t, (element-range)

b, + action-sequence

- n1
1 / n1
integer-part(n,)
frp(n,)
sgn(n,)
round(n,,n,)
normalize(n,)
normalize-

exponent(n,)
sqrt(nJ
(nJ2
~0ge.1o(n1)
en'
trigfcn(n,)

random(n,)

n, x ri2
n1 / ri2

basic operation is to access an i-unit
in a memory (e.g., word vector)

access t, for reading
access t, for writing
the i2th element of vector, is read
the i2th element of vector, is written
t, and t, are combined to form t3
some part of t, forms t,

t, receives 1-unit of t,; involves read
transmit and write

if b, is true then action-sequence is
applied; else the action-sequence is
ignored

the occurrence of "next" implies
operations following occur later

n2 may be unsigned data-type

n2 is an integer data-type
n1 may be mixed If I unf
n1 may not be ui I ufr
used with multiply, divide
used with f arithmetic
to fix numbers into a standard form

(n, 2 0)

log,o(n,)
~og,(n,)

also sin, sin-', sinh, etc. for the
separate trigonometric function
(both radians and degrees)

n1 may be previous pseudo-random
number (seed)

if i2 is signed, then either form can
be used for both x and /

Resu l t s a n d opera t i ons f o r m s g i ven in t e r m s of da ta - t ypes t o wh ich they apply: b -boo leans ; + in tegers ; f - f l oa t i ng : n - a n y n u m e r i c da ta - t ype (e.g., f loa t ing ,
in teger , mixed) : t -a l l da ta- types ; v -vec tors .

Table 4 Data-operations (Continued)

Operation Ahhreciation Result Operation Fomi Comnicnts

binary-arithmetic-operations
add
subtract
inverse subtract
multiply
divide

+
-

X
/ where only n, or n2 may be used to

see divide similar to inverse subtract
i, - (i, / iz) x i2 remainder

give n4 or n5
inverse divide
modulo

conversion-arithmetic-operations

f ix-to-f loat
float-to-fix

unary-vector-operations

mod il mod i2

f,

12

float(i ,)
f ix(f ,)

integer or fixed to floating
floating number to integer

radix r; note if r = 2, the character
is a bit

end-around.shift (rotate) v3 x r (rotate}
v3 ,' r (rotate}
v3 x r (logical}
v3 ,' r {logical}
12

n2

v1 x ri2(rotate}
v, / r'X{rotate)
v1 x r'z{logical}
v1 x ri.{logical}
tally(b.v)
sign,extend(b.v,)

logical-shift

tally/count
sign extend

minimum
maximum
summation
average
product

identical
not identical

equality
heq ua I i ty
less than
greater than
less than or equal to
greater than or equal to

n-ary-arithmetic-operations

relational-i-unit-operations

relational-arithmetic-operations

boolean-operations

false (0)
and

the most or least significant digits

count 1 's in a vector
copy sign of b.v to fill vector in n2

receive 0's in the shift

min
max
sum
a vg
prod

smallest of n1 . . . n,
largest of n, . . . nm
n, + n 2 . . . + nm
n, + n2 . . . nm) / m
n, x n 2 . . . x nm

comparison of two i-units
b3
b3

comparison of two numbers

all 16 possibilities are listed 0
A

null

null
exclusive or;

inclusive or
nor/ Pierce stroke
coincidence or

Appendix 635

Table 4 Data-operations (Continued)

Operation Abbreviation Result Operation Form Comments
~ ~~

not 1 b3 1 b2
implication inverse b3 b l V l b
not 1 b3 l b l

true (1) 1 b3 1

not 1 b3 1 bl
and A b3 b l A b,
or V b3 b l V b,
exclusive or 0 b3 b l 0 b,

nand t b3 l (b i A bz)
b3 l (b i V bz)

implication 3 b3 7bl V b2 or b, 3 b,
nand/Sheffer stroke t b3 i b 1 V 7b2 o r l (b 1 A b2)

boolean-operations (common set)

boolean-operations (sufficient sets)

lbl this pair of operations are required
1 nor

and A b3 b, A b,) for sufficient set
not 1 b3

order to have an open-ended scheme for operating on many data-types
and defining new operators, the operation modifier is used. The operation
modifier enclosed in braces is used to distinguish operations from one
another. The operation modifier is usually the name of a data-type, but it
can also be a descriptive name applying to the operation (e.g., rotate).
For example, the various add operations on differing data-types are speci-
fied by writing (data-type} after the operation (see Chap. 2, page 30).

3.2 Operations can be defined for the most inclusive data-types for which
they will work and can then he applied to more specific data-types. The
most general instance of this is the transmit operations which works on
i-units, and is therefore used for all specific data-types, such as numbers
(because it works on their carriers). Another example is the relational
operations of equality and inequality.

3.3
simply give some examples.

New operations can be defined by means of forms (see GC 4.5). We

EXAMPLES

x1 + x2 := (X I + x2; two’s coniplement add
side efeet, set 00

rotate operation; end
hits, X(11) and X(O),
are connected

(X1 + X 2 2 212) 4 (Ov c I))

Xl(1l:O) := X2 x 2 {rotate} := (
Xl(11:l) := X2(10:0);
Xl(0) := X2(11))

4. Processors

4.1 The ISP definition of a processor consists of a set of instructions, which
involve a set of operations, data-types, memories, and other PMS compo-
nents, plus an interpreter that finds the next instruction and executes it.
These sets are all values of corresponding attributes of the PMS descrip-
tion of a processor. All these aspects of an ISP processor have to be de-
clared in giving the description. In practice, some of them are given by
having the PMS description available (e.g., word size, T’s, Ms’s, etc.);
others declare themselves simply by occurring in the ISP expressions (e.g.,
most of the operations and data-types). We list below the common form
of the machine ISP descriptions as a reader will find them in the chapter
appendices of this book.

4.2 Memory (Mps, Mp and M(T.console)). The processor state memory
is declared first. It holds the information necessary to restart the proces-
sor, if it is stopped between instructions. Table 1 (page 621) names the
functions of the memory (e.g., program counter, accumulators, etc.). The
state also includes the interrupt status, machine fault bits, etc. Any memory-
mapping hardware registers are considered part of this state.

The primary memory, the largest state, is used to hold the program
that the processor interprets. It also holds data.

The console state is accessible from the operator’s console. Only the
bits that are part of the ISP are relevant, i.e., bits that can be used to
change the state of the primary memory or processor state. The switches
that are used to start and stop the machine should also be given in a
complete definition.

636 Appendix

4.3 Instruction Format. The instruction formats are usually declared in
the same bashion as memory and are not distinguishable as special non-
memory entities. Normally, the instriictions are carried in registers; it is
thus natural to give declarations in this fashion. Usnally only a single dec-
laration is made, the instruction/i, followed by the declarations of the
parts of the instruction-the operation code, the address fields, indirect
hit, etc.

EXAMPLE

i/instrnction[0:4](0:7)

op(0:4) : = i[o](0:4) oprode

r(0:2) := i[0](5:7) register address

d(0:15) : = i[l:2](0:7)

five 8 hit byte instruction

Z6 hit address

4.4 Effective Address Calculation Process. This process is declared using
the assignment command (:=) and is evoked each time an instruction
makes reference to a variable that is taken to be an effective address or an
operand. In the book operands have two forms. Most of the time they are
expressed as memories and address expressions using the effect address
calculation process: otherwise the operands are defined by a process.

EXAMPLES

Conditional register definition
z(0:ll) := z‘; effective address

with side effects i + (M[z’] + 1;
+- M[z’] + 1))

G := M[g]

shift-count / SC(0:ZS) : =
(TF c e’; F + z)

operand definition
process

E’(21:35) := index convention
((T = 0) 4 (T # 0) + XR[T] + y)

Declarations in terms of a variable puranaeter
hlp[z] : = ((2 > FL) + Mp[z + RA]:

(z 2 FL) + (Run c 0: only side effects,
violation c 1)) no value

Evaluated expressions
add-instruction : = (op = 5)

z(0:6) : = (a(0:5,7) + b(1:7))

skip-condition : = (?Q A d(15) V z (6))

boolean

7 bit calue

4.5 Data-type Foimat and Special Data-Operation Definitions. The com-
ponent parts of the data-types are named, and their element ranges are

first defined, so that the data-operation definitions can use them. For ex-
ample, a precise definition of an ISP would include the data-type formats
(for example, floating-point), followed by a definition of each data opera-
tion (for example, +, -, X, /). Normally, we do not give enough infor-
mation about the data-type and its appropriate operation implementation
in our description of machines, since the information for these descriptions
is obtained from the programming manuals. If we were actually to use the
ISP descriptions, as an interpreter nsing a compiled or interpreted lan-
guage, then only a few well-defined primitives would exist in the language
and all other operations would have to be defined in terms of these primi-
tives for each ISP. ISP 2 and ISP 3 describe how the various data-types
and operations are declared.

4.6 Instruction Interprehtion Process. In the definition of processors, the
only part that is executed is the instruction interpreter. All the other parts
are memory data declarations and processes to be carried out as an indirect
consequence of the interpretation process. The format for most interpreters
is the familiar fetch-the-instruction then execute-the-instruction pair of
states, and consists of only one ISP statement.

EXAMPLE

Rim 4 (instruction c hl[PC]; fetch (PC/progrum counter)
PC t PC + 1: next

Instruction-execution) execute

In more complex processors the conditions for trapping and interrupting
must be described. Also, in the interpretation process it is often more
descriptive to carry out part of effective address calculation prior to In-
struction-execution. See below.

EXAMPLE

-, interrupt A Run+

(op[O] c M[PC]; PC c PC + 1; next

long instruction 4

(op[ll + M W I ; (op[ll c M[PCl:

fetch

fetch more instruction
if a long instruction PC t PC + 1); next

Instruction-execution) execute

interrupt A Run + (M[O] t PC; PC t 1: interrupt, .saw

PC and go to M [1] interrupt t 0)

The IRM 1401 interpreter (Chap. 18) requires a separate process to fetch
the operands addresses prior to execution in a variable-length instruction.
The fetch is based on the specific instruction to be executed next.

Appendix 637

EXAMPLE EXAMPLE

Run + (op t M[PC]; PC + PC + 1; next fetch

Fetch-operands-addresses; next fetch operands

Instruction-execution) execute

4.7 Instruction-Set and Instruction Execution Process. The instruction-set
and the process by which each instruction is executed are usually given
together in a single definition. This process is called Instruction-execution
in all the ISP descriptions in this book. It usually includes the definition of
the conditions for execution, the instruction (i.e., its operation code), the
name of the instruction, its mnemonic name, and the process for execution.

Instruction-execution : = (

add + (A t A + M[z];

end Instruction-execution
opr --$ (499);
and 4 ('4 t A M[q]))

where

qqq : = (cb + (A t 0); next secondary definition
cmb 4 (A t lA);

pl+ (A t A + 1)) end 9'19 definition

Bibliography

Abbreviations

Journals

A CM

A DC

AFIPS

AIEE-IRE Conf.

A p p I . Sci . Res.

EJCC

FJCC

SJCC

WJCC

IBM J. of Res. and Veu.

IBM Sys. J .

ICIP

IEE

IEEE

IFIP

IRE

Psychology Res.

Association for Computing Machin-

ery
Automatic Digital Computation

American Federation of Informa-
tion Processing Societies

American Institute of Electrical
Engineers-Institute of Radio En-
gineers Conference

Applied Scientific Research

Eastern Joint Computer Confer-
ence

Fall Joint Computer Conference

Spring Joint Computer Conference

Western Joint Computer Confer-
ence

IBM Journal of Research and De-
velopment

IBM Systems Journal

International Conference on Infor-
mation Processing

Institution of Electrical Engineers,
London

Institute of Electrical and Elec-
tronics Engineers

International Federation for Infor-
ma tion Processing

Institute of Radio Engineers

Psychology Review

General

Bull. Bulletin

Comm. Communications

Conf. Conference

Cong. Congress

J . Journal

Proc. Proceedings

Pt. Part

Res. Rept. Research Report

S U P P . Supplement

Symp. Symposium

Trans. Transactions

Reports, manuals, and miscellaneous

“Study of a Computer Directly Implementing an Algebraic Lan-
guage,” AD633-727, Air Force Office of Scientific Research
Contract AF19(628)-2798.

Control Data 6600 Computer System Reference Manual, 1st ed.
Publ. 450, Copyright 0 1963, Control Data Corporation, Min-
neapolis 20, Minn.

‘ ‘ Dig i ta I Sma I I Computer Hand book, ” 1967 Edit ion, Copy right
0 1967, all rights reserved, Digital Equipment Corporation,
Maynard, Mass.

Programmed Buffered Display 338 Programming Manual-
PDP-8, DEC-08-G61C-D, Copyright 0 1967, all rights reserved,
Digital Equipment Corporation, Maynard, Mass.

A22-6703, IBM 7094 Principles of Operation, Data Processing
System, Copyright @ 1959, 1960, 1961, 1962, International
Business Machines Corporation.
A22-6821-4 IBM System/360 Principles of Operation.

A22-6810-8 IBM System/360 System Summary.

IBM System/360 Functional Characteristics Manuals for each
Model

IBM System/360 Configurator (diagram) for each Model.

IBM OS/360: PL/I Language Specification, Form C28-6571,

H20-0223-0, IBM System/360 Attached Support Processor
System (ASP) System Description, Copyright 0 1966, Interna-
tional Business Machines Corporation.

A24-1403-5, IBM 1401 Reference Manual, Data Processing
System, Copyright 0 1960, 1961, 1962, International Business
Machines Corporation.

225-6487-3, IBM 1401 Customer Engineering Reference Man-
ual, Copyright 0 1960, 1961, 1962, 1963, International Busi-
ness Machines Corporation.

p. 74.

638

Bibliography 639

A26-5919-4, IBM 1800 Data Acquisition and Control System
Configurator.

A26-5918-5, IBM 1800 Functional Characteristics, Copyright 0
1966, International Business Machines Corporation.

IBM 1620 FORTRAN: Preliminary Specifications, Form J29-
4200-2, April, 1960.

FORTRAN Specifications and Operating Procedures, IBM 1401,
IBM Systems Ref. Lib. C24-1455.2.

International Business Machines Corporation, General Infor-
mation Manual FORTRAN, Form F28-807401, December, 1961.

Type 650 Magnetic Drum Data-processing Machine (Manual of
Operations), Form 22-60 60-1, International Business Machines
Corporation, New York, 1955.

Librascope LGP-30, Manual, Librascope, Inc., 80 Western Ave.,
Glendale, Calif.

Olivetti Underwood Programma 101 General Reference Manual,
Olivetti Underwood Corporation, One Park Avenue, New York,
10016.

Pegasus Maintenance Manuals, Ferranti Ltd., London.

Pegasus Programming Manual, Ferranti Ltd., London.

Proceedings Conference on Spaceborne Computer Engineering,
Anaheim, Calif., Oct. 30-31, 1962.

Scientific Data Systems Reference Manual, SDS 930 Computer,
Copyright 0 1965, 1966, 1967, Scientific Data Systems, Inc.,
1649 Seventeenth Street, Santa Monica, Calif.

Scientific Data Systems Reference Manual, SDS 9300 Computer,
Copyright 0 1963, 1964, 1965, 1966, 1967, Scientific Data
Systems, Inc., 1649 Seventeenth Street, Santa Monica, Calif.

Symposium on Multi-programming (Concurrent Programs),
Information Processing, 1962 Proc. IFlP Congress, pp. 570-
575, North-Holland Publishing Company, Amsterdam, 1963.

Univac Scientific Electronic Computing System Model 1103A,
Form EL338, Remington-Rand Corporation, 1902 West Minne-
haha Ave., St. Paul W4, Minn.

“Comprehensive System Manual, A System of Automatic Cod-
ing for the Whirlwind Computer,” Digital Computer Laboratory,
Massachusetts Institute of Technology, Cambridge 39, Mass.,
August, 1955; revised, December, 1955.

Books and periodicals

Ad am A60 Ada ms Associates : Computer Characteristics
Quarterly, summary of the characteristics of
computers being currently manufactured, Cam-

AdamC6O

AdamC62

AinsE52

AlexS5I

AllaR64

AlleM63

AllmR62

Alon R60

AlonR61

AlonR62

Alon R63

AmdaG62

bridge, Mass. Specificquarterlies used: January,
1966, vol. 6; no. 1; 1st and 2nd quarters, 1967,
vol. 7, nos. 1, 2; 4th quarter, 1967, and 1st
quarter, 1968, vol. 7, no. 4, vol. 8, no. 1, (first
published in 1960).

Adams, C. W.: A Chart for EDP Experts, Datama-
tion, vol. 6, pp. 13-17, November-December,
1960. See AdamA6O.

Adams, Charles W.: Grosch’s Law Repealed,
Datamation, vol. 8, no. 7, pp. 38-39, July, 1962.

Ainsworth, Ernest: SEAC Input-Output Operat-
ing Experience, AIEE-IRE-ACM Conf., pp. 44-
47, December, 1952.

Alexander, S. N.: The National Bureau of Stand-
ards Eastern Automatic Computer (SEAC),
AIEE-IRE Conf., pp. 84-89, December, 1951.

Allard, R. W., K. A. Wolf, and R. A. Zemlin: Some
Effects of the 6600 Computer on Language
Structures, Comm. ACM, vol. 7, no. 2, pp. 112-
119, February, 1964.

Allen, M. W., T. Pearcey, J. P. Penny, G. A. Rose,
and J. G. Sanderson: CIRRUS, An Economical
Multiprogram Computer with Microprogram
Control, IEEE Trans., vol. EC-12, no. 6, pp.
663-671, December, 1963.

Allmark, R. H., and J. R. Lucking: Design of an
Arithmetic Unit Incorporating a Nesting Store,
Proc. IFIP Cong. 1962, pp. 694-698, 1962.

Alonso, R. L., and J. H. Laning, Jr.: Design
Principles for a General Control Computer, In-
stitute of Aeronautical Sciences, New York,
S. M. Fairchild Publ. Fund Paper FF-29, April,
1960.

Alonso, R. L., J. H. Laning, Jr., and H. Blair-
Smith: Preliminary MOD 3C Programmers Man-
ual, M.I.T. Instrumentation Lab., Kep t . E-1077,
1961.

Alonso, R. L., A. Green, H. Maurer, and R.
Oleksiak: A Digital Control Computer; Develop-
ment Model l B , M.I.T. Instrumentation Lab.,
Kept. R-358 (confidential), April, 1962.

Alonso, R. L., H. Blair-Smith, and A. L. Hopkins:
Some Aspects of the Logical Design of a Control
Computer, A Case Study, IEEE Trans., vol.
EC-12, no. 6, pp. 687-697, December, 1963.

Amdahl, Gene M.: New Concepts in Computing

640 Bibliography

Amd aG64a

Amd a G64 b

AmdaG64c

AndeD67

AndeJ61

AndeJ62

AndeJ65

Andes67

ArbuR66

ArdeB66

AstrM52

BaldF62

System Design, Proc. IRE, vol. 50, no. 5, pp.
1073-1077, May, 1962.

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks,
Jr.: Architecture of the IBM System/360, IBM
J. Res. and Dev., vol. 8, no. 2, pp. 87-101, April,
1964. Review TeagH65

Amdahl, G. M.: Processing Unit Design Consid-
erations, IBM Sys. I., vol. 3, no. 2, pp. 144-164,
1964.

Amdahl, G. M.: The Model 92 as a Member of
the System 360 Family, AFlPS Proc. FJCC, Pt. 11,
vol. 26, pp. 69-72, 1964. Review GrimR65b

Anderson, D. W., F. J. Sparacio, and R. M.
Tomasulo: The IBM System/360 Model 91: Ma-
chine Philosophy and Instruction Handling, IBM
J. of Res. and Deo., vol. 11, no. 1, pp. 8-24,
January, 1967.

Anderson, James P.: A Computer for Direct
Execution of Algorithmic Languages,AFIPS Proc.

Anderson, James P., Samuel A. Hoffman,
Joseph Shifman, and Robert J. Williams:
D825-A Multiple Computer System for Com-
mand and Control, AFIPS Proc. FJCC, vol. 22,

Anderson, James P.: Program Structures for
Parallel Processing, Comm. ACM, vol. 8, no. 12,
pp. 786-788, December, 1965.

Anderson, S. F., J. G. Earle, R. E. Goldschmidt,
and D. M. Powers: The IBM System/360 Model
91: Floating-point Execution Unit, IBMJ. ofRes .
and Den, vol. 11, no. 1, pp. 34-53, January,
1967.

Arbuckle, R. A.: Computer Analysis and Thruput
Evaluation, Computers and Automution, p. 13,
January, 1966.

Arden, B. W., B. A. Galler, T. C. O’Brien, and
F. H. Westervelt: Program and Addressing Struc-
ture in a Time-sharing Environment,J. ACM, vol.
13, no. 1, pp. 1-16, January, 1966.

Astrahan, M. M., and N. Rochester: The Logical
Organization of the New IBM Scientific Calcula-
tor, Proc. ACM, Pittsburgh Conf., pp. 79-83, May,
1952.

Baldwin, F. R., W. B. Gibson, and C. B. Poland:
A Multiprocessing Approach to a Large Com-

EJCC, VOI. 20, pp. 184-193, 1961.

pp. 86-96, 1962.

BarnG68

BartR61

BashT64

BashT67

Basil57

Beck F6 1

BernA58

BhusA67

BlaaG59

B I a a G64u

B laaG64b

BlocE59

BlosR6O

puter System, IBM Sys. J., vol. 1, pp. 64-76,
September, 1962.

Barnes, George H., Richard M. Brown, Maso
Kato, David J. Kuck, Daniel L. Slotnick, and
Richard A. Stokes: The ILLIAC IV Computer,
IEEE Truns., VOI. C-17, no. 8, pp. 746-757,
August, 1968.

Barton, R. S.: A New Approach to the Functional
Design of a Digital Computer, Proc. WJCC, pp.

Bashkow, T. R.: A Sequential Circuit for Alge-
braic Statement Translation, IEEE Trans., vol.
EC-13, no. 2, pp. 102-105, April, 1964.

Bashkow, Theodore, Azra Sasson, and Arnold
Kronfeld: System Design of a FORTRAN Ma-
chine, IEEE Trans., vol. EC-16, no. 4, pp. 485-
499, August, 1967.

Basilewskii, Iu. la.: The Universal Electronic
Digital Machine (URAL) for Engineering Re-
search,J.ACM, vol. 4, no. 2, pp. 511-519, 1957.

Beckman, F. S., F. P. Brooks, Jr., and W. J.
Lawless, Jr.: Developments in the Logical Orga-
nization of Computer Arithmetic and Control
Units, Proc. IRE, vol. 49, no. 1, pp. 53-66,
January, 1961.

Bernstein, A., M. De V. Roberts, T. Arbuckle, and
M. A. Belsky: A Chess Playing Program for the

Bhushan, A., R. H. Stotz, and J. E. Ward: Rec-
ommendations for an lntercomputer Commu-
nications Network for M.I.T. Memorundurn

Blaauw, G. A,: Indexing and Control-word Tech-
niques, I B M J. of Res. and Dev., VOI. 3, no. 2,

Blaauw, G. A., and F. P. Brooks, Jr.: The Struc-
ture of System/360, Part I-Outline of the Logi-
cal Structure, IBM Sys. J., vol. 3, no. 2, pp.

Blaauw, G. A.: Multisystem Organization, I B M
SYS. J., vol. 3, no. 2, pp. 181-195, 1964.

Bloch, Erich: The Engineering Design of the
Stretch Computer, Proc. EJCC, pp. 48-58, 1959.

Blosk, R. T.: The Instruction Unit of the
STRETCH Computer, Proc. EJCC, pp. 299-324,
1960.

393-396, 1961.

IBM 704, P~oc. WJCC, pp. 157-159, 1958.

MAC-M-355, July, 1967.

pp. 288-301, July, 1959.

119-135, 1964.

Bibliography 641

BockR63

BolaL67

BoutE63

BowdB53

BrigH64

BrooF57a

BrooF57b

BrooF59

Bock, R. V.: An Interrupt Control for the B 5000
Data Processor System, AFIPS Proc. FJCC, vol.

Boland, L. J., G. D. Granito, A. U. Marcotte,
B. U. Messina, and J. W. Smith: The IBM Sys-
tem/360 Model 91: Storage System, IBM J. of
Res. andDec.,vol. 11, no. 1, pp. 54-68, January,
1967.

Boutwell, E., Jr., and E. A. Hoskinson: The
Logical Organization of the PB 440 Micropro-
grammablecomputer, AFIPS Proc. FJCC, vol. 24,

Bowden, B. V., editor: “Faster than Thought,”
Sir Isaac Pitman and Sons, Ltd., London, 1953.

Bright, H. S.: A Philco Multiprocessing System,
AFIPS Proc. FJCC, pt. (I , vOI. 26, pp. 97-141,
1964.

Brooks, F. P., Jr.: A Program-controlled Pro-
gram Interruption System, Proc. EJCC, pp. 128-
132, 1957.

Brooks, F. P., Jr., A. L. Hopkins, Jr., P. G.
Neumann, and M. V. Wright: An Experiment in
Musical Composition, IRE Trans., vol. EC-6, no.
3, pp. 175-182, September, 1957.

Brooks, F. P., Jr., G. A. Blaauw, and W. Buch-
holz: Processing Data in Bits and Pieces, IRE
Trans., vol. EC-8, no. 2, pp. 118-124, June,
1959.

24, pp. 229-241, 1963.

pp. 201-213, 1963.

BurdE53 Burdette, E. W.: Characteristics of the Oracle,
Argonne Natl. Lab., Proc. Symp. on Large Scale
Digital Computing Machines, pp. 194-201, AU-
gust, 1953.

BurkA62a Burks, Arthur W., Herman H. Goldstine, and
John von Neumann: Preliminary Discussion of
the Logical Design of an Electronic Computing
Instrument, Part I, Datumation, vol. 8, no. 9, pp.
24-31, September, 1962.

Burks, Arthur W., Herman H. Goldstine, and John
von Neumann: Preliminary Discussion of the
Logical Design of an Electronic Computing In-
strument, Part II, Datamation, vol. 8, no. 10, pp.
36-41, October, 1962.

BurkA63 Burks, Arthur W., Herman H. Goldstine, and
John von Neumann: Preliminary Discussion of
the Logical Design of an Electronic Computing
Instrument (Pt. I, vol. l), Rept. prepared for US.
Army Ordnance Dept., 1946, in A. H. Taub (ed.),
“Collected Worksof John von Neumann,”vol. 5,
pp. 34-79, The Macmillan Company, New York,
1963.

Bussell, B., and G. Estrin: An Evaluation of the
Effectiveness of Parallel Processing, IEEE
Pacijic Computer Conf., pp. 201-220, 1963.

Campbell, Robert V. D.: Evolution of Automatic
Computing, Proc. ACM, Pittsburgh Conf., pp.
29-32, May, 1952.

BurkA62b

Buss B63

CampR52

BrooF6O Brooks, F. P.: The Execute Operations, A Fourth CarlC63
Mode of Instruction Sequencing, Comm. ACM,
vol. 3, no. 3, pp. 168-170, March, 1960.

with Two-level Storage, Computer J., vol. 2, pp.

Buchholz, Werner: The System Design of the
IBM Type 701 Computer, Proc. IRE, vol. 41, no.
10, pp. 1262-1275, October, 1953.

Buchholz, W.: Design Objectives for the IBM
STRETCH Computer, New Computers, Rept.
f r o m the Manufacturers ACM Conf., pp. 99-104,
1957.

BuchW58 Buchholz, W.: The Selection of an Instruction
Language, Proc. WJCC, pp. 128-130, 1958.

BuchW62 Buchholz, Werner, (ed.): “Planning a Computer
System,” McGraw-Hill Book Company, New
York, 1962.

BrooR60 Brooker, R. A,: Some Techniques for Dealing CarrJ56

189-194, 1960.

BuchW53

Ca rrJ 59
BuchW57

CartW64

\

Carlson, C. B.: The Mechanization of a Push-
down Stack, AFIPS Proc. FJCC, vol. 24, pp.

Carr, J. W., Ill, and N. R. Scott (eds.): “Notes
on the Special Summer Conference on Digital
Computers,” Special Summer Conferences on
Digital Computers, University of Michigan, Ann
Arbor, Mich., 1956.

Carr, John W., Ill: Programming and Coding,
in Eugene M. Grabbe, Simon Ramo, and Dean E.
Wooldridge (eds.), “Handbook of Automation,
Computation, and Control,” vol. 2, chap. 2, pp.
77-83,93-98,111-115,115-121, John Wiley&
Sons, Inc., New York, 1959.

Carter, W. C., H. C. Montgomery, R. J. Preiss,
and H. J. Reinheimer: Design of Serviceability
Features for the IBM System/360, IBMJ. ofRes.
andDeu., vol.8, no. 2, pp. 115-125, April, 1964.

243-250, 1963.

642 Bibliography

CasaC62

ChasG52

ChenT64

ChuC52

ClarW57

C I a y B 64

CochD68

Codd E 59

CoddE62

ComfW65

Con tC64

ContC68

ConwM58

ConwM63

CorbF62

Casale, Charles T.: Planning the CDC 3600,

Chase, George C.: History of Mechanical Com-
puting Machinery, Proc. ACM, Pittsburgh, Conf.,
pp. 1-28, May, 1952.

Chen, T. C.: The Overlap of the IBM System/360
Model 92 Central Processing Unit, AFIPS Proc.
FJCC, Pt. II, vol. 26, pp. 73-80, 1964. Review
Gr imR65~

Chu, J. C.: The Oak Ridge Automatic Computer,
Proc. ACM, Toronto Conf., pp. 142-148, Septem-
ber, 1952.

Clark, Wesley A.: The Lincoln TX-2 Computer
Development, Proc. WJCC, pp. 143-145, 1957.

Clayton, B. B., E. K. Dorff, and R. E. Fagen: An
Operating System and Programming Systems
for the 6600, AFlPS Proc. FJCC, Pt. II, vol. 26,

Cochran, David S.: Internal Programming of the
9 1 OOA Calculator, Hewlett-Packard J., vol . 20, no.
1, pp. 14-16, September, 1968.

Codd, E. F., E. S. Lowry, E. McDonough, and
C. A. Scalzi: Multiprogramming STRETCH Fea-
sibility Considerations, Comm. ACM, vol. 2, no.
11, pp. 13-17, November, 1959.

Codd, E. F.: Multiprogramming, “Advances in
Computers,” vol. 3, pp. 78-153, Academic
Press, Inc., New York, 1962.

Comfort, W. T.: A Computing System Design for
User Service, AFlPS Proc. FJCC, Pt. I, vol. 27, pp.

Conti, Carl: System Aspect: System/360 Model
92, AFlPS Proc. FJCC, Pt. 1 1 , VOI. 26, pp. 81-95,
1964. Review GrimR65a.

Conti, C. J., D. H. Gibson, and S. H. Pitkowsky:
Structural Aspects of the System/360 Model 85,
I. General Organization, IBM Sys. I., vol. 7, no.

Conway, Melvin E.: Proposal for an UNCOL,
Conzm. ACM, vol. 1, no. 10, pp. 5-8, October,
1958.

Conway, M. E.: A Multiprocessor System Design,
AFIPS Proc. E;JCC, VOI. 24, pp. 139-146, 1963.

Corbato, Fernando J., Marjorie Merwin-Daggett,
and Robert C. Daley: An Experimental Time-

AFlPS Proc. FJCC, VOI. 22, pp. 73-85, 1962.

pp. 41-57, 1964.

619-626, 1965.

1, pp. 2-14, 1968.

CorbF65

CoxJ68

CrawP??

CritA63

DaleR65

DaleR68

DarrJ69

DaviD67

DaviG6O

DennJ65

DennJ66

sharing System, AFlPS Proc. SJCC, vol. 21, pp.

Corbato, F. J., and V. A. Vyssotsky: Introduction
and Overview of the MULTICS System, AFlPS
Proc. FrCC, Pt. I, VOI. 27, pp. 185-196, 1965.

Cox, Jerome R., Jr.: Economy of Scale and
Specialization in Large Computing Systems,
Computer Design. VOI. 7, no. 11, pp. 77-80,
November, 1968.

Crawford, P.: Thesis for Master’s Degree, Mas-
sachusetts Institute of Technology, Cambridge,
Mass.

Critchlow, A. J.: Generalized Multiprocessing
and Multiprogramming Systems, AFIPS Proc.

Daley, R. C., and P. G. Neumann: A General-
purpose File System for Secondary Storage,
AFlPS Proc. FJCC, Pt. I, VOI. 27, pp. 213-229,
1965.

Daley, Robert C., and Jack B. Dennis: Virtual
Memory, Processes, and Sharing in MULTICS,
Comm. ACM, vol. 11, no. 5, pp. 306-312, May,
1968.

Darringer, John A.: The Description, Simulation,
and Automatic Implementation of Digital Com-
puter Processors, Thesis for Ph.D. degree, Car-
negie-Mellon University, College of Engineering
and Science, Department of Electrical Engi-
neering, Pittsburgh, Pa., May, 1969.

Davies, D. W., K. A. Bartlett, R. A. Scantlebury,
and P. T. Wilkinson: A Digital Communication
Network for Computers Giving Rapid Response
at Remote Terminals, ACM S y m p . on Operating
System Principles, Gatlinburg, Tenn., Oct. 1-4,
1967.

Davis, G. M.: The English Electric KDF9 Com-
puter System, Computer Bull., pp. 119-120,
December, 1960.

Dennis, J. B.: Segmentation and the Design of
Multiprogrammed Computer Systems, J. ACM,
vol. 12, no. 4, pp. 589-602, October, 1965.

Dennis, J., and E. C. Van Horn: Programming
Semantics for Multiprogrammed Computations,
Comm. ACM, vol. 9, no. 3, pp. 143-155, March,
1966.

335-344, 1962.

FJCC, VOI. 24, pp. 107-126, 1963.

Bibliography 643

Desm W64

DreyP58

DunwS56

Eccl W 19

EckeJ51

EckeJ59

EdwaD6O

ElboR53

ElliW51

ElliW52

ElliW53

E I li W56a

ElliW56b

Desmonde, W. H.: "Real Time Data Processing
Systems," Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1964.

Dijkstra, E. W.: Solution of a Problem in Con-
current Programming Control, Comm. ACM, vol.
8, no. 9, p. 569, September, 1965.

Dreyfus, P.: System Design of the Gamma 60,
Proc. WJCC, pp. 130-133, May, 1958.

Dunwell, S. W.: Design Objectives for the IBM
STRETCH Computer, Proc. EJCC, pp. 20-22,
1956.

Eccles, W. H., and F. W. Jordan: A Trigger Relay,
Radio Reo., pp. 143-146, October, 1919.

Eckert, J. Presper, Jr., James R. Weiner,
H. Frazer Welsh, and Herbert F. Mitchell: The
UNIVAC System, AIEE-IRE Conf., pp. 6-16,
December, 1951.

Eckert, J. P., J. C. Chu, A. B. Tonik, and W. J.
Schmitt: Design of Univac-LARC System, Part
I, Proc. EJCC, pp. 59-65, 1959.

Edwards, D. B. G., M. J. Lanigan, and T. Kilburn:
Ferrite-core Memory Systems with Rapid Cycle
Times, Proc. IEE, pt. B, vol. 107, pp. 585-598,
November, 1960.

Elbourne, R. D., and R. P. Witt: Dynamic Circuit
Techniques Used in SEAC and DYSEAC, IRE
Trans., vol. EC-2, no. 1, pp. 2-9, 1953.

Elliott, W. S.: Circuit Standardization in Series
Working, High-speed Digital Computers, Elliott
J., vol. 1, no. 2, p. 49, September, 1951; also
in Proc. ACM, March, 1950.

Elliott, W. S., H. G. Carpenter, and C. E. Owen:
Development of Computer Components and
Systems, Proc. ACM, Toronto Conf., September,
1952.
Elliott, W. S., H. G. Carpenter, and A. St. Johns-
ton: The Elliott-NRDC Computer 401, A Demon-
stration of Computer Engineering by Packaged
Unit Construction, Symp. ADC, pp. 273-276,
1953.
Elliott, W. S., C. E. Owen, C. H. Devonald, and
B. G. Maudsley: The Design Philosophy of Peg-
asus, A Quantity-production Computer, Proc.

Elliott, W. S., R. C. Robbins, and D. S. Evans:
Remote Position Control and Indication by Digi-

IEE, Pt. B, VOI. 103, SUPP. 2, pp. 188-196, 1956.

Engl W62

ErnsH63

E st rG52

EstrGGO

EstrG63

EverR51

EverR57

EwinR64

FaggP64

Fa i rJ 56

FalkA64

FikeR68

tal Means, Proc. IEE, Pt. B, vol. 103, Supp. 3,

England, W. A.: Subminiature Computer De-
signed for Space Environments, Proc. Conf. on
Spaceborne Computer Engineering, Anaheim,
Calif., pp. 95-101, October, 1962.

Ernst, H. A.: TCS, An Experimental Multipro-
gramming System for the IBM 7090, IBM Res.
Rept. RJ248, 4 1 pp., Yorktown Hts., N.Y., June,
1963.

Estrin, G.: A Description of the Electronic Com-
puter at the Institute for Advanced Studies, Proc.
ACM, Toronto Conf., pp. 95-109, September,
1952.

Estrin, Gerald: Organization of Computer Sys-
tems, the Fixed Plus Variable Structure Com-
puter, Proc. WJCC, pp. 33-40, 1960.

Estrin, G., 6. Bussell, R. Turn, and J. Bibb:
Parallel Processing in a Restructurable Com-
puter System, IEEE Trans., vol. EC-12, no. 6, pp.
747-755, December, 1963. Article reviewed by
E. G. Newman in IEEE Trans., vol. EC-13, no.
5, p. 649, October, 1964.

Everett, R. R.: The Whirlwind I Computer,
AIEE-IRE Conf., pp. 70-74, 1951.

Everett, R. R., C. A. Zraket, and H. D. Bening-
ton: SAGE-A Data-processing System for Air
Defense, Proc. EJCC, pp. 148-155, 1957.

Ewing, R. G., and P. M. Davies: An Associative
Processor, AFIPS Proc. FJCC, Pt. I, vol. 26, pp.

Fagg, P., J. L. Brown, J. A. Hipp, D. T. Doody,
J. W. Fairclough, and J. Greene: IBM Sys-
tern1360 Engineering, AFIPS Proc. FJCC, Pt. I,

Fairclough, J. W.: A Sonic Delay-line Storage
Unit for a Digital Computer, P ~ o c . IEE, Pt. B, vol.

Falkoff, A. D., K. E. Iverson, and E. H. Sus-
senguth: A Formal Description of System/360,
IBM Sys. J., vol. 3, no. 3, pp. 198-261, 1964.

Fikes, Richard E., Hugh C. Lauer, and Albin L.
Vareha, Jr.: Steps toward a General-purpose
Time-sharing System Using Large Capacity Core
Storage and TSS/360, Proc. 23rd Natl. Conf. of

pp. 437-446, 1956.

147-158, 1964.

VOI. 26, pp. 205-231, 1964.

103, SUP^. 3, pp. 491-496, 1956.

644 Bibliography

FlynM66

FlynM67a

FlynM67h

ForgJ65

ForrJ51

Fot hJ6 1

FranJ57

FrizC53

GibsC66

G i llS58

GlasE65

Gold H63a

ACM, Lm Vegus, Nevada, pp. 7-18, August,
1968.

Flynn, Michael J.: Very High-speed Computing
Systems, Proc. IEEE, vol. 54, no. 12, pp. 1901-
1909, December, 1966.

Flynn, M. J., and P. R. Low: The IBM Sys-
tem/360 Model 91: Some Remarks on System
Development, IBM J . of Res. and Deo., vol. 11,
no. 1, pp. 2-7, January, 1967.

Flynn, Michael J., and M. Donald MacLaren:
Microprogramming Revisited, Argonne Natl.
Lah. ,Appl . Math. Diu., Tech. Mem. 134, pp. 1-17,
Argonne, Ill., 1967.

Forgie, James W.: A Time- and Memory-sharing
Executive Program for Quick Response, On-line
Applications, AFIPS Proc. FJCC, Pt. II, vol. 27,

Forrester, J. W.: Digital Information Storage in
Three Dimensions Using Magnetic Cores, J.
Appl. Phys., vol. 22, pp. 44-48, January, 1951.

Fotheringham, John: Dynamic Storage Alloca-
tion in the Atlas Computer, Including an Auto-
matic Use of a Backing Store, Comm. ACM, vol.
4, no. 10, pp. 435-436, October, 1961.

Frankovich, J. M., and H. P. Peterson: A Func-
tional Description of the Lincoln TX-2 Computer,
Proc. WICC, vol. 19, pp. 146-155, February,
1957.

Frizzell, Clarence E.: Engineering Description of
the IBM Type 701 Computer, Proc. IRE, vol. 41,
no. 10, pp. 1275-1287, October, 1953.

Gibson, C. T.: Time-sharing in the IBM Sys-
tem/360: Model 67, AFIPS Proc. SJCC, vol. 28,

Gill, S.: Parallel Programming, Computer J., vol.
1, no. 1, pp. 2-10, April, 1958.

Glaser, E. L., J. Couleur, and G. Oliver: System
Design of a Computer for Time Sharing Appli-
cations, AFIPS Proc. FJCC, Pt. I, vol. 27, pp.

Goldstine, H. H., and John von Neumann: On the
Principles of Large Scale Computing Machines,
unpublished, 1946; in A. H.Taub(ed.), “Collected
Works of John von Neumann,” vol. 5, pp. 1-32,
The Macmillan Company, New York, 1963.

pp. 127-139, 1965.

pp. 61-78, 1966.

197-202, 1965.

GoldH63b

Gold H63c

Gold H63d

GreeJ 57

GreeJ64

GreeJ66

GreeS52

GreeS53

GregJ63

GrimR65a

GrimR65b

Goldstine, H. H., and John von Neumann: Plan-
ning and Coding Problems for an Electronic
Computing Instrument (Pt. II, vol. l) , Rept.
prepared for US. Army Ordnance Dept., 1947,
in A. H. Taub (ed.), “Collected Works of John
von Neumann,” vol. 5, pp. 80-151, The Mac-
millan Company, New York, 1963.

Goldstine, H. H., and John von Neumann:
Planning and Coding of Problems for an Elec-
tronic Computing Instrument (Pt. II, vol. 2),
Rept. prepared for U.S. Army Ordnance Dept.,
1948, in A. H. Taub (ed.), “Collected Works of
John von Neumann,” vol. 5, pp. 152-214, The
Macmillan Company, New York, 1963.

Goldstine, H. H., and John von Neumann:
Planning and Coding of Problems for an Elec-
tronic Computing Instrument (Pt. II, vol. 3),
Rept. prepared for U.S. Army Ordnance Dept.,
1948, in A. H. Taub (ed.), “Collected Works of
John von Neumann,” vol. 5, pp. 215-235, The
Macmillan Company, New York, 1963.

Greenstadt, J. L.: The IBM 709 Computer, New
Computers, Rept. from the Manufacturers ACM
Conf., pp. 92-98, 1957.

Greene, J. E., R. F. Dean, and B. M. Updike:
Micro-programmed Implementation of the IBM
System /360 Machine Organization, IBM General
Products Div. , Development Lab., Engineering
Publ., D q t . PTP792, Endicott, N.Y., April, 1964.

Green, J.: Microprogramming, Emulators and
Programming Languages, Comm. ACM, vol. 9,
no. 3, pp. 230-231, March, 1966.

Greenwald, Sidney: SEAC Input-Output System,
AIEE-IRE-ACLM Conf., pp. 31-36, December,
1952.

Greenwald, Sidney, R. C. Haueter, and S. N.
Alexander: SEAC, Proc. IRE, vol. 41, no. 10, pp.
1300-1313, October, 1953.

Gregory, J., and R. McReynolds: The SOLOMON
Computer, IEEE Trans., vol. EC-12, no. 6, pp.
774-781, December, 1963.

Grimsdale, R. L.: A Review of ContC64, C m -
puting Reo., vol. 6, no. 6, p. 430, November,
December, 1965.

Grimsdale, R. L.: A Review of AmdaG64c, Com-
puting Res. , vol. 6, no. 6, p. 429, November,
December, 1965.

Bibliography 645

GrimR65c

GrosH53

G ru e F68

GrumM58

Ha inL65

HaleA62

Ham bC62

Ha neF68

HartD68

Ha uc E68

HaueR52

HellH61

HellH66

Grimsdale, R. L.: A Review of ChenT64, Com-
puting Rev., vol. 6, no. 6, pp. 429-430, Novem-
ber, December, 1965.

Grosch, H. R. J.: High Speed Arithmetic: The
Digital Computer as a Research Tool, J. Optical
Society of America, vol. 4, no. 4, pp. 306-310,
April, 1953.

Gruenberger, F. J.: The History of the JOHN-
NIAC, Mem. RM-5654-PR, prepared for United
States Air Force Project Rand, The Rand Cor-
poration, Santa Monica, Calif., October, 1968.

Grumette, Murray: IBM 704-Code Nundrums,
Comm. ACM, vol. 1, no. 3, pp. 3-13, March,
1958.

Haines, L. H.: Serial Compilation and the 1401
FORTRAN Compiler, IBM Sys. J., vol. 4, no. 1,
pp. 73-80, January, 1965.

Haley, A. C. D.: The KDF9 Computer System,
AFIPS Proc. FJCC, VOI. 22, pp. 108-120, 1962.

Hamblin, C. L.: Translation to and from Polish
Notation, Computer]., vol. 5, pp. 210-213, Octo-
ber, 1962.

Haney, Frederick M.: Using a Computer to De-
sign Computer Instruction Sets, Thesis for Ph.D.
degree, Carnegie-Mellon University, College of
Engineering and Science, Department of Com-
puter Science, Pittsburgh, Pa., May, 1968.

Hartley, D. F., B. Landy, and R. M. Needham:
The Structure of a Multiprogramming Super-
visor, Computer J., vol. 11, no. 3, pp. 247-255,
November, 1968.

Hauck, E. A., and B. A. Dent: Burroughs B
6500/B 7500 Stack Mechanism, AFIPS Proc.

Haueter, R. C.: Auxiliary Equipment to SEAC
Input-Output, AIEE-IRE-ACM Conference, pp.
39-44, December, 1952.

Hellerman, H.: On the Organization of a Multi-
programming-Multiprocessing System, IBM
Res. Rept. RC-522, 52 pp., Yorktown Hts., N.Y.,
September, 1961.

Hellerman, H.: Parallel Processing of Algebraic
Expressions, l E E E Trans., vOI. EC-15, no. 1, pp.
82-91, February, 1966.

SJCC, VOI. 32, pp. 245-251, 1968.

HerwP6O Herwitz, Paul S., and James H. Pomerene: The
Harvest System, Proc. WJCC, pp. 23-32, 1960.

HillJ66

HodgD64

HollJ59

HopkA63

HowaD61

HowaD62

HowaD63

HughE54

lverK62

JohnD52

KampT6O

KatzJ66

K i I bT56

Hillegass, John R.: Auerbach on Equipment IBM
System 360-The First Two Years, Data Proc-
essing Mag., VOI. 8, no. 5, pp. 44-51, May, 1966.

Hodges, Donald: IPL-VC, A Proposal for a Com-
puter System Having the IPL-V Instruction Set,
Argonne Natl. Lab., Appl. Math. Diu., Tech. M e m .
66, 22 pp., January, 1964.

Holland, John: A Universal Computer Capable
of Executing an Arbitrary Number of Sub-
programs Simultaneously, Proc. EJCC, pp. 108-
113, 1959.

Hopkins, A. L., R. L. Alonso, and H. Blair-Smith:
Logical Description of the Apollo Guidance
Computer (AGC 4), M.I.T. Instrumentation Lab.,
Re@. A-393 (confidential), Cambridge, Mass.,
March, 1963.

Howarth, D. J., R. B. Payne, and F. H. Sumner:
The Manchester University Atlas Operating
System, Part II: User’s Description, ComputerJ.,
vol. 4, no. 3, pp. 226-229, October, 1961.

Howarth, D. J., P. D. Jones, and M. T. Wyld: The
ATLAS Scheduling System, Computer J., vol. 5,
no. 3, pp. 238-244, October, 1962.

Howarth, D. J.: Experience with the Atlas
Scheduling System, AFIPS Proc. SJCC, vol. 23,

Hughes, E. S., Jr.: The IBM Magnetic Drum
Calculator Type 650, Engineering and Design
Considerations, Proc. WJCC, pp. 140-154, 1954.

Iverson, Kenneth E.: A Common Language for
Hardware, Software, and Applications, AFIPS

Johnston, D. L.: Standardized Printed Circuit
Units for Digital Computers, Proc. ACM, Pitts-
burgh Conf., pp. 135-141, May, 1952.

Kampe, Thomas W.: The Design of a General-
purpose Microprogram-controlled Computer
with Elementary Structure, IRE Truns., vol. EC-9,
no. 2, pp. 208-213, June, 1960.

Katz, J. H.: Simulation of a Multiprocessor
Computing System, AFIPS Proc. SJCC, vol. 28,

Kilburn, T., D. B. G. Edwards, andC. E. Thomas:
The Manchester University Mark II Digital Com-
puting Machine, Proc. IEE, Pt. B, vol. 103, Supp.

pp. 59-67, 1963.

PTOC. FJCC, VOI. 22, pp. 121-129, 1962.

pp. 127-139, 1966.

2, pp. 247-268, 1956.

646 Bibliography

Kil bT60a

K i I bT6Ob

Kil b T 6 l u

Kil bT6 lb

Kil bT62

Ki nsH 64

KistJ57

KitoA56

KleiR53

KnigK66

KnigK68

KnutD66

KrogM61

Kilburn, T., and R. L. Grimsdale: A Digital Com-
puter Store with a Very Short Read Time, Proc.
IEE, Pt. B, vol. 107, pp. 567-572, November,
1960.

Kilburn, T., D. B. G. Edwards, and D. Aspinall:
A Parallel Arithmetic Uni t Using a Saturated
Transistor Fast-Carry Circuit, Proc. IEE, Pt. B,
vol. 107, pp. 573-584, November, 1960.

Kilburn,T., D. J. Howarth, R. B. Payne, and F. H.
Sumner: The Manchester University Atlas Oper-
atingsystem, Part I: InternalOrganization, Com-
puter J., VOI. 4, pp. 222-225, October, 1961.

Kilburn, T., R. B. Payne, and D. J. Howarth: The
Atlas Supervisor, AFIPS Proc. EJCC, vol. 20, pp.

Kilburn, T., D. B. G. Edwards, M. J. Lanigan,
and F. H. Sumner: One-level Storage System,
IRE Trans., vol. EC-11, no. 2, pp. 223-235, April,
1962.

Kinslow, H. A,: The Time-sharing Monitor Sys-
tem, AFIPS Proc. FJCC, Pt. I, vol. 26, pp. 443-
454, 1964.

Kister, J., P. Stein, S. Ulam, W. Walden, and M.
Wells: Experiments in Chess, J. ACM, vol. 4, no.
2, pp. 174-177, April, 1957.

Kitov, A. I.: Elektronnie Tsifrovie Mashiny
(Electronic Digital Machines), lzdatelstvo
Sovetskoe Radio, Moscow, partial translation
available, 1956.

Klein, R. J., Jr.: The Oracle Memory System,
Argonne Natl. Lab., Proc. Symp. on Large Scale
Digital Computing Machines, pp. 47-58, August,
1953.

Knight, Kenneth E.: Changes in Computer Per-
formance, Datamation, vol. 12, no. 9, pp. 40-54,
September, 1966.

Knight, Kenneth E.: Evolving Computer Perform-
ance 1963-1967, Datamation, vol. 14, no. 1, pp.
31-35, January, 1968.

Knuth, D. E.: Additional Comments on a Prob-
lem in Concurrent Programming Control,
Comm. ACM, vol. 9, no. 5, pp. 321-322, 1966.

Kroger, Marlin G., et al.: Computers in Com-
mand and Control, TR61-12, prepared for
D0D:ARPA by Digital Computer Application
Study, Institute for Defense Analyses, Research

279-294, 1961.

KuckD68

LampB65

LampB66

LangJ67

LaueH67

LebeS56

LehmM63u

LehmM63b

LehmM65

Leh m M66

LeinA54

LeinA57

LeinA58

and Engineering Support Division, November,
1961.

Kuck, D. J.: ILLIAC I V Software and Application
Programming, IEEE Trans., VOI. C-17, no. 8, pp.

Lampson, B. W.: Interactive Machine Language
Programming, AFIPS Proc. FJCC, Pt. I, vol. 27,

Lampson, B. W., W. W. Lichtenberger, and
M. W. Pirtle: A User Machine in a Time-sharing
System, Proc. IEEE, vol. 54, no. 12, pp. 1766-
1774, December, 1966.

Langdon, J. L., and E. J. Van Derveer: Design
of a High-speed Transistor for the ASLT Current
Switch, IBM J. of Res. and Deu., vol. 11, no. 1,
pp. 69-73, January, 1967.

Lauer, Hugh C.: Bulk Core in a 360/67 Time-
sharing System, AFIPS Proc. FJCC, vol. 31, pp.

Lebedev, S. A,: The High-speed Calculating Ma-
chine of the Academy of Sciences of the USSR,

Lehman, M., R. Eshed, and Z. Netter: SABRAC,
A Time-sharing Low-cost Computer, Comm.
ACM, vol. 6 , no. 8, pp. 427-429, August, 1963.

Lehman, M., R. Eshed, and Z. Netter: SABRAC
-A New Generation Serial Computer, IEEE
Truns., vol. EC-12, no. 6, pp. 618-628, Decem-
ber, 1963.

Lehman, M.: Serial Mode Operation and High-
speed Parallel Processing, Proc. IFIP Cong. 1965,

Lehman, M.: A Survey of Problems and Prelimi-
nary Results Concerning Parallel Processing
and Parallel Processors, Proc. IEEE, vol. 54, no.
12, pp. 1889-1901, December, 1966.

Leiner, A. L., and S. N. Alexander: System
Organization of the DYSEAC, Professional Group
on Electronic Computers, Institute of Radio Engi-
neers, vol. EC-3, no. 1, pp. 1-10, March, 1954.

Leiner, A. L., W. A. Notz, J. L. Smith, and A.
Weinberger: Organizing a Network of Computers
to Meet Deadlines, Proc. EJCC, pp. 115-128,
1957.

Leiner, A. L., W. A. Notz, J. L. Smith, and A.

758-770, August, 1968.

pp. 473-481, 1965.

601-609, 1967.

J. ACM, vOI. 3, pp. 129-133, 1956.

Pt. 2, pp. 631-633, 1965.

Bibliography 647

LeinA59

LichW65

LindA66

LiptJ68

LloyR67

LoneW61

LonsK56

Lou rN 59

McCaJ62

McCaJ63

McCoB63

McCuJ65

McPhJ51

Weinberger: PILOT, The NBS Multicomputer
System, Proc. EJCC, pp. 71-75, 1958.

Leiner, A. L., W. A. Notz, J. L. Smith, and A.
Weinberger: PILOT, A New Multiple Computer
System, J. ACM, vol. 6, no. 3, pp. 313-335,
1959.

Lichtenberger, W., and M. W. Pirtle: A Facility
for Experimentation in Man-Machine Inter-
action, AFIPS Proc. FJCC, Pt. I, vol. 27, pp.

Lindquist, A. B., R. R. Seeber, and L. W. Com-
eau: A Time-sharing System Using an Asso-
ciative Memory, Proc. IEEE, vol. 54, no. 12, pp.
1774-1779, December, 1966.

Liptay, J. S.: Structural Aspects of the Sys-
tem/360 Model 85, II. The Cache, IBM Sys. J.,
vol. 7, no. 1, pp. 15-21, 1968.

Lloyd, R. H. F.: ASLT: An Extension of Hybrid
Miniaturization Techniques, IBM J. of Res. and
Dev., vol. 11, no. 1, pp. 86-92, January, 1967.

Lonergan, William, and Paul King: Design of the
B 5000 System, Datamation, vol. 7, no. 5, pp.
28-32, May, 1961.

Lonsdale, K., and E. T. Warburton: Mercury: A
High Speed Digital Computer, Proc. IEE, Pt. B,

Lourie, N., H. Schrimpf, R. Reach, and W. Kahn:
Arithmetic and Control Techniques in a Multi-
program Computer, Proc. EJCC, pp. 75-81,
1959.

McCarthy, J.: “Time Sharing Computer Systems
in Management and the Computer of the Fu-
ture,” The M.I.T. Press, Cambridge, Mass.,
1962.

McCarthy, J., S. Boilen, E. Fredkin, and J. C.
R. Licklider: A Time-sharing Debugging System
for a Small Computer, AFIPS Proc. SJCC, vol. 23,

McCormick, Bruce H.: The Illinois Pattern Rec-
ognition Computer-ILLIAC Ill, IEEE Trans., vol.
EC-12, no. 5, pp. 791-813, December, 1963.
McCullough, J. D., K. H. Speierman, and F. W.
Zurcher: Design for a Multiple User Multiproc-
essing System, AFIPS Proc. FJCC, Pt. I, vol. 27,

McPherson, J. L., and S. N. Alexander: Per-

589-598, 1965.

VOI. 103, SUPP. 2, pp. 174-183, 1956.

pp. 51-57, 1963.

pp. 611-617, 1965.

MaheR61

MarcM63

MeadR63

MeagR51

MelbA65

MendM66

MercR57

Merr156

MetrN52

Mi II W63

MiraW67

MolnC67

MonnR68

formance of the Census Univac System, AIEE-
IRE Conf., pp. 16-22, December, 1951.

Maher, R. J.: Problems of Storage Allocation in
a Multiprocessor Multiprogrammed System,
Comm. ACM, vol. 4, no. 10, pp. 421-422, Octo-
ber, 1961.

Marcotty, M. J., F. M. Longstaff, and A. P. M.
Williams: Time-sharing on the Ferranti-Packard
FP6000 Computer System, AFIPS Proc. SJCC,

Meade, R. M.: 604 Machine Description, IBM
Internal Mem., 38 pp., December, 1963.

Meagher, R. E., and J. P. Nash: The Ordvac,
AIEE-IRE Conf., pp. 37-43, December, 1951.

Melbourne, A. J., and J. M. Pugmire: A Small
Computer for the Direct Processing of FORTRAN
Statements, ComputerJ., vol. 8, pp. 24-27, April,
1965.

Mendelson, M. J., and A. W. England: The SDS
SIGMA 7: A Real-time, Time-sharing Computer,
AFIPS Proc. FJCC, VOI. 29, pp. 51-64, 1966.

Mercer, Robert J.: Micro-programming, J. ACM,
vol. 4, no. 2, pp. 157-171, 1957.

Merry, I. W., and B. G. Maudsley: The Magnetic-
drum Store of the Computer Pegasus, Proc. IEE,

Metropolis, N., E. F. Klein, W. Orvedahl, J. R.
Richardson, H. B. Demuth, and J. B. Jackson:
MANIAC, Proc. ACM, Toronto Conf., pp. 13-17,
September, 1952.

Miller, W. F., and R. A. Aschenbrenner. The GUS
Multicomputer System, IEEE Trans., vol. EC-12,
no. 6, pp. 671-676, December, 1963.

Miranker, W. L., and W. M. Liniger: Parallel
Methods for the Numerical Integration of Ordi-
nary Differential Equations, Math. of Computa-
tion, vol. 21, no. 99, pp. 303-320, July, 1967.

Molnar, Charles E., Severo M. Ornstein, and
Antharvedi Anne: The CHASM: A Macromodular
Computer for Analyzing Neuron Models, AFIPS
Proc. SJCC, vOI. 30, pp. 393-401, 1967.

Monnier, Richard E.: A New Electronic Calcula-
tor with Computerlike Capabilities, Hewlett-
Packard J., vol. 20, no. 1, pp. 3-9, September,
1968.

VOI. 23, pp. 29-40, 1963.

Pt. B, VOI. 103, SUPP. 2, pp. 197-202, 1956.

648 Bibliography

MorrD67

MuntC62

M urt J66

MyerT68

NeweA56

NeweA57a

N eweA57b

NeweA58

NievJ64

NiseN66

OsboT68

OssaJ65

Pad eA64

PadeA68

Morris, Derrick, Frank H. Sumner, and Michael
T. Wyld: An Appraisal of the Atlas Supervisor,
Proc. ACM Natl. Meeting, pp. 67-75, 1967.

Muntz, C. A.: A List Processing Interpreter for
AGC4, M.I.T., lmtrumentation Lab., AGC LMem.
2, Cambridge, Mass., January, 1962.

Murtha, J. C.: Highly Parallel Information Proc-
essing Systems, in “Advances in Computers,”
vol. 7, pp. 2-116, Academic Press, Inc., New
York, 1966.

Myer, T. H., and I. E. Sutherland: On the Design
of Display Processors, Comm. ACM, vol. 11, no.
6, pp. 410-414, June, 1968.

Newell, A., and H. A. Simon: The Logic Theory
Machine, IRE Trans., vol. IT-2, no. 3, pp. 61-79,
September, 1956.

Newell, A., and J. C. Shaw: Programming the
Logic Theory Machine, Proc. WJCC, pp. 230-
240, February, 1957.

Newell, A., J. C. Shaw, and H. A. Simon: Empiri-
cal Explorations of the Logic Theory Machine,
Proc. WJCC, pp. 218-230, February, 1957.

Newell, A., J. C. Shaw, and H. A. Simon: The
Elements of a Theory of Human Problem Solv-
ing, Psychology Rev., vol. 65, pp. 151-166,
March, 1958.

Nievergelt, J.: Parallel Methods for Integrating
Ordinary Differential Equations, Comm. ACM,
vol. 7, no. 12, pp. 731-733, December, 1964.

Nisenoff, N.: Hardware for Information Process-
ing Systems: Today and in the Future, Proc.
IEEE, vol. 54, no. 12, pp. 1820-1835, Decem-
ber, 1966.

Osborne, Thomas E.: Hardware Design of the
Model 9100A Calculator, Hewlett-Packard J., vol.
20, no. 1, pp. 10-13, September, 1968.

Ossanna, J. F., L. E. Mikus, and S. D. Dunten:
Communications and Input-Output Switching in
a Multiplex Computing System, AFlPS Proc.

Padegs, A.: Channel Design Considerations,
IBM Sys. J., vol. 3, no. 2, pp. 165-180, 1964.

Padegs, A.: Structural Aspects of the Sys-
tem/360 Model 85, Ill. Extensions to Float-
ing-point Architecture, IBM Sys. J., vol. 7, no.

FJCC, Pt. I, VOI. 27, pp. 231-241, 1965.

1, pp. 22-29, 1968.

PapiW57

PatzW67

PeacA??

PennJ62

PikeJ52

PlugW61

PortR6O

RajcJ43

RandB68

RichR55

RobeJ58

RobeL67

RoseG67

Papian, W. N.: High-speed Computer Stores 2.5
Megabits, Electronics, vol. 30, no. 10, pp. 162-
167, October, 1957.

Patzer, William J., and Gilbert C. Vandling: Sys-
tems Implications of Microprogramming, Com-
puter Design, vol. 6, no. 12, pp. 62-66, Decem-
ber, 1967.

Peacock, A,: Read-only Memory and Computer
Con t 101, to be published .
Penny, J. P., and T. Pearcey: Use of Multipro-
gramming in the Design of a Low Cost Digital
Computer, Comm. ACM, VOI. 5, no. 9, pp. 473-
476, September, 1962.

Pike, James L.: Input-Output Devices Used with
SEAC, AIEE-IRE-ACM Conf., pp. 36-38, Decem-
ber, 1952.

Plugge, W. R., and M. N. Perry: American Air-
lines’ “SABRE” Electronic Reservations System,
Proc. WJCC, pp. 593-602, May, 1961.

Porter, R. E.: The RW-400-A New Polymorphic
Data System, Datamation, vol. 6, no. 1, pp.
8-14, January/February, 1960.

Rajchman, J., Snyder, and Rudnick: RCA Labo-
ratories Report, under terms of OSRD contract
OEM-sr-591.

Randell, B., and C. J. Kuehner: Dynamic Storage
Allocation Systems, Comm. ACM, vol. 11, no. 5,
pp. 297-306, May, 1968.

Richards, R. K.: “Arithmetic Operations in Digi-
tal Computers” D. Van Nostrand Company, Inc.,
Princeton, N.J., 1955.

Robertson, J. E.: A New Class of Digital Division
Methods, IRE Trans., vol. EC-7, no. 3, pp. 218-
222, September, 1958.

Roberts, Lawrence G.: Multiple Computer Net-
works and lntercomputer Communication, ACM
Symp. on Operating System Principles, Gatlinburg,
Tenn., Oct. 1-4, 1967.

Rose, Gordon A.: “lntergraphic,” A Micropro-
grammed Graphical-Interface Computer, IEEE
Trans., vol. EC-16, no. 6, pp. 773-784, Decem-
ber, 1967.

‘According to E. F. Codd, this article has not been published as of Jan. 23,
1968. However, “Microprogram Control for System/360” by S. G. Tucker, IBM
Sys. J., vol. 6, no. 4, 1967, has and covers the material that we think was
intended to be in PeacA??.

Bibliography 649

RoseJ65

Roses67

Roses69

RosiR69

RossH53

RothS59

SaltJ66

SamuA57

SaxoJ63

Sch I H??

Sc h WJ 64

SechR67

SeebR63

SegaR61

SenzD65

Rosenfeld, J.: Marbles and Boxes, IBM Res.
Project Rept., Yorktown Hts., N.Y., November,
1965.

Rosen, Saul: “Programming Systems and Lan-
guages,” McGraw-Hill Book Company, New
York, 1967.

Rosen, Saul: Electronic Computers: A Historical
Survey, Computing Suroeys, VOI. 1, no. 1, pp.
7-36, March, 1969.

Rosin, Robert F.: Contemporary Concepts of
Microprogramming and Emulation, Computing
Surveys, vol. 1, no. 4, pp. 197-212, December,
1969.
Ross, Harold D., Jr.: The Arithmetic Element of
the IBM Type 701 Computer, Proc. IRE, vol. 41,
no. 10, pp. 1287-1294, October, 1953.

Rothman, S.: R/W 40 Data Processing System,
Intern. Conf. on Information Processing and
Auto-math 1959, Ramo-Wooldridge, Div. of
Thompson Ram0 Wooldridge, Inc., Los Angeles,
Calif., June, 1959.

Saltzer, J. H.: Traffic Control in a Multiplexed
Computer System, M.I .T. Tech. Rept. MAC-TR-30,
July, 1966.

Samuel, Arthur L.: Computers with European
Accents, Proc. WJCC, pp. 14-17, 1957.

Saxon, J. A,: “Programming the IBM 7090,”
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.

Schlaeppi, H. P.: Extensions of PL/I-like Lan-
guages for Parallel Processing, with Program-
ming Examples, in preparation.

Schwartz, J. I.: A General-purpose Time-sharing
System, AFIPS Proc. SJCC, vol. 25, pp. 397-411,
1964.

Sechler, R. F., A. R. Strube, and J. R. Turnbull:
ASLT Circuit Design, IBMJ . ofRes. and Deo., vol.
11, no. 1, pp. 74-85, January, 1967.

Seeber, R. R., and A. B. Lindquist: Associative
Logic for Highly Parallel Systems, AFIPS Proc.
FJCC, VOI. 24, pp. 489-493, 1963.

SegaI, R. J., and H. P. Guerber: Four Advanced
Computers-Key to Air Force Digital Data Com-
munication System, AFPS Proc. EJCC, vol. 20,

Senzig, D. N., and R. V. Smith: Computer Orga-

pp. 264-278, 1961.

SerrR62

ShanC38

SharW69

ShawJ58

ShedG66a

ShedG66h

ShupP53

SlotD62

SlutR51

SmitR64

SoloM66

Squ i J63

SteeT61

StevL52

nization for Array Processing, AFIPS Proc. FJCC,

Serrell, R., M. M. Astrahan,G. W. Patterson, and
I. B. Pyne: The Evolution of Computing Ma-
chines and Systems, Proc. IRE, vol. 50, no. 5,
pp. 1039-1058, May, 1962.

Shannon, E. C.: A Symbolic Analysis of Relay
and Switching Circuits, Trans. AIEE, vol. 57, pp.

Sharpe, William F.: “The Economics of Com-
puters,” Columbia University Press, New York,
1969.

Shaw, J. C., A. Newell, H. A. Simon, and T. 0.
Ellis: A Command Structure for Complex Infor-
mation Processing, Proc. WJCC, pp. 119-128,
1958.

Shedler, G. S., and M. Lehman: Parallel Compu-
tation and the Solution of Polynomial Equa-
tions, IBM Res. Rept. 1550, Yorktown Hts., N.Y.,
February, 1966.

Shedler, G. S.: Parallel Numerical Methods for
the Solution of Equations, IBM Res. Rept. RC
1619, Yorktown Hts., N.Y., June, 1966.

Shupe, P. D., and R. A. Kirsch: SEAC, Review
of Three Years of Operation, Proc. EJCC, pp.

Slotnick, Daniel L., W. Carl Borck, and Robert
C. McReynolds: The SOLOMON Computer,
AFIPS Proc. FJCC, VOI. 22, pp. 97-107, 1962.

Slutz, Ralph J.: Engineering Experience with the
SEAC, AIEE-IRE Cor$., pp. 90-94, December,
1951.

Smith, R. V., and D. N. Senzig: Computer Orga-
nization for Array Processing, IBM Res. Rept. RC
1330, Yorktown Hts., N.Y., December, 1964.

Solomon, Martin B., Jr.: Economies of Scale and
the IBM System/360, Comm. ACM, vol. 9, no.
6, pp. 435-440, June, 1966.

Squire, J. S., and S. M. Polais: Programming
and Design Considerations of a Highly Parallel
Computer, AFIPS Proc. SJCC, vol. 23, pp. 395-
400, 1963.

Steel, T. B., Jr.: A First Version of UNCOL, Proc.

Stevens, L. D.: Engineering Organization of
Input and Output for the IBM 701 Electronic

Pt. I, VOI. 27, pp. 117-128, 1965.

713-723, 1938.

83-90, 1953.

WJCC, pp. 371-377, 1961.

650 Bibliography

Stev W 64

StraC59

SumnF62

Tayl N 5 1

TeagH65

ThomR63

ThorJ64

TomaR67

Tucks67

Tu ri S59

UngeS58

VandW52

Va n d W 56

Va nd W 59

Data-processing Machine, AIEE-IRE-ACM
Conf., pp. 81-85, December, 1952.

Stevens, W. Y.: The Structure of System/360,
Part Il-System Implementations, IBM Sys. J.,
vol. 3, no. 2, pp. 136-143, 1964.

Strachey, C.: Time Sharing in Large Fast Com-
puters, Proc. ICIP, UNESCO, pp. 336-341, June,
1959.

Sumner, F. H., G. Haley, and E. C. Y. Chen: The
Central Control Unit of the “Atlas” Computer,
Proc. IFIP Gong. 1962, pp. 657-662, 1962.

Taylor, Norman H.: Evaluation of the Engineer-
ing Aspects of Whirlwind I, AIEE-IRE Conf., pp.
75-78, December, 1951.

Teager, Herbert M.: A Review of AmdaG64a;
Computing Rev., vol. 6, no. 5, pp. 355-356,
September-October, 1965.

Thompson, R. N., and J. A. Wilkinson: The D825
Automatic Operating and Scheduling Program,

Thornton, James E.: Parallel Operation in the
Control Data 6600, AFIPS Proc. FJCC, Pt. II, vol.

Tomasulo, R. M.: An Efficient Algorithm for
Exploiting Multiple Arithmetic Units, IBM 1. of
Res. and Deu., vol. 11, no. 1, pp. 25-33, January,
1967.

Tucker, S. G.: Microprogram Control for Sys-
tem/360, IBM Sys. J., vol. 6, no. 4, pp. 222-241,
1967.

Turing, Sara: “Alan M. Turing,” W. Heffer and
Sons, Ltd., Cambridge, England, 1959.

Unger, S. H.: A Computer Oriented toward Spa-
tial Problems, Proc. IRE, vol. 46, no. 10, pp.
1744-1750, October, 1958.

Van der Poel, W. L.: A Simple Electronic Digital
Computer, Appl . Sci. Res., Sec. B, vol. 2, pp.

Van der Poel, W. L.: The Logical Principles of
Some Simple Computers, Thesis, Amsterdam,
1956.

Van der Poel, W. L.: ZEBRA, A Simple Binary
Computer, Proc. K I P , UNESCO, pp. 361-365,
June, 1959.

AFIPS PTOC. SJCC, VOI. 23, pp. 41-49, 1963.

26, pp. 33-40, 1964.

367-400, 1952.

VyssV65

WaleE62

WareW63a

Wa reW63 b

WebeH67

Wei kM55

WeikM61

WeikM64

WestG6O

WilkJ53

WilkM5la

Wil kM5 1 b

Vyssotsky, V. A., F. J. Corbato, and R. M. Gra-
ham: Structure of the Multics Supervisor, AFlPS
Proc. FJCC, Pt. I, VOI. 27, pp. 203-212, 1965.

Walendziewicz, E. T.: The D210 Magnetic Com-
puter, Proc. Conf. on Spaceborne Computer Engi-
neering, Anaheim, CaZif., pp. 117-127, Oct.

Ware, W. H.: “Digital Computer Technology and
Design,” vol. 1, “Mathematical Topics, Princi-
ples of Operation, and Programming,” John
Wiley & Sons, Inc., New York, 1963.

Ware, W. H.: “Digital Computer Technology and
Design,” vol. 2, “Circuits and Machine Design,”
John Wiley & Sons, Inc., New York, 1963.

Weber, Helmut: A Microprogrammed Implemen-
tation of EULER on IBM System/360 Model 30,
Comm. ACM, VOI. 10, no. 9, pp. 549-558, Sep-
tember, 1967.

Weik, M. H.: A Survey of Domestic Electronic
Digital Computing Systems, Ballistic Research
Laboratories, Aberdeen, Md., Rept. 971, Decem-
ber, 1955.

Weik, Martin H.: A Third Survey of Domestic
Electronic Digital Computing Systems, Ballistic
Research Laboratories, Aberdeen, Md.; report
supersedes B R L Rept. 1010, Department of the
Army Project No. 5B03-06-002 (1961).

Weik, Martin H., Jr.: A Fourth Survey of Do-
mestic Electronic Digital Computer Systems,
Ballistic Research Laboratories, Aberdeen, Md.,
Rept. 1227; processed by Defense Documenta-
tion Agency, Defense Supply Agency No. 42900,
January, 1964.

West, George P., and Ralph J. Koerner: Com-
munications within a Polymorphic lntellectronic
System, Proc. WICC, pp. 225-230, 1960.

Wilkinson, J. H.: “The Pilot ACE,” pp. 5-14,
Automatic Digital Computation, National Physi-
cal Laboratory, Teddington, England, March

Wilkes, M. V.: The Best Way to Design An Auto-
mat ic Ca Icu la t i ng Mach i ne, Manchester Univer-
sity Computer Inaugural Conf., July, 1951. Pub-
lished by Ferranti Ltd., London.

Wilkes, M. V.: The Edsac Computer, AIEE-IRE
Conf.., pp. 79-83, December, 1951.

30-31, 1962.

25-28, 1953.

Bibliography 651

WilkM52 Wilkes, M. V., D. J. Wheeler, and S. Gill: “The
Preparation of Programs for a Digital Compu-
ter,” Addison-Wesley Publishing Company, Inc.,
Reading, Mass., 1952.

WilkM53 Wilkes, M. V., and J. B. Stringer: Micro-
programming and the Design of the Control
Circuits in an Electronic Digital Computer, Proc.

April, 1953.

Wilkes, M. V., W. Renwick, and D. J. Wheeler:
The Design of the Control Unit of an Electronic
Digital Computer, Proc. IEE, Pt. B, vol. 105, pp.
121-128, March, 1958.

Wilkes, M. V.: Microprogramming, Proc. EJCC,
pp. 18-20, 1958. WirtN66b

WilkM65 Wilkes, M. V.: Slave Memories and Dynamic
Storage Allocation, IEEE Trans., vol. EC-14, no.

WillF49

Cambridge Phil. soc., Pt. 2, VOI. 49, pp. 230-238, WirsJ66

WilkM58a
WirtN66a

WilkM58b

2, pp. 270-271, 1965.
W i rtN66c

WilkM69 Wilkes, M. V.: The Growth of Interest in Micro-
programming: A Literature Survey, Computing
Sur~eys, vol. 1, no. 3, pp. 139-145, September,
1969. ZadeL63

Operating Experience, Proc. EJCC, pp. 91-95,
1953.

Williams, F. C., and T. Kilburn: A Storage System
for Use with Binary-Digital Computing Ma-
chines, Proc. IEE, Pt. 3, vol. 96, pp. 81-100,
March, 1949. Same paper in Pt. 2, vol. 96, pp.
183-202, April, 1949.

Wirsching, Joseph E.: NOVA: A List-oriented
Computer, Datamation, vol. 12, no. 12, pp.
41-43, December, 1966.

Wirth, N., and H. Weber: EULER: A Generaliza-
tion of ALGOL, and Its Formal Definition: Part
I, Comm. ACM, vol. 9, no. 1, pp. 13-25, Janu-
ary, 1966.

Wirth, N., and H. Weber: EULER: A Generaliza-
tion of ALGOL, and Its Formal Definition: Part
II, Comm. ACM, vol. 9, no. 2, pp. 89-99, Febru-
ary, 1966.

Wirth, N.: A Note on “Program Structures” for
Parallel Processing, Comm. ACM, vol. 9, no. 5,
pp. 320-321, May, 1966.

Zadeh, Lotfi A., and Charles A. Desoer: “Linear
System Theory,” McGraw-Hill Book Company,

WillC53 Williams, Charles R.: A Review of ORDVAC New York, 1963.

Name Index

Adams, Charles W., 42, 585
Adams Associates, 42, 257, 580
Ainsworth, Ernest, 212
Alexander, S. N., 165, 212
Allard, R. W., 496
Allen, M. W., 469
Allmark, R. H., 257, 262-266
Alonso, R. L., 146-156
Amdahl, Gene M., 259, 469, 561
Anderson, D. W., 587
Anderson, James P., 257, 348, 447-455, 469,

Anderson, S. F., 587
Ann& Antharvedi, 73
Arbuckle, R. A., 50
Arbuckle, T., 349
Arden, B. W., 81, 275, 469, 566, 571
Aschenbrenner, R. A,, 469
Aspinall, D., 277
Astrahan, M. M., 42, 119, 144, 212, 223, 515

586

Babbage, Charles, 46
Backus, John, 9
Baldwin, F. R., 46
Baldwin, R. R., 469
Barnes, George H., 320-333
Bartlett, K. A,, 504
Barton, R. S., 257, 273
Bashkow, Theodore R., 363-381
Hasilewskii, Iu. Ia., 213
Beckman, F. S., 146
Belsky, M. A,, 349
Benington, H. D., 504
Bernstein, A,, 349
Bhushan, A,, 507
Bibb, J., 469
Blaauw, G. A,, 259, 426, 428, 464, 561,

588-601
Blair-Smith, H., 146-156
Bloch, Erich, 421-439
Blosk, R. T., 439
Bock, R. V., 257
Boilen, S., 291
Boland, L. J., 587
Borck, W. Carl, 320, 463
Bouchon, Falcon, Jacques, 46
Boutwell, E., Jr., 334
Bowden, B. V., 42
Aright, I i . S., 291, 456
Brooker, R. A,, 279
Brooks, F. P., Jr., 146, 259, 349, 423, 428, 464,

561, 588-601
Brown, J. L., 385
Brown, Richard M., 320-333
Buchholz, Werner, 396, 421, 428, 469, 515

Burdette, E. W., 119
Burks, Arthur W., 86-119
Bussell, B., 469

Campbell, Robert V. D., 42
Carlson, C. B., 257, 273
Carpenter, H. G., 171
Carr, J. W., 111, 205-215, 220-224
Carter, W. C., 387
Casale, Charles T., 69, 155, 156, 396
Chase, George C., 42
Chen, E. C. Y., 274
Chen, T. C., 587
Chu, J. C., 119, 396
Clark, Wesley A., 274
Clayton, B. B., 496
Cochran, David S., 243-256, 439
Codd, E. F., 397, 439, 469
Comeau, L. W., 587
Comfort, W. T., 291, 469
Conti, Carl J., 563, 574
Conway, Melvin E., 295, 457
Corbato, Fernando J., 295, 457, 469, 517, 523,

Couleur, J., 469
Cox, Jerome R., Jr., 50
Crawford, P., 111
Cray, Seymour, 471
Critchlow, A. J,, 469
Culler, Glen, 45

57 1

Daley, Robert C., 275, 297, 469, 517, 523, 571
Darringer, John A,, 13
Davies, D. W., 504
Davies, P. M., 469
Davis, G. M., 257
Dean, R. F., 340, 587
Demuth, H. B,, 119
Dennis, Jack B., 81, 275, 295, 457, 469
Dent, B. A,, 257
Desmonde, W. H., 456
Desoer, Charles A,, 7
Devonald, C. H., 171-183
Dijkstra, E. W., 469
Doody, D. T., 385
Dorff, E. K., 496
Dreyfus, P., 456
Dunten, S. D., 469
Dunwell, S. W., 421

Earle, 5. G., 587
Eccles, W. H., 46
Eckert, J. Presper, Jr., 91, 157-169, 396

Edwards, D. B. G., 276-290
Elbourne, R. D., 172, 212
Elliott, W. S., 171-183
Ellis, T. O., 257, 349-362
England, A. W., 396
England, W. A., 149
Ernst, H. A., 469
Eshed, R., 469
Estrin, Gerald, 119, 469
Evans, D. S., 171
Everett, R. R., 137-145, 504
Ewing, R. G., 469

Fagen, R. E., 496
F a g , P., 385
Fairclough, J. W., 171, 174, 176, 385
Falkoff, A. D., 13, 458, 587
Fikes, Richard E., 571
Flynn, Michael J., 83, 340, 587
Forgie, James W., 291, 469
Forrester, J. W., 75
Fotheringham, John, 190
Frankovich, J. M., 469
Fredkin, E., 291
Fried, 45
Frizzell, Clarence E., 525

Galler, B. A., 81, 275, 469, 566, 571
Gibson, C. T., 81, 587
Gibson, D. H., 574
Gibson, W. B., 469
Gill, S., 456
Glaser, E. L., 469
Goldschmidt, R. E., 587
Goldstine, Herman H., 87-119
Grabhe, E. M., 205-215, 220-224
Graham, R. M., 469
Granito, G. D., 587
Green, A,, 156
Green, J., 392
Greene, J., 340, 587
Greenstadt, J. L., 525
Greenwald, Sidney, 212
Gregory, J. G., 315, 463
Grimsdale, R. L., 277, 587
Grosch, H. R. J., 585
Gruenberger, F. J., 89, 119
Grumette, Murray, 525
Guerher, H. P., 509

Haines, L. H., 392
Haley, A. C. D., 266
Haley, G., 274

65:

654 Name index

Hamblin, C. L., 257
Haney, Frederick M., 9
Hartley, D. F., 290
Hauck, E. A,, 257
Haueter, R. C., 212
Hayata, Tomo, 344
Hellerman, H., 469
Herwitz, Paul S., 397
Hillegass, John R., 587
Hipp, J. A,, 385
Hodges, Donald, 257
Hoffman, Samuel A., 257, 447-455, 469
Holland, John, 315, 320
Hollerith, H., 46
Hopkins, A. L., 146-156, ,349
Hoskinson, E. A,, 334
Howarth, D. J,, 274
Hughes, E. S., Jr., 223
Huskey, H. D., 191, 193

Iverson, Kenneth E., 13, 587

Jackson, J. B., 119
Jacquard, Joseph Marie, 46
Johnston, A. St., 171
Johnston, D. L., 171
Jones, P. D., 290
Jordan F. W., 46

Kahn, W., 469
Kampe, Thomas W., 71, 334, ,341-347
Kato, Maso, 320-333
Katz, J. H., 463
Kepler, Johannes, 46
Kilburn, T., 75, 274-290
King, Paul, 257, 267-273
Kinslow, H. A,, 469
Kirsch, R. A,, 212
Kister, J., 349
Kitov, A. I., 213
Klein, E. F., 119
Klein, R. J., Jr., 119
Knight, Kenneth E., 50-51
Knuth, D. E., 469
Koerner, Ralph J.. 485
Kroger, Marlin G., 448
Kronfeld, Arnold, 363-381
Kuck, David J., 320-333
Kuehner, C. J., 77, 274

Lampson, B. W., 291-300
Landy, B., 290
Langdon, J. L., 581
Lanigan, M. J., 276-290
Laning, J. H., Jr., 146-156
Lauer, Hugh C., 571
Lawless, W. J., Jr., 146

Lebedev, S. A,, 213
Lehman, M., 393, 446, 456-469
Leibniz, Gottfried Wilhelm, 46
Leiner, A. L., 212, 440-445, 449, 456
Lichtenberger, W. W., 291-300
Licklider, J. C. R., 291
Lindquist, A. B., 469, 587
Liniger, W. M., 463
Liptay, J. S., 587
Lloyd, R. H. F., 587
Lonergan, William, 257, 267-273
Longstaff, F. M., 469
Lonsdale, K., 279
Laurie, N., 469
Low, P. R., 587
Lowry, E. S., 397
Lucking, J. R., 257, 262-266
Lukasiewicz, J., 270

McCarthy, J., 291, 469
McCormick, Bruce H., 315
McCullough, J. D., 291, 456, 469
McDonough, E., 397
MacLaren, M. Donald, 587
McPherson, J. L., 165, 169
McReynolds, Robert C., 315, 320, 463
Maher, R. J., 273
Marcotte, A. U., 587
Marcotty, M. J., 469
Mauchly, John W., 91
Maudsley, B. G., 171-183
Mauer, H., 156
Meade, R. M., 469
Meagher, R. E., 119
Melbourne, A. J., 392
Mendelson, M. J., 396
Mercer, Robert J., 340
Merry, I. W., 171, 176
Merwin-Daggett, Marjorie, 469, 517, 523,
Messina, B. U., 587
Metropolis, N., 119
Mikus, L. E., 469
Miller, W. F., 469
Miranker, W. L., 463
Mitchell, Herbert F., 157-169
Molnar, Charles E., 73
Monnier, Richard E., 243-256
Montgomery, 11. C., 587
Morris, Derrick, 274
Mueller, 46
Muntz, C. A., 155, 156
Murtha, J. C., 320
Myer, T. H., 303

Nash, J. P., 119
Naur, Peter, 9
Needham, R. M., 290
Netter, Z., 469

Neumann, P. G., 297, 349
h’ewell, A., 257, 349-362
Nievergelt, J., 463
Nisenofl, N., 42
Notz, W. A,, 440-445, 449, 4-56

O’Brien, T. C., 81, 275, 469, 566, 571
Oleksiak, R., 156
Oliver, G., 469
Ornstein, Severo M., 73
Orvedahl, W., 119
Osborne, Thomas E., 243-256
Ossanna, J. F., 469
Owen, C. E., 171-183

Padegs, .4., 587
Papian, W. N., 270
Parnes, David L., 13
Pascal, Rlaise, 46
Patterson, G. W., 42, 119, 144, 212, 223
Patzer, William J., 340
Payne, R. B., 274
Peacock, A., 604
Pearcey, T., 469
Penny, J. P., 469
Perry, M. N., 504
Peterson, H. P., 469
Pike, James L., 212
Pirtle, M. W., 291-300
Pitkowsky, S. H., 574
Plugge, W. R., 504
Polais, S. M., 469
Poland, C. B., 469
Pomerene, James H., 397
Porter, R. E., 449, 477-488
Powers, D. M., 587
Preiss, R. J., 587

571 Pugmire, J. M., 392
Pyne, I. B., 42, 119, 144, 212, 223

Rajchman, J., 111
Ramo, S., 205-215, 220-224
Randell, B., 77, 274
Reach, R., 469
Reinheimer, H. J., 587
Renwick, W., 346
Richards, R. K., 146, 150
Richardson, J. R., 119
Robbins, R. C., 171
Roberts, Lawrence G., 45, 504
Roberts, M. De V., 349
Robertson, J. E., 431
Rochester, N., 515
Rose, Gordon A., 304, 469
Rosen, Saul, 3, 42
Rosenfeld, J., 468
Rosin, Robert F., 340, 649

Name index 655

Ross, Harold D., Jr., 525
Rothman, S., 470, 485
Rudnick, 111, 119

Saltzer, J. H., 295
Samuel, Arthur L., 42, 119, 144, 257
Sanderson, J. G., 469
Sasson, Azra, 363-381
Saxon, J. A,, 525
Scalzi, C. A,, 397
Scantlebury, R. A,, 504
Schickhardt, Wilhelm, 46
Schlaeppi, €I. P., 457, 463
Schniitt, W. J., 396
Schrimpf, H., 469
Schwartz, J. I., 291
Scott, N. R., 209
Sechler, R. F., 587
Seeber, R. R., 469, 587
Segal, R. J., 500
Senzig, 1). N., 463, 469
Serrell, R., 42, 119, 144, 212, 223
Shannon, E. C., 46, 649
Sharpe, William F., 585
Shaw, J. C., 257, 349-362
Shedler, G. S., 463
Shifman, Joseph, 257, 447455, 469
Shupe, P. D., 212
Simon, H. A,, 257, 349-362
Slotnick, Daniel L., 315, 320-333, 463
Slutz, Ralph J., 210
Smith, J. L., 440-445, 449, 456
Smith, J. W., 587
Smith, R. V., 463, 469
Snyder, 111, 119
Solomon, Martin B., Jr., 561
Sparacio, F. J., 587
Speierman, K. H., 291, 456, 469
Squire, J. S., 469
Steel, T. B., Jr., 8

Stein, P., 349
Stevens, L. D., 525
Stevens, W. Y., 563, 587, 602-606
Stokes, Richard A,, 320-333
Stotz, R. H., 507
Strachey, C., 469
Stringer, J. B., 200, 335-340, 344
Strube, A. R., 587
Sumner, Frank H., 274-290
Sussenguth, E. H., 13, 587
Sutherland, I. E., 303

Tanb, A. H., 92
Taylor, Norman H., 144
Teager, Herbert M., 587
Thomas, C. E., 279
Thomas, L. X., 46
Thompson, R. N., 455
Thornton, James E., 489-503
Tomasulo, R. M., 587
Tonik, A. B., 396
Tucker, S. G., 340
Turing, Alan M., 23, 191, 193
Turing, Sara, 191, 199
Turn, R., 469
Turnbull, J. R., 587

Ulam, S., 349
Unger, S. H., 320
Updike, B. M., 340, 587

Van der Poel, W. L., 200-204
Van Derveer, E. J., 587
Vandling, Gilbert C., 340
Van Horn, E. C., 295, 457
Vareha, Albin L., Jr., 571

van Neumann, John, 86-11>]
Vyssotsky, V. A,, 295, 457, 469

Walden, W., 349
Walendziewicz, E. T., 148, 156
Warbiirton, E. T., 279
Ward, J. E., 507
Ware, W. H., 650
Weber, Helmut, 257, 340, 348, 382-392, 469,

Weik, Martin H., Jr.. 42
Weinberger, A,, 440-445, 449, 456
Weiner, James R., 157-169
Wells, M., 349
Welsh, H. Frazer, 157-169
West, George P., 485
Westervelt, F. H., 81, 275, 469, 566, 571
Wheeler, D. J.. 346
Wilkes, M. V., 84, 139, 200, 214, 334-340,

344, 345, 396, 574
Wilkinson, J. A,, 455
Wilkinson, J. H., 193-199
Wilkinson, P. T., 504
Williams, A. P. M., 469
Williams, Charles R., 119
Williams, F. C., 75
Williams, Robert J., 257, 447-455, 469
Winching, Joseph E., 316-319
Wirth, N., 257, 348, 383, 389, 392, 469
Witt, R. P., 172, 212
Wolf, K. A., 496
Wooldridge, D. E., 205-215, 220-224
Wright, M. V., 349
Wyld, Michael T., 274

587

Zadeh, Lotfi A,, 7
Zemlin, R. A,, 496
Zraket, C. A,, 504
Zurcher, F. W., 291, 456, 469

Machine and Organization Index

Page references in boldface refer to the Appendix, ISP descriptions, and PMS diagrams.

Aberdeen Proving Grounds (see EDVAC;

ACE (NPL/National Physical Laboratory), 39,
ENIAC; IAS)

43, 44, 74, 190, 193-199, 216
introduction, 193
ISP, 193-199
PMS, 191, 193, 198
T(io), 197-199

ADU/Accumulation and Distribution Unit

AEC/Atomic Energy Commission, 396
AGC/Apollo Guidance Computer (M.I.T.

Instrumentation Laboratory), 44, 89,
146- 156

(see ComLogNet)

D(arithmetic), 150-152
design and construction, 148
interpreter, 147-148
introduction, 146
ISP, 152-155
PMS, 146-148

Air Force, 137
ALGOL language, 13, 45, 73, 257, 267, 348
ALPAK language, 45
ALWAC IIIE, 11, 44
AMBIT Zanguage, 45
AN/FSQ-27 (see RW-40 and 400)
AN/GYK-3(V) (see D825 and D830)
AN/UYK (RW =1 TRW), 71
AOSP/Automatic Operating and Scheduling

APEXC, 39
APL/A Programming Language, 13, 45
Apollo (see AGC)
Argonne Laboratory, 257
Arithmometer (L. X. Thomas), 46
ARPA/Advanced Research Projects Agency,

program (see D825, operating system)

291-300, 315
network, 510-512

Arrow (see Strela)
AS1 6000 (EMR), 44
Atlas (Manchester University, Ferranti), 43-45,

82, 91, 274-290
input-output, 274-283, 285-289
interrupt, 274, 276-277
introduction, 276
ISP, 276-279, 283-285
M(core), 280-283, 289-290
multiprogramming, 274-283
operating system, 279, 285-287

RT, 287-289
ATLAS-1 and 2 (Ferranti), 43
AVIDAC, 39-89

PMS, 277, 279-283, 289-290

B 160, 170, 180, 250, 260, 263, 270, 273, 280,

H 2500, 2501, and 3500 (Burroughs), 43
B 5000 (Burroughs), 43, 44, 79, 81, 257-261,

283, and 300 (Burroughs), 43-44

267-273
design, 267
ISP, 268-273
operating system, 267-268
PMS, 258-260, 268

B 5500 (Burroughs), 43-45
B 6500 and B 7 k 0 (Burroughs), 43, 45,

257-261, 325, 328
B 8500 and B 8501 (Burroughs), 43-44, 64, 257
Babbage’s Analytic Engine, 42, 46, 53
Babbage’s Difference Engine, 46
Baldwin Calculator, 46
BASIC (Dartmouth College), 45, 236
Bell System, 303
Bell Telephone Laboratory computers, 39,

Bendix 3 CDC (see under CDC; G-15; 6-20)
BESK, 39, 89
BESM, 213
BINAC (Eckert-Manchly), 43, 91, 163
BIT 480 (Business Information Technology),

Bitran 6 (Fabri-Tek), 44
BIZMAC I, I1 (RCA), 39-43
BTL MACRO language, 45
BTSS/Berkeley Time Sharing System

42-43, 45-46

44

(University of California, Berkeley), 44,
45, 274-275, 291-300

input-output, 297-300
introduction, 291 -292
ISP, 291-297
M(files), 297-300
multiprogramming, 291-295
operating system, 292-300
PMS, 275, 292
T(io), 297

Burroughs (see B 2500; B 5000; B 55(X);
B 6500; B 8500; D825; Datatron 204, 205,
and 220; E 101, 102, and 103; ILLIAC
IV)

California, University of, Berkeley (see BTSS)
Carnegie-Mellon University, 120, 571
CDC/Control Data Corporation (see (2-15;

CDC 160, A, 6, 43, 44, 120
CDC 924, 3100, 3200, 3300, and 3500, 43-44,

G-20)

79

CDC 1604, 44, 89
CDC 1700, 44
CDC 3400, 3600, and 3800, 43-44, 348, 396
CDC 6400, 6416, 6500, 6600, 6700, and 7600,

43-45, 47, 71, 76, 79, 83, 120, 170, 397,
470-476, 489-503

circuits, 41-14-495
history, 470, 489

operating system, 472-475
packaging, 494496
performance, 470-471
PMS, 470, 471-475, 476, 489-494
RT, 491-494

ISP, 472, 491-49-3, 497-503

CDC 8090 and 8092 (see CDC 160, A, G)
CDP/Communications Data Processor (see

C.E.C.E., 39
Census, Bureau of, 157, 164-165
CG24 (Lincoln Laboratory), 43
Chasm special pulpose computer, 73
COBOL 60 and 61 language, 45
Columbia University Calculator, 46
COMIT language, 33, 45
ComLogNet, 45, 509-510
CORC language, 45
CPC/Card Programmed Calculator (IBM), 43,

88
CSIRAC, 89
Culler-Fried on line language, 45

ComLogNet)

D825 and D830 (Burroughs), 44, 45, 257-260,
446-455

design philosophy, 447-450
input-output, 454-455
ISP, 45.3
operating system, 450-455
PMS, 260, 450-455

DASK, 89
Datamatic 1000 (Honeywell), 39, 43
DATANET 30 (GE), 43
Datatron 204, 205, and 220 (Burroughs), 39,

IIDP-IS (Honeywell), 43
DIIP-24, 224, and 124 (Honeywell), 43-44
DDP-116, 316, 416, and 516 (Honeywell),

DEC/Digital Equipment Corporation (see

DEC 338, 260, 303-314, 396

43, 44

43-44, 512

PDP- 1)

interpreter, 305
introduction, 305

56

Machine and organization index 657

DEC 338, ISP, 305-309, 310-314
PMS, 121
(See ako PDP-8)

(See also ACE)
Deuce (English Electric), 39, 43-45, 191

DMI/Data Machine Inc. Varian Associates,

DMI 520/I (Varian), 44
DM1 620 (Varian), 44
Dutch Postal and Telecommunications

Services, 200
Dynamo language, 45
DYSEAC (National Bureau of Standards), 39,

43, 172, 440

44

E 101, 102, and 103 (Burroughs), 43, 44
EAI/Electronic Associates Inc., 44
EA1 640, 44
Eccles-Jordan Flip-Flop, 46
Eckert-Mauchly Computer

Corporation * UNIVAC, 91
EDSAC I and I1 (Cambridge University), 39,

42-45, 58, 89, 139, 144, 196, 398
EDVAC/Electronic Discrete Variable

Automatic Computer (University of
Pennsylvania) 39, 42-45, 95

Eight-bit character computer, 170, 184-187,
224

introduction, 184
ISP, 184, 185, 186-187

EMR 6130, 44
English Electric = ICT/International

ENIAC/Electronic Numerical Integrator and
Computers and Tabulators (see KDF 9)

Computer (University of Pennsylvania),
39, 42-43, 45-47, 88, 113

Associates * UNIVAC, 43, 192
ERA/Engineering Research

(See also UNIVAC 1101, 1102; UNIVAC
1103A)

ERMA (see GE 100)
ESS/Electronic Switching System (Bell

EULER, 44, 73, 257, 348, 382-392
System), 303

interpreter (microprogram), 385-392
introduction, 382-383
ISP, 383-385, 388-391
PMS, 382-392

Fabri-Tek (see Bitran 6)
FACT language, 45
Ferranti Carp. Ltd. * ICT/International

Computers and Tabulators, 39
(See also Atlas; Mercury; Pegasus)

FLAC (Florida), 39
FOCAL (DEC) language, 236
FORMAC (IBM) language, 45
FORTRAN (IBM), FORTRAN 11, FORTRAN

IV language, 45, 50, 73, 348

FORTRAN Machine, 44, 348, 363-381
interpreter, 366-379
introduction, 363-364
ISP, 363-365
logical design, 365-381
PMS, 365-366
RT, 364-368, 375-381

FX-1 (Lincoln Laboratory), 43-45

6-15 (Bendix 3 CDC), 39, 43-44, 74, 191
6-20 (Bendix =) CDC), 44, 57, 152
Gamma 60 (Machines Bull), 44, 456
GARDE 312 (GE), 43
GE lOO/ERMA, 43
GE 115, 43
GE 205, 210, 215, 225, 235, 255, and 265,

43-44
GE 412, 435, 43-44
GE 635, 625, 43
GE 645 (General Electric), 43, 45, 79, 275
GE 4040, 4050, 4060, 4020, and 4050 11, 43
General Automation (see SPC-8)
General Precision CDC (see LGP-30)
Genie prooject (see BTSS)
George (University of New South Wales), 257
Gott Sei Danke, 346
GPS language, 45

H-200 series: 110, 120, 125, 200, 400, 1200,
1250, 2200, 3200, 4200, and 8200
(Honeywell), 43, 44, 58, 225

H-1400 and 1800 (Honeywell), 43
Harvard (see Marks)
Hollerith Punched Cards, 46
Honeywell (see Datamatic 1000; DDP-19;

Host computer (see ARPA network)
HP/Hewlett-Packard (see HP 9100A)
HP 9100A, 44, 235-236, 243-256

DDP-24; DDP-116; H-200; H-1400)

D, 243-244, 254-256
ISP, 243-249
microprogram, 254-256
packaging, 250, 252-253
PMS, 235, 240-254
RT, 250
T, 243, 248, 253

IAS/Institute for Advanced Studies nircchine

IBM ASP/Attached-Support Processor, 506
IBM 305 (disk), 43, 45
IBM 650, 39, 43, 44, 91, 216, 220-223

IBM 701, 39, 43-45, 47, 89, 515-516

(see van Neumann)

ISP, 220-223

PMS, 515
(See also IBM 7094)

IBM 702, 39, 43, 47, 87
IBM 705, 705 III, 708, and 7080, 39, 43-44,

IBM 1130 (see IBM 1800)
IBM 1401, 1440, and 1460, 43-45, 47, 61, 188,

224-234, 562-,564

47, 87, 433

history, 225
interpreter, 229
introduction, 225-226
ISP, 226-229, 231-234
PMS, 226
RT, 229-230

IBM 1410 and 7010, 43, 44
IBM 1620, 111, and 1710, 43-44, 225
IBM 1800 and 1130, 43-45, 48, 55, 90, 396,

399-420, 470, 575-576, 579, 583-586
input-output, 405, 409-411
interpreter, 408-409
introduction, 3%-400
ISP, 407416, 417-420
PMS, 400-405, 404
RT, 405-409, 411-413

IBM 2938, 45, 72
IBM 7030 (see Stretch)
IBM 7070, 7072, 7074, 43, 44
IHM 7094 I, 11, 7044, 7040, 7090, 709, and

704, 30-32, 39, 43-45, 47, 54, 64, 70, 79,
91, 149, 303, 306, 422, 433, 515-541,
562-564

history, 515-517
interpreter, 522-523
ISP, 523, 526-541
multiprogramming, 523
P(io), 524-525
PMS, 517-519
RT, 520-522

IBM Multiplying Calculator, 46
IBM Stretch (see Stretch)
IBM System/360, 43-45, 61, 64, 303, 396

addressing, 565-566, 594
array processor, 576-579
base register, 594

bihliography, 587
branch instructions, 505
channel-to-channel adapter, 576
circuits, 564, 603-604
cost, 579-585
critique by authors, 561-587
data types, 564-565, 590-594
design, 561-564, 588
direct control, 597

emulation, 562-563
floating point, 591-592
functional schematic, 589
general registers, 564-565
history, 561

(See also design above)
information formats (see data types above)
innovations, 562

(See also addressing above)

(See also input-output below)

658 Machine and organization index

IBM System/360, input-output, 588, 598-601
[See also P(io; data channels) below; PMS

and PMS diagrams below]
interpreter, 594-595, 604-605
interrupts, 596-597
introduction, 561, 588
ISP, 564-566, 588-601
logical structure, 588-601

(See also ISP above)
M(content addressable), 571, 573-574
M(Large capacity store), 571-572, 582-583
M(read only), 604-605

(See also microprogramming below;
Models 30, 40, and SO below)

microprogramming, 563-564, 604-605

model range, 561-564, 588, 602-606

Model 20, 563-567
Model 25, 184, 563, 567, 569
Model 30, 236, 348, 382-392, 566-568,

(See also Models 30, 40, and 50 below)

(See also performance below)

602-606
ISP, 385-388
microprogram, 382-385, 388-392
RT, 386

Model 67, 76, 79, 275, 561, 563, ,571,

Model 75, 561, 563, 571
Model 85, 76, 561, 563, 574-575
Model 91, 561, 563, 575
Models 30, 40, and 50, 561, 563, 566, 568,

Mp, ,563, 571-572, 582-583, 602-603
multiprocessing, 456-469, 585-587
multiprogramming, 565-566, 571, 573-574,

iletworks, 576-579, 581, 598

performance, 563, 579-587, 602-606
P(io; data channels), 573-574, 576-577,

PMS and PMS diagrams, 563, 566-579,

573-574

602-603

597-598

(See also IBM ASP)

598-601, 605-606

602-606
K(specia1 controls), 576
Model 20, 567
Model 44, 569-571, 569
Model 67, 571, 573-574, 573
Model 75, 567, 571-572
Model 85, 574-575, 575
Model 91, 575
Models 30, 40, and SO, 65, 566-568,

Ms (data cell, disk, drum), 577, 579
Ms(magnetic tape), 578-579, 578
P(array), 576-578, 576
P(special), 576-578, 576
S(c), 579, 581

T(analog), 581
T(audio), 579
T(display), 579

566-567

(See also networks above; IBM ASP)

IBM/System 360, PMS and PMS diagrams,
T(print, punch, read), 580
T(telephone, typewriter), 579, 581

processor state, 564-565, 588, 596-598
RT, 568, 570, 572, 603-604
S(cross-point; time-multiplexed; BCU), 573
SLT/Solid Logic Technology, 564, 603-604
storage protection (see multiprogramming

storage-to-storage channel, 576-577
SVC/Supervisor Call, 597
system implementations, 602-606
timer, 597
variable-length character strings, 591

above)

ASCII, 593
decimal, 593-594
EBCDIC, 592

ICT/International Computers and Tabulators,
91, 274

(See also Atlas; KDF 9)
ILLIAC I (University of Illinoiq), 39, 43-45,

ILLIAC II (University of Illinois), 43
ILLIAC Ill (University of Illinois), 43, 351
ILLIAC IV (University of Illinois), 43-45, 47,

89

66, 72, 315, 320-330
input-output, 322, 327-328
interpreter, 322-325
introduction, 320-321
ISP, 322-325, 330-333
PMS, 321-322, 327-329

RT, 326

(See also under ILLIAC)

K(P), 322-323

Illinois, University of, 43

IMP computer (see ARPA, network)
Instrumentation Laboratory, M.I.T. (see AGC)
Interdata, Model 3 and 4, 44, 184
IPL I, 11, Ill, IV, and V, 45, 257
IPL VI/Information Processing Language. 44,

45, 73, 257, 348-362
design, 349-350
interpreter, 351, 354-355, 359-362
ISP, 354-359, 361-362
RT, 352-354

IPL VC, 257

Jacquard Punched Card Loom, 46
JOHNNIAC (RAND), 43-44, 78, 89
JOSS (RAND) language, 45, 78
JOVIAL (SDC) language, 45

KDF 9 (English Electric), 44, 257-266
D, 263-266
introduction, 282
ISP, 262-263
PMS, 260
RT, 264

L.4RC (UNIVAC), 43-44, 86. 396-397
Lehman Computer example (IBM Research),

44-45, 446, 456-469
application, 464-469
design philosophy, 456-457
instructions, 457-461
interrupt, 458-461
introduction, 456
operating system, 461-463
performance, 456-457, 463-469
PMS, 459-461
simulation, 463-469

Leibniz Calculator, 46
LEO I and 11, 39
Leprechan (Bell Telephone Laboratories), 43
LGP-30, and LGP-21 (General

Precision =) CDC), 44, 45, 74, 91, 192.
216-219

ISP, 217, 218-219
PMS, 217

LINC/Laboratory Instrument Computer

LINC-8 (DEC) (see PDP-8)
Lincoln Laboratory (M.I.T.), 571

(M.I.T. Lincoln Laboratory), 43, 44, 120

(See also CG24; FX1; LINC; MTC; TX-0,
TX-2)

LISP 1.0 and 1.5 language, 45
Lockheed Electronics (see MAC-16)
Los Alamos (see AEC)
LRL/Lawrence Radiation Laboratory,

LKL network, 507
Livermore, California, 396-397

MAC-16 (Lockheed Electronics), 44
MAD language (University of Michigan), 45
MADM/Manchester Automatic Digital

Manchester University, 39, 45, 340
(See also Atlas; MADM; Mark I; Muse)

MANIAC: I and 11 (University of California,

Mark I (Manchester University), 43
Mark I, 11, Ill, and IV (Harvard), 39, 42-43,

Mathmatic language, 45
MEG, 39
Mercury (Ferranti), 39, 279
Michigan, University of, MAD, MIDAC, 192,

MIDAC (Michigan, University of), 39, 44, 192,

Machine, 39, 58

Los Alamos), 39, 43, 89

46

209-212, 571

209-212
ISP, 209-212

MILSMAC, 347
MISTIC, 43
M.I.T. CTSS operating system, 45
M.I.T./Massachusetts Institute of Technology

(see AGC; GE 645; Lincoln Laboratory;
MULTICS project; Whirlwind I)

M.I.T. network, 507
Monorobot, Monorobot XI, 39, 44

Machine and organization index 659

Monroe Calculator, 46
Monroe Corporation, 46
Moore School of Electrical Engineering (see

MOSAIC, 39
Motorola 1O(M), 44-45
MTC/Memory Test Computer (M.I.T. Lincoln

Laboratory), 39, 45, 89
Mueller's Difference Engine, 46
MULTICS project (M.I.T.), 45, 571
Muse (Manchester University), 43, 277

Pennsylvania, University of)

NBS/National Bureau of Standards (see

Neher Laboratory, 200
Network of Computers, 504-512, 505-512

DYSEAC; PILOT; SEAC)

ARPA, 510-512
ComLogNet, 509-510
IBM ASP, 506
LRL, 507
M.I.T., 507
SABRE, 504
SAGE, 504
Texas, University of, 506-507
typical, 508-509

NORC, 39, 44
NOVA (LRL/Lawrence Radiation

Laboratory), 44, 66, 315-319
applications, 316-317
introduction, 316
ISP, 317-318
RT, 318

(See also ACE)
NPL/National Physical Laboratory, 45

Olivetti-Underwood (see Programma 101 Desk

ONR/Office of Naval Research, 137
ORACLE, 89
ORDVAC (University of Illinois), 39, 43, 89

Calculator)

Pascal Calculator, 46
PB/Packard Bell a Raytheon (see PH-250;

PB-250, 44, 74, 101
PB-440, 334
PDC 808, 816, 44
PDP-1 (DEC), 44-45
PDP-4, 7, 9, and 15, 43-45
PUP-8, 8S, 81, 8L, and 5, 20-32, 43-44, 49, 90,

PR-440)

120-136, 396
applications, 120
circuits, 132-133
input-output, 123
interpreter, 131
interrupt, 123
ISP, 22-33, 120-123, 127, 134-136
Logical design, 127-133

PDP-8, 8S, 81, 8L, and 5, M(core), 128-129
PMS, 20-21, 123-131, 121, 124, 126, 128
RT, 125, 127-131
(See also DEC 338)

PDP-10 and 6, 43-45, 79, 170, 275, 564
PDP-12, LINC-8 (see PDP-8)
Pegasus (Ferranti), 44, 62, 170-183, 564

circuits, 171-174, 176
introduction, 181
ISP, 176-179, 182-183
logcal design, 172-175, 179-181
packaging, 174-176, 179-182

Pennsylvania, University of (Moore School),
43, 46, 05

Philco 212, 44
PILOT (National Bureau of Standards) 39, 43,

(See also EDVAC; ENIAC)

44, 75, 397-398, 440-445, 449
applications, 440
input-output, 444-445
ISP, 442-444
performance, 440-442
PMS 398, 440-442

Polymorphic (RW) (see RW-40 and 400)
Programma 101 Desk Calculator

(Olivetti-Underwood), 44, 216, 235,
237-242

ISP, 237-242
PMS, 237-238, 237

Programmed Console (Washington University),

PUFFT, compiler, 45
120

RAND Corporation (see JOHNNIAC; JOSS)
RAYDAC (Raytheon), 39
RCA/Radio Corporation of America (see

BIZMAC I, 11; SPECTRA 70 Series)
RCA 110, 43, 44
RCA 301 and 3301, 4.3
RCA 501 and 601, 4.3, 44, 225
RCA 1600, 184
RCA Spectra 70, 561-562
Recomp I, 11, and 111, 44
Rice University computer, 45, 53
RW/Radio Wooldridge (see AN/UYK)
RW-40 and 400 (Thompson, Ramo,

Wooldridge), 44, 53, 192, 400, 470-471,
477-488

design philosophy, 477
interrupt, 481-482
ISP, 470, 480-482
ISP language, 486-488
PMS, 471, 477-480, 482-485

SABRE network (American Airlines), 45, 504
SAGE/Semi-Automatic Ground Environment

network, 45, 504
SCC/Scientific Control Corp. 650, 120
Schickhardt Calculator, 46

SD-2 (Librascope), 44, 334, 341-347
desip, 341-343
interpreter, 550-552
introduction, 341
ISP, 343-347
microprogram, 345-346
packaging, 341-343
PMS, 343
RT, 343-345

SDC/Systems Development Corp., 45
SDS/Scientific Data Systems * XDS/Xerox

Data Systems (see SDS 910; SDS 940 and
945; Sigma 2 and 3; Sigma 5 and 7)

SDS 92, 44, 120
SDS 910, 020, 925, 030, 9300, 43, 44, 91, 291,

542-560
history, 542-543
input-output, 543-545, 552-555
interpreter, 551-552
interrupt, 553-555
introduction, 542-543
ISP, 544-545, 548-550, 556-560
PMS, 275, 543, 546-548, 546
RT, 550-552
(See olso BTSS)

SDS 940 and 945 (SDS, University of
California, Berkeley), 43-44, 79, 275,
291-300, 542

(See also BTSS)
SEAC (National Bureau of Standards), 39,

SEL/Systems Engineering Laboratories, 44
SEL 810, 44
Sigma 2 and 3 (SDS * XDS), 43-44, 78
Sigma 5 and 7 (SDS 3 XDS), 43, 170, 396, 564
SILLIAC, 89
SIMSCRIPT language, 45
SIMULA, language, 45
SNOBOL language, 45
SOL language, 45
SOLOMON, 315, 320
Soviet Academy of Sciences, 213
SPC-8 and 12, 44
SPECTRA 70 Series (RCA), 43
SS 80 I and I1 (UNIVAC), 43
Strela/Arrow (Russian), 44, 192, 213-215

Stretch/IBM 7030, 43-45, 47, 91, 396-397,

43-45, 172, 192, 209-212, 440

ISP, 213-215

421-439
arithmetic, 428-431
circuits, 433-438

input-output, 421-422
interrupt, 423
introduction, 421
ISP, 422-424
K(P), 424-428
look-ahead, 426-428
packaging, 432, 438-439
performance, 421-423, 425-426, 431-433
PMS, 421-423, 425-426

D, 427-431

660 Machine and organization index

Stretch/IBM 7030, RT, 426-431
Subscriber Station (see ComLogNet)
SWAC, 39, 43
Systein/3fiO (see IBM System/360)

Texas, University of, network, 506-507
Toronto University Computer, 44
TRAC language, 45
TRE, 39
TRW/Thompson, Ramo, Wooldridge (see RW-40

Turing machine, 23
TX-2 and TX-0 (Lincoln Laboratory, M.I.T.),

39, 43-45, 274

and 400)

UNCOL language, 8-9, 13
US. Army Ordnance Department, 92
UNIVAC, 39, 43-45, 48, 91, 157-160

applications, 164-165
design constraints, 163
input-outpnt, 158, 161-162
interpreter, 159-161
ISP, 157-160
performance, 164-168
PMS, 158
reliability, 165-169
RT, 157-160
T(io), 161-163
(See aEo SS 80 I and 11)

UNIVAC 11 and 111, 39, 43-45
UNIVAC 418, 1218, and 1818, 43-44
UNIVAC 490, 491, 492, and 494, 43-44
UNIVAC 1004 I, 11, 111, 1005 I, 11, and 111,

UNIVAC 1050, 43, 44
UNIVAC 1101 and 1102, 39, 43
UNIVAC 1103A, 39, 43, 44, 48, 62, 192,

43, 44

205-208
ISP, 205-208

UNIVAC 1105, 39, 43
UNIVAC 1108, 1107, and 1106, 10, 43-45, 62.

170, 192, 564
UNIVAC 1206, 43
UNIVAC 1212 (Military), 43
UNIVAC 9200 and 9300, 43

Varian Associates (see under DMI)
van Neumann/IAS/Institute for Advanced

Studies, 39, 42, 44, 58, 89, 92-119, 152,
398

applications, 92-93
checking, 118
D, 96-111
design constraints, 92-93
input-output, 92, 117, 119
interpreter, 111-119
ISP, 111-119
M, 94-96

WEIZAC, 43, 89
Whirlwind I (M.I.T.), 10, 39, 43-45, 55,

58, 90, 137-145, 303, 470
applications, 138
D, 142
interpreter, 140- 14 1
introduction, 137-139
ISP, 145
K, 139-143
M, 141
packaging, 14 1-143
PMS, 90, 138-139

Wilkes’ microprogrammed computer example,
44, 335-340

design, 335-337
introduction, 335
ISP, 337-340
microprogram, 339-340
RT, 336

XDS/Xerox Data Systems (see SDS)

ZEBRA (Standard Telephones and Cables,
Ltd.), 44, 191-192, 200-204, 216

introduction, 200
ISP, 200-204
PMS, 201

ZUSE Company, 39, 42

Subject Index

Page references in boldface refer to the Appendix, ISP descriptions, and PMS diagrams.

abbreviation/, 19, 607, 609
acceptance test, UNIVAC, 165-166
access-i-unit-operation, 633
access-time, 620-622
accessing algorithm, 41
accumulator, ZEBRA, 202
accumulator register, 59-60, 98
accuracy, HP 9100 A, 246, 256
acoustic delay line, 96

action t, 23-24, 631-632
action-sequence, 23, 631
actual address, 76-81

adaptability:

[See also under M(delay line)]

(See also physical address)

D825, 447-448
RW-400, 477-479

adder, Pegasus, 174
addition, van Neumann, 98-99
address-expression, 631-632
address-range [1, 24, 631-633
address-size, P, 626-627
addresses-per-instruction, P, 57-63, 627

addressing (see memory addressing; memory

addressing system, memory, 16
aerospace computer, 146-1.56
algorithm-encoding-efficiency, P, 627
alias/, 19, 607, 609
alphabet, 609, 613
alternation 1 , indefinite expression, 17, 610
and A, 25

antecedent, 619
applications:

(See also instruction format)

mapping; multiprogramming)

(See also n-ary-boolean-operation)

Lehman computer, 464-469
NOVA, 316-317
PDP-8, 120
PILOT, 440
UNIVAC I, 164-165
van Neumann, 92-93
Whirlwind I, 138

approximation-, 607-608, 610
architecture, 562

(See also ISP; under PMS)
archival memory [see M(archiva1)l
area, 617, 619
arithmetic:

multiple-precision, AGC, 151-152
parallel, 429-4,M
serial, 428-429
Stretch, 428-431

arithmetic element, Whirlwind, 142
arithmetic expression, 614
arithmetic-function-operation, 614
arithmetic organ, van Neumann, 98

(See also D/data-operation)
arithmetic unit, KDF 9, 263-266
array instructions, NOVA, 316-319
array processor [see P(array)]
ASCII/American Standards Code for

Information Interchange, 593
assemble instruction, 457-458
assignment: =, 23, 607, 609
associative memory [see look-aside memory;

attribute, 19, 607, 612-613
attribute-list, 612-613
attribute: value pair (see attribute; value)
auto index register, 120-122, 134
availability, 447

Lehman computer, 456-457
available space list, IPL VI, 352-353

M(associative)]

b (see bit)
I3 line:

Atlas, 277-278
Manchester University, 340
(See also index register)

barrel, CDC 6600, 474, 489-491
base, 24, 55-56, 614, 616, 631
base-data-type, 630-631
base register, MIDAC, 210
bench-mark, 52
bilinear switch, 623-624
binary-arithmetic-operation + - , 614, 633-635
binary-boolean-operation, 615, 633-635
binary-decimal conversion, 21 1

binary machine, 87-88
binary-operation, 28, 633
binary-value, 611
bit/binary-digit, 611, 616-617
bit string, 317-318

(See also data-type, Stretch)
block, 617
block diagram (see PMS diagram; PMS level;

block transfer, ZEBRA, 204
BNF/Backus-Normal Form (Backus-Naur

Form), 9
boolean, 608, 615
booleaii-expre\\lon, 615

(See also ISP, IBM System/360)

RT)

boolean-operations E @ 3 V A -,, 608-609,

branch instruction, 595
breakouts, IPL VI, 350-351
buffer module, RW-400, 482-484
bulk core memory (see M/memory)
bus, 10 (See also S/switch)
business computer (see function)
buzzer, ACE, 198
by/byte, 616

633-635

IBM Stretch, 423
IBM System/360, 591

C/compnter (see computer)
C(l Pc), 40-41, 63-70, 395
C(l Pc-nPio), 40-41, 63-70, 396-398
capital letters, 609
card, IBM, 617
carrier, 618

carry, 98-99
casting out three, Stretch, 431
central processor [see P(c)]
channels [see P(io)]
character-base, 631-632
character/char, 616
character generation instruction, 308
character string, 184-185

checking:

data-type, 629-631

(See also variable-length character string)

Stretch, 431
UNIVAC, 160-161, 168-169
Whirlwind, 143-144

circuit level, 4
circuits:

CDC 6600, 494-405
component count, 470-471
PDP-8, 132-133
Pegasus, 171-174, 176
Stretch, 433-438

component count, 431-432
class, 609-610
cocomponent, 617
co-incident current memory [see M(core)]
colon : , 19, 612-613, 631

combinatorial circuits, 5
comma, 611
commands, 608-610

(See cilso attribute:valrie pair)

(See also abbreviation; assignment, form;
variable)

COMMENT, 608

66 I

662 Subject index

comments, 608
communication computer (see function)
communication multiplexing, 505
compiler, EULER, 391-392
complex, data-type, 631
complex number arithmetic, 246, 255-256
component:

data-type, 629-631

component-function, 617
component-name, 617
compound computer, 628
compound-link, 619-620
compound name (see name)
compnter, 628

control, 146-156
duplex, 66

computer levels, 3-11
PDP-8, 126-127

computer model, 63-66
computer-space dimensions, 40
concatenation 0, 24, 631-633
concurrency, 617-618
concurrency-type, 617
condition, 23, 631
condition codes, IBM 1800, 407
conditional micro-order, 336-337
configurator, IBM 1800, 400-403
construction (see packagng)
content addressable memory [see M(content

contextual addressing, 267-268
continuous-modulation, 618
control, 624-625

PMS, 616-619

addressable)]

ILLIAC IV, 322-323
Stretch, 424-428
Whirlwind, 139-142
(See also interpreter; K/control; RT)

control computer (see function)
control-operation, 633
control-organ, van Neumann, 111-119
controlled-operation, 624-625
conversion, 615-616
conversion-arithmetic-operation, 633-634
Cooley-Tukey algorithm, 73
cooling, 470

Pegasus, 181
UNIVAC, 163

core memory [see M(core)]
cost, 616-617, 619
count-expression, 614
country, 619
cross-point switch, 267
crosshar switch, [see S(crotshar); tinder S(cross-

point)]
CRT/Cathode Ray Tube display [see under

T(CRT)]
current, 616
cycle-time (see memory)
cyclic memory [see M(cyclic)]
cyclic switch, 623-624

D/data-operation, 17, 23-36, 626
d/decimal digit, 616
D(Stretch), 427-431
data break, PDP-8, 124-126
data channel [see P(io)]

IBM 7094, 523-525
SDS 900 series, 543, 546-548, 552-555

data-expression, 631
data field register, 120, 523
data flow, Stretch, 425-428
data-operation, 17, 23-36, 626
data-operation definition, ISP, 636-637
data-operations table, 633-635
data programs, IPL VI, 360
data structure, IPL VI, 351, 354
data-type, 23-36, 57

ISP, 629-631
P, 626-628
Stretch, 423-424

data-type format, ISP, 636-637
data-type-name, 629-631
decimal, 614
decimal digit, 616
decimal machine, 57, 87-88
decimal-name, 614
DECtape, 124-126
definite expression, 607-608, 611-612
definition: = (see assignment)
delay, 1, 620
delay line [see under M(de1ay line)]
dequeue switch, 623-624
descendants, 619
descriptor, 79-81

B 5000, 271-272
design philosophy:

D825, 447-450
Lehman computer, 456-457
SD-2, 341-343

desk calculators, 235-256
destination address, ACE, 194-199
digital computer (see C/computer)
digital differential analyzer, 304
digits, 609
dimension, 608, 615
dimension-expression, 615
direct access communications channel, SDS

900 series (see data channel)
direct memory access, PDP-8, 124-126
direction, 618
directive instructions, Lehman computer, 459
discrete-modulation, 618
disk, 74, 577, 579
display processor [see P(display)]
distribution, switch, 623-624
divergence, T, 625-626
divergence-rate, T, 625-626
divide step, SDS 900 series (see ISP)
division:

nonrestoring, 107- 11 1
restoring, 107-11 1
UNIVAC, 158

drum [see M(drum)]
dynamic data types, 383
dynamic storage allocation, 383-384

EBCDIC/Extended Binary Coded Decimal

ECL/Emitter Coupled Logic, 320
edit instruction, 228
effective address calculation process, ISP, 28,

efficiency, processor, 626-628
electrostatic memory, 75
element-range/(), 24, 631-633
ellipses. . . , 608, 610
emulation, 562-563
encode, 16
encoding, 618
entity, 608, 611-612
error-rate, 617, 619
evoke operation +, 23, 631, 633
EXAMPLE, 608
excess three code, UNIVAC, 163
expansibility criteria, D825, 448
expression, 608

definite, 607-608, 611-612
indefinite, 607-608, 610
optional, 613
(See also boolean-expression;

Interchange Code, 592

59-60, 636-637

count-expression; dimension-expression;
relational-expression)

expression-variables, 608
extended core store/ECS, CDC 6600, 473
external execute instruction, 458
extra codes, 597

AGC, 154-155
Atlas, 274-278
(See ulso syspop)

fabrication (see packaging)
family tree of computer design, 39
fast Fourier transform, 73
features, 225-226
fetch-execute cycle (see interpreter)
field, data-type, 631
file, 617

BTSS, 297-300
file control (see function)
fixed point (see data-type)

fixed structure network, 504
flag bit, IBM 1401, 226
floating point, 97

number-data-type, 630-631

Atlas, 277-278, 283-285
B 5000, 268-270
HP 8100 A, 243-256
IBM 7094, 527
KDF 9, 263-266
number-data-type, 630-631
SDS 900 series, 544-545, 549-551

Subject index 663

floating point, Stretch, 429-431, 433
UNIVAC 1103A, 208
Wilkes example, 335

fork instruction, 325, 457
form, 607, 610
format, data-type, 629-631
full-duplex, 617-618
function, 37, 40, 46-49

biisiness, 47-48
C, 618
communication, 48
component, 617
control, 48
file control, 48
operation, 28
P, 626-627
scientific, 47

terminal, 48-4:)
time-sharing, 49

T, 625-626

functional units, CDC 6600, 473, 494

gate tubes, 112-119
general conventions, PMS and ISP, 607-615
general registers:

&bit character computer, 184-187
Pegasus, 176-379

39-40, 43-46
generations (first, second, third, and fourth),

Gibson mix, 49-50
graph-plot instructions, 308

Half-diiplex, 617-618
hexa-decimal-&@/hex, 616
hierarchy (see structure)

high-level language, B 5000, 267
high-speed core memory (see M/memoryj
history, 38-46, 617, 619
hyphen-, 25, 607
hyphen-name, 613-614

switch, 623-624

i-rate, 617-618
i-imit/information unit, 16, 616-618

base-unit, 616
data-type, 629-631
length, 616

i-iinit-name, 616
i-unit-prefix
IBM-card, 617
iconoscope tube, 84
illegal instruction, BTSS, 293
indefinite expression, 607-608, 610
index#, 20, 613
index register, 59-80
information, 616
information base, 24, 55-56, 614, 616, 631
information-content, data-type, 629-631

information length, 16
information-rate, 617-618
information units, 616-618
inhibit drivers [see M(core)]
input-output:

ACE, 197-199
Atlas, 274-283, 285-289
BTSS, 297-300
D825, 454-455
IBM 1800, 405, 509-411
IBM 7094, 524-525
ILLIAC IV, 322, 327-328
PDP-8, 123
PILOT, 444-445
SDS 900 series, 543-545, 552-555
Stretch, exchange, 421-422
UNIVAC I, 158, 161-162

input and output organ, van Neumann, 91,

instruction:
117, 119

control, DEC 338, 308-309
data, DEC 338, 307-308
ISP, 601-632
special, Lehman computer, 457-461

instruction backup register, IBM 7094,

instruction buffers, 84
520-522

ILLIAC IV, 323-324
(See also look-ahead; look-aside)

instruction decoding diagram, 122-123, 184
instruction-efficiency, P, 626-627
instruction examples, ISP, 632, 635-637
Instruction-execution, ISP, 25-36, 637
instruction execution process, ISP, 637
instruction-expression, 23, 631-632
instruction format:

0 address/stack, 62-64, 257-261
stack: B 5000, 268-273

1 address, 58-60, 64, 87-91

1 + general register (see general regstersj
1 + 1 address, IRM 650, 220-223
1 + index address, 58-60, 87-9 1
2 address, 60-61

KDF 9; 262-266

ACC, 145)-150

RW-400, 470, 480-482, 486-488
UNIVAC 1103A, 205-208

MIDAC, 209-212
Strela, 213-215

general registers, 61, 64
(See also general registers)

IBM 1800, 407-408, 410-411
ISP, 25, 636-637
n + 1 address, 61, 191
SUS 900 series, 544-545, 548-552
variahle number of addresses per

3 address, 60-61

instruction, 63
instruction highway, ACE, 197
instruction interpretation process, ISP,

636-637

instruction interpreter (see interpreter)
instruction look-ahead (see look-ahead)
instruction-memory, P, 627-628
instruction modification, 209-210
instruction-set, 25

ISP, 636-637
K, 624-625
P, 626
(See also ISP)

instruction-size, P, 626-627
instruction-source, K, 624-625
instruction unit, Stretch, 426-427
integer-data-type, 630-631
+ integer-data-type, 630-631
integer-name, 614
+ integer-name, 614
- integer-name, 614
integrated circuit memory (see M/memory)
interaction controller, Lehman computer, 460
interaction function, Lehman computer,

interference, processor-memory, 463-4611
interflow, 151
interlace (see data channel, SDS 900 series)
interleaving (see memory interleaving)
interpretation-cycle, 22-36

(See also interpreter)
interpreter, 22-36

AGC, 147-148
DEC 338, 305
EULER microprogrammed, 385-392
FORTRAN Machine, 366-379
IBM 1401, 229
IBM 1800, 408-409
IBM 7094, 522-523
ILLIAC IV, 322-325
IPL VI, 351, 354-355, 359-362
ISP, 636-637
PDP-8, 131
SDS 900 series, 550-552
Stretch (see instruction unit)
UNIVAC, 15R-161
von Neumann, Ill-119
Whirlwind I, 140-141

458-461

interprocess communication, 41
interprogram communication, 81-83
interrupt/interprocess interrupts, 82-83, 411

Atlas, 274-283
B 5000, 267-272
D823, 452-453
Lehinan computer, 458-461
PDP-8, 123
RW-400, 48 1-482
SDS 900 series, 553-5.55
Stretch, 423

interrnpt-response-time, P, 626-627
intraprocess interrupt/trap, 82-83

1/0 Bits:
(See also extra codes; trap)

PDP-8, 124-126
SDS 900 series (see input-output)

664 Subject index

ISP/Instruction-set Processor, 12, 22-33
ACE, 193-199
AGC, 152-155
Atlas, 276-279, 283-285
B 5000, 268-273
BTSS, 292-297
CDC 6600, 472, 401-493, 497-503
DEC 338, 305-309, 310-314
D825, 453
%bit character computer, 184, 186-187
EULER, 38.3-385, 388-391
FORTRAN, 363-365
HP 9100A, 243-249
IBM 650, 220-223
IBM 1401, 226-229, 231-234
IBM 1800, 407-416, 417-420
IBM 7094, 523, 526-541
IBM System/360, Model 30, 385-388
ILLIAC IV, 322-325, 330-333
1PL VI, 354-358, 361-362
KDF 9, 262-263
LGP-30, LGP-21, 217, 218-219
MlDAC, 209-212
NOVA, 317-318
PDO-8, 22-25, 26-27, 28-33, 120-123, 127,

134-136
Pegasus, 176-179, 182-183
PILOT, 442-444
Programma, 237-242
RW-40, RW-400, 470, 480-482, 486-488
SD-2, 343-347
SDS 900 series, 544-545, 548-550, 556-560
Strela, 213-215
Stretch, 422-424
UNIVAC, 157-160
UNIV.4C 1103A, 205-208
von Neumann, 111-119
Whirlwind, 140-141, 145
Wilkes example, 337-339
ZEBRA, 200-204

ISP conventions, 628-637
italics, 24, 608

join instruction, 457

K/control, 16-22

k/kilo, 616
kernels, 464
keyboard:

(See also control)

HP 9100A, 235, 244-249, 251-253
Programma 101; 237-242
[See also T(keyboard)]

L/link, 16-22, 619-620
label, 612
labeled-entity, 612
language, 9

large capacity store/LCS, 571-572, 582-583
lattice (see structure)
length, 616
length-type, data-type, 629-631
level, system, 3-4
LINCtape, 124-126
lineage, 617, 619
linear switch, 623-624
link, 619-620

delay, 620
port-to-port delay, 620

list, 607, 611
list processing, EULER, 384
list structure, IPL VI, 350
literal syllable, B 5000; 272
location, S, 623-624
logic diagrams, PDP-8, 127-133
logic equations, PDP-8, 127-133
logic technology, 40, 617-618
logical address, 76-81

BTSS, 291
(See also memory mapping;
multiprogramming)

logical design l e d , 5
FORTRAN Machine, 365-381
PDP-8, 127-133
Pegasus, 172-175, 179-181

logical structure (see ISP, IBM System/m)
look-ahead:

Atlas, 281-285, 287-289
CDC 6600, 492-494
IBM 7094, 550-552
ILLIAC IV, 323-324
Stretch, 397, 422, 424-428

[See also M(content addressable)]
look-aside memory, 84, 574

M/memory, 16-22

M(associative), 76

M(bu1k core), 74
M(content addressable), 74

(See also look-aside)
M(core), PDP-8; 128-130
M(cyclic), 73-74
M(de1ay line; ACE, Deuce), 191, 193-199
M(de1ay line; Pegasus), 173-174, 177
M(de1ay line; UNIVAC), 163
M(drum), 74
M(e1ectrostatic; Whirlwind I), 141
M(fixed-head disk), 74
M(fixed-head disk; ILLIAC IV), 322, 327-328
M(1arge storage; Whirlind), 137-138, 141
M(magnetic card), 74
M(magnetic card; HP 91(K)A), 248-249, 253
M(1nagnetic card; Programma 101), 237-242
M(magnetic tape), 74
M(magnetic tape; IBM format), 126
M(magnetic tape; RW-400), 483

(See also memory)

[See also M(content addressable)]

M(magnetic tape; Univervo), 157
M(moving head diskpak), 74
M(p/primary memory), 17, 24, 74
M(p; concurrency), 41, 76-81
M(p; size), 41
M(photostore; IBM), 507
M(punched card), 74

[See also T(punch)]
M(queue), 73
M(random), 75
M(read only), 604-605
M(read only; capacitor; System/360; Model

30), 385-387
M(read only; HP 9100A), 235, 250-253
M(read only; rope; AGC), 146-147
M(s/secondary), 74
M(stack), 73
M(stack; B SOOO), 269-271
M(thin film; D825), 453-454
M(togg1e switch; Whirlwind I), 142-143
M(UNIVAC), 158, 164
machine-independent language, B 5000; 267
macro-parallelism, 456, 463
magnetic card [see M(magnetic card)]
magnetic tape [see M(magnetic tape)]
mapetic wire memory, 96
main line of computers, 87-91
maintenance:

ILLIAC IV, 328-329
Pegasus, 181-182
UNIVAC, 165-169
Whirlwind I, 138-139, 142-143

manufacturer catalog number, 617
manufacturer name (see proper-name)
manufacturer-type, 619
map (see memory map; multiprogramming)
marks, 609
master control program, B 5000, 267-268
master slave schemes, D825, 449
matrix milltiply problem, Lehman computer,

464-466
medium, 618
memory, 620-622

access-time, 620-622
cycle-time, 620-622
function, 620-622
information-rate, 620-622
operations, 620-622
permanency, 620-621
portability, 620-621
primary, 621

[See also M(p)]
processor state, 621
secondary, 621

[See also M(s)]
size, 620-622
technology, 620-622

(See also M/memory; memory organ)
memory access algorithm, 73
memory addressing:

AGC, 155-156

Subject index 665

memory addressing: (cont.)
SDS 900 series, 542, 549-550

memory bus, Stretch, 422, 426
(See also S/switch)

memory declaration, 36
memory-expression, 631-632
memory interface connection, SDS 900 series,

543, 546548, 555
memory interleaving:

Atlas, 289-290
CDC 6600, 473, 493
IBM 7094, 517-522
ILLIAC IV, 322-324, 327-328
Stretch, 397, 421-422

BTSS, 291-295
IBM 7094, 523

(See also multiprogramming)

memory map:

memory mapping, 77-80

memory organ, van Neumann, 92-96
memory protection, IBM 1800, 408
memory violation, BTSS, 294-295
message concentrator, 120
message switching, 505
metanotation, 607-609
micro-operation, Wilkes, 335-337, 339
micro-order:

System/360, Model 30, 385-388
Wilkes, 335-337

micro-parallelism, Lehman, 456
micro-programme, Wilkes, 335

[See aEo P(microprogram)]
microprogram:

control fields, 387
HP 9100A, 254-256
sequencing, 388
status bits, 388
symbolic representation, 388-389
[See ulso P(microprogram)]

microprogram processor [see P(microprogram)]
micro-subroutines. Wilkes, 339-340
mixed number, data-type, 630-631
MOBF/mean-operations-between-failure,

617-618
modular scheme, D825, 449-450
modulation, 618
monitor map, BTSS, 291-295
monitor mode, BTSS, 291-297
moving head disk, 74, 577, 579
Mp-concurrency, processor, 627-628
MTBF/mean-time-between-failure, 617-618
multiple addresses per instruction, 191

multiple data stream, 83-84
multiple instniction stream, 83-84
multiplex, 617-618
multiplexer, memory, IBM 7094 11, 518-519

(See also S/switch)
multiplication, 100-1 11

AGC, 152
UNIVAC, 157

(See also instruction format)

multiplication, Whirlwind, 142
multiplier, 615
multiplier-quotient register, 59
multiply step, SDS 900 series (see ISP)
multiprocessing, 446-469
multiprogramming, 76, 274-275, 456-469

Atlas, 274-283
B 5000; 267-268
BTSS, 291-295
(See also memory map; multiprocessing;

parallel processing)

n-ary-arithmetic-operation, 614, 633-635
n-ary-boolean-operation, 615, 633-635
n-ary operation, 633
name, 607, 609, 613-614

component, 617
compound, 25, 614
hyphen, 613-614
phrase, 613-614
primitive, 613-614
proper, 607, 617
simple, 607, 613-614

name-expression, 613
nesting store, 263-266

[See also M(stack)]
network, 628
network analysis problem, Lehman computer,

466-469
network computers, 447, 470-503
next, 24, 631
noisy mode floating-point, 422-423
nonary operation, 633
null, 607, 613
number, 608, 614
number-data-type, 630-631
number-name, 614
number representation, AGC, 150-152
number-set-name, 615

octal-digit, 616
one-level store, Atlas, 179-283
one’s complement, AGC, 150-152
onion peeling, Lehman computer, 462-463
operand call syllable, B 5000, 272
operating system:

Atlas, 279, 285-287
B 5000, 267-268
BTSS, 292-300
CDC 6600, 472, 475
D825, 450-455
Lehman computer, 461-463

D, 626
K, 624-625
M, 620-622

port, 627-628

operation, 616, 632-635

P, 626-627

operation, S, 623

operation-code-size, processor, 626-627
operation-expression, 631-635
operation-modifier/{ 1, 30-32, 631-632
operation-rate, port, 617-618
operation-rate-set, 617
operation-set, 617
operation-time, 19
operator syllable, B 5000, 272
optimum coding, 193, 199
optional expression, 607, 613

T, 625-626

P/processor, 17

P(l address) (see instruction format)
I’(2 address) (see instruction format)
P(3 address) (see instruction format)
P(n + 1 address) (see instruction format)
P(array), 66
P(array; ILLIAC IV), 320-333
P(array; NOVA), 318-319
P(c/central processor), 17-22, 71
P(display), 72
€’(io), 72, 303-304
P(io; analog/digital; IBM 1800), 405, 409-416
P(language), 63, 73, 257
P(microprogram)/microprogram processor, 61,

€‘(microprogram; SD-2), 34-347
I’(microprogram; System/3f300, Model 30),

I’(microprogram; Wilkes example), 335-340
P(specia1 algorithm), 66, 72-73, 301
P(stack) (see instruction format)
P(vector move), 72
1’-concurrency, 627-628
packaging:

CDC 6600, 494-496
HP 9100A, 250, 252-253
Pegasus, 174-176, 179-182
SD-2, 341-343
Stretch, 432, 438-439
Whirlwind I, 141-143

address, 120-134

(See also processor)

71, 334

385, 388

page:

(See also memory mapping; multiprogram-
ming)

Atlas, 274, 276, 279-283
BTSS, 291
mapping, 79-80

page address register, Atlas, 279-283
parallel arithmetic (see arithmetic)
parallel-by-function, CDC 6600, 491-494
parallel processing, 446, 456-469
parallel programs, IPL VI, 359-360
parallelism, 456
parameter, 19, 611 (see attribute)
parameter-set, 611

666 Subject index

parentheses (), 609
performance, 37, 49-52

CDC 6600, 470471
Lehman example, 456-457, 4fX-469
PILOT, 440-442
Stretch, 421-423, 425-426, 431-433
UNIVAC, 164-168

period ., 25, 609, 614
peripheral and control processors, CDC 6600,

permanency:
471-475, 489-491

M, 620-622
S, 623

phrase-name, 613-614
physical address, 76-81

BTSS, 291
(See also memory mapping; multiprogram-

ming)
pipeline processor, 84-85
PMS conventions, 615-628
PMS diagram, 16-22
PMS level, 9-10, 15-22

ACE, 191, 193, 198

ARPA network, 511
Atlas, 277, 279-283, 289-290

BTSS, 275, 292

ComLogNet, 509-510
computer models, 63-66
D825 and D830, 260, 450-451, 453-455
Deuce, 191
EULER, 382-392
FORTRAN machine, 365-366
HP 9100A, 235, 240-254
IBM 701, 515
1BM 1401, 226
IBM 1800, 400-405, 404
IBM 7094, 517, 518, 519
IBM ASP, 506
IBM System/360, 563, 579-587, 602-606
ILLIAC IV, 321-322, 327-329
KDF 9, 260
Lehman Computer, 459-461
LGP-30 I LGP-21, 217
M.I.T. network, 507
networks, 504, 505-512

PILOT, 398, 440-442
pipeline processor, 84
Programma 101, 237, 237-238
RW40, RW-400, 471, 477-480, 482-485
SD-2, 343
SDS 900 series, 275, 543, 546, 546-548
Stretch, 421-423, 425-426
S/switches, 67-69
Texas, University, 506-507
UNIVAC, 158
UNIVAC 1108, 11
Whirlwind I, 90, 1.38-139

AGC, 146-148

B 5000, 258-260, 268

CDC 6tW0, 470, 471-475, 476, 480-494

PDP-8, 20-21, 121, 123-131, 124, 126-128

PMS notation, 19-22
PMS primitives, 16-22
PMS structure, 41
PMS structure dimensions, 63-85
polar coordinate arithmetic, 246, 255-256
Polish notation, 270-271, 391
port, 16-18, 617-618
port-to-port delay, L, 620
portability: M, 620-622

postulation, indefinite-expression, 610
power, 616-617, 619
power supply: Pegasus, 181

precision, data-type, 629-631
primary computer, PILOT, 441-443
primary memory [see M(core), Mp-concurrency]
primitive-name, 613-614
print column, 617
process, BTSS, 293-297
process control computer, IBM 1800, 399-420
process map, BTSS, 293
processing elements, ILLIAC IV, 321-322
processor, 626-628

T, 625

UNIVAC, 163

address-per-instruction, 627
address-size, 626-627
algorithm-encoding-efficiency, 626-627
concurrency, 41, 83-85, 626-627
data-types, 626-628
encoding-efficiency, 626-627
function, 626
instruction-memory, 627
instruction-size, 626-627
interrupt-response-time, 626-627

Mp-concurrency, 627-628
operation-code size, 626-627
P-concurrency, 627
parallel/parallel-by-word, 83-84
program-switching-time, 626-627
serial, 83
(See also P/processor)

processor state, 24, 57-63
program checking, Pegasus, 178
program counter, Whirlwind, 140
program entry mode, desk calculator, 235
program field register, 120
program level, 8-10
program reference table, B 5000, 271-272
program-switching-time, 626-627
programmed operator, SDS 900 series, 542,

ISP, 635-637

544-545, 550
(See also extra codes)

programming criteria, D825, 448
proper-name, 607-617
protection and relocation registers, 80
PSW/program status word (see processor state)
punched card [see M(punched card)]
push-pop instruction, DEC 338, 308-309

pyramid, CDC 6600, 474
(See also stack)

quantity, 608, 615
queue memory [see M(yueue)]
quit instruction, 457

random access memory [see M(random)]
range-, indefinite expression, 19, 610
readability, 618
real address, 76-81

record, 617
recursive procedure, EULER, 383-384
referent, data-type, 16, 629-630
referent-expression, data-type, 629-630
register, 632
register transfer (see RT)
relation, 608
relational-arithmetic-operations

= # < > 5 >,6008-609,634
relational-expression, 615
relational-i-unit-operations, 633-634
relational-operation, 615, 634
relations, 615
reliability, 617-618

HP 9100A, 253

Lehman computer, 456-457
network, 505
Pegasus, 181-182
UNIVAC, 166-168
Whirlwind, 138-139

relocation registers, 80
(%e also memory mapping: multiprogrram-

(See aIso physical address)

ILLIAC IV, 328-329

ming)
renaming, 632
repeat instruction, 207

NOVA, 316
replicated single-computer systems, 448
resource allocation diagram, 10
resume instruction, 458
reverse polish, 262-263
round-off, 104-107
RT/register transfer level, 5-7

Atlas, 287-289
CDC 6600, 491494
FORTRAN Machine, 364-368, 375-381
HP 9100A, 250
IBM 1401, 229-230
IBM 1800, 405-409, 411-413
1BM 7094, 520-522
ILLIAC IV, 326
IPL VI, 352-354
KDF 9, 264
NOVA, 318

SD-2, 343-345
SDS 900 series, 550-552
Stretch, 426-431
UNIV.4C, 157-1M
Wilkes example, 336
(See also logical design leuel; microprogram)

PDP-8, 125, 127-133

Subject index 667

S(crossbar; Mp-Pc; Lehman computer), 461
S(cross-point), 67-70
S(cross-point; BSOOO), 258, 267-268
S(cross-point; D825), 450-454
S(cross-point; non-hierarchy; RW-400), 478-

S(duplex), 66-69
S(hierarchy) 67-70
S(1nter-memory transfer trunk; PILOT), 443
S(non-hierarchy), 68-69
S/sec/seconds, 616
S(simplex), 66-69
S/switch, 17-22, 41, 66-70

S(Te1ephone exchange), 506
S(trunk; CDC 6600), 493
scientific computer (see function)
scoreboard, CDC 6600, 473, 492
scratch-pad memory, 58
secondary computer, PILOT, 443444
sementation, 77-81

480

(See also switch)

(See also memory mapping; multiprogram-
mind

Selectron memory, 95
semantics, 607-608
semi-colon ;, 611
sense amplifiers, 128-130
sequencing (see interpretation-cycle)
sequential circuits, 5
serial arithmetic, 428-429
serial computer microprogramming, 340
set, 607, 611
shared memory scheme, D825, 448-449
sharing networks, 504-505
sign, 614
simple-computer, 628
simple-link, 619-620
simple-memory, 620-621
simple-name, 607, 613-614
simplex, 617-618
simulation:

digital computers (See also emulation; inter-

Lehman computer, 463-469
single data stream, 83-84
single instruction stream, 83-84
slave memory (see look-aide)
SLT/Solid Logic Technoloa, 564, 603-604
small letters, 609
source address, ACE, 194-199
space, SD-2, 341
space -, 25, 607
spacing, 609
specialization, indefinite expression, 610
split instruction, 457
square root instruction, 241
stack:

B 5000, 2W-261, 269-271
DEC 338, 308-309
EULER, 385
KDF 9, 260-261

pretation-cycle)

stack memory, 73

stack switch, 623-624
state, 616
state diagram:

ISP, 29

[See also instruction format; M(stack)]

(See also interpreter)
PDP-8, 131

state-system level, 7, 15-16
staticizor, Pegasus, 174
step, 631-632
storage protection (see memory mapping; mem-

store and forward network, 504
stored program digital computer (see computer)
string, 613
structure, 37-38, 52-85

ory protection; multiprogramming)

computer, 628
hierarchy, 63-70
lattice, 65
tree, 65

subcomponents, 617
subroutine calling instructions, PDP-8, 123, 135
subroutine file, BTSS, 299-300
subscripts (see base register; index register)
subscripts/J,, 609
subtraction, 99-100
superscripts/?, 609
SVC/Supervisor Call, 597
switch, 41, 66-70, 623-624

concurrency-type, 623-624 ’
control-terminal, 70
distribution, 623
hang-up-delay, 623-624
hierarchy, 623
location, 623
permanency, 623-624
processor-control, 69-70
processor-memory, 66-69
(See also S/switch)

switch-type, 623
syllable:

B 5000, 272
KDF 9, 263

synchronizer, IBM, 518-519 (see controls)
syntax, 607, 609
syspop/system programmed operator, BTSS,

system level, 3-4
292

T(CRT; DEC 338), 305
T(CRT; HP 9100A), 243, 251
T(CRT; RW400), 484
T(keyboard; HP 9100A), 235, 244-249, 252-253
T(keyboard to tape; Unityper), 161-162
T(puuch; cardipaper tape), 580
T(tape to print; Uniprinter), 161-162
t/time, 616
T/transducer/terminal, 17

(See also transducer)

table look-up:
IBM 650; 220, 222
ZEBRA, 204

task, Lehman example, 456-458, 461-463
technology, 53-55, 617-618

M (see memory, technology)
T, 625

Teletype, 126
temperature, 616-617, 619
terminate instruction, 457458
test and set instruction, 458
test control, Whirlwind, 142-143
tetrads, 112
three addresses per instruction, 193-194

time, 616
time chart, 43-46
time-sharing computer (see function, multipro-

gramming)
timer, IBM 1800. 411
transducer, 625-626

divergence, 625-626
technology, 625

transduction, T, 625-626
transduction-technology, 625
transmission-operation, 633
transmit t, 23-24, 631-633
trap:

(See also instruction format)

IBM 7094, 515, 522-524, 526, 532, 536, 541
ILLIAC IV, 325
(See ulso intraprocess interrupt/trap)

tree (see structure, tree)
trouble shooting (see maintenance)
turn-around-time, 618
twin mode instructions, SDS 900 series, 543-545

unary-arithmetic-operation, 614, 633-635
unary-boolean-operation, 615, 633-635
unary operation, 28, 633
unary-vector-operation, 633-634
unit, 608, 615
units, general, 616
user mode, BTSS, 291-297

value, 19, 607, 611-613
variable, 607, 609-610
variable-character-variable length strings, 414
variable-length character string, 184-185, 224

B 5000, 268-269, 272-273
EULER, 383, 388-391

variable structure network, 504
vector display instructions, 308
virtual memory/virtual address, 77-80

(See also memory mapping; multiprogram-
ming)

virtual table of contents, 14
voltage, 616
volume, 617, 619

668 Subject index

w/word, 617
wait instruction, 458
weight, 617, 619
Wideband Communication Center, 507
wiring (see packaging)
word/w, 617
word length, 56-57

AGC, 146, 148-152

word length, CDC 6600, 489, 492
PILOT, 442444
Stretch, 414-421

(See also performance)
Whirlwind, 137

word mark character, IBM 1401, 226
(See also data-type; design philosophy)

word size, 40
writability, 618

x-list, 611
x-name, 614
x-set, 611

I alternation 17, 610
._ .-
; semicolon, 611
: colon, 19, 612-613, 631
, comma, 611
t transmit, 23-24, 631-633
+
E 0 2 v A 7

$ 634

assignment, 23, 607, 609

evoke operation, 23, 631, 633
boolean-operation, 608-

609,633-635

= # < > 5 2
? 611

rehtional-arithmetic
operations, 608-609, 634

+ - unary-arithmetic-operation, 614-615,

X / binary-arithmetic-operations, 614-615,

- range, 19, 610

J subscript, 609
0 concatenation, 24, 631-

i abbreviation, 19, 607, 609
I space, 25, 607
. period, 25, 609, 614
$ 609, 616

633-635

633-635

t superscript, 609

633

index, 20, 613
* 607, 613
' name, 607, 617
" 609
0 null, 607, 613

@ 615
p 615
() parentheses, 609
[] address-range, 24, 631-633
{ 1 operation-modifier, 30-32, 631-632
() element range, 24, 631-633
. . . ellipsis, 608, 610

